Polyphenol nanoformulations for cancer therapy: experimental evidence and clinical perspective

Abstract: Cancer is defined as the abnormal cell growth that can cause life-threatening malignancies with high financial costs for patients as well as the health care system. Natural polyphenols have long been used for the prevention and treatment of several disorders due to their antioxidant, anti-inflammatory, cytotoxic, antineoplastic, and immunomodulatory effects discussed in the literature; thus, these phytochemicals are potentially able to act as chemopreventive and chemotherapeutic agents in different types of cancer. One of the problems regarding the use of polyphenolic compounds is their low bioavailability. Different types of formulations have been designed for the improvement of bioavailability of these compounds, nanonization being one of the most notable approaches among them. This study aimed to review current data on the nanoformulations of natural polyphenols as chemopreventive and chemotherapeutic agents and to discuss their molecular anticancer mechanisms of action. Nanof ormulations of natural polyphenols as bioactive agents, including resveratrol, curcumin, quercetin, epigallocatechin-3-gallate, chrysins, baicalein, luteolin, honokiol, silibinin, and coumarin derivatives, in a dose-dependent manner, result in better efficacy for the prevention and treatment of cancer. The impact of nanoformulation methods for these natural agents on tumor cells has gained wider attention due to improvement in targeted therapy and bioavailability, as well as enhancement of stability. Today, several nanoformulations are designed for delivery of polyphenolic compounds, including nanosuspensions, solid lipid nanoparticles, liposomes, gold nanoparticles, and polymeric nanoparticles, which have resulted in better antineoplastic activity, higher intracellular concentration of polyphenols, slow and sustained release of the drugs, and improvement of proapoptotic activity against tumor cells. To conclude, natural polyphenols demonstrate remarkable anticancer potential in pharmacotherapy; however, the obstacles in terms of their bioavailability in and toxicity to normal cells, as well as targeted drug delivery to malignant cells, can be overcome using nanoformulation-based technologies, which optimize the bioefficacy of these natural drugs.

Keywords: natural products, flavonoid, anthocyanin, tumor, malignancy

Introduction

Cancer has always been a great health problem all over the world despite growing advances in its prevention and treatment strategies. This disease is characterized by abnormal proliferation of cells that cannot be controlled or stopped. In addition, cells of malignant tumors have a tendency to become metastatic and attack tissues other than the place in which the primary tumor was formed.1 Common modalities in the treatment of cancer consist of nonpharmacological treatments, such as radiation therapy, surgical operation, stem cell therapy and hyperthermia, as well as pharmacological intervention, including immunotherapy, chemotherapy, and hormone therapy, as well as a combination of these methods.1 Nevertheless, all of these methods,
including chemotherapy, have significant limitations such as
dissatisfying specificity, which can cause low concentrations of
drugs at the tumor site, causing multiple side effects and
off-target toxic effects.²

Nanotechnology is the study of particles within the range
of ≤100 nm, and a nanometer is defined as one-billionth
of a meter.³ High surface area-to-volume ratio of atoms or
molecules is one of the significant advantages of nanoparticles.
This property leads to boosting of the surface activity and
changes the physical and biological properties of the
nanomaterials.

Rapid diagnosis of cancer and exact targeted drug delivery
to the site of the neoplasms with the least possible adverse
effects on other normal tissues are the desired goals of
anticancer therapies. Nanotechnology has shown promising
effects in the treatment of cancer.⁴ Through targeted drug
delivery via nanoformulations, improvement in drug delivery
to the tumor site can be achieved, and better therapeutic
responses are expected. Another parameter is the increased
selectivity that reduces the adverse effects of chemotherapy
drugs.⁵ Nanoformulations such as liposomes,⁶ micelles,⁷
natural and synthetic nanoparticles, metal nanoparticles, and
microparticles are among the important nanoformulations.
Selection of these methods for nanoformulation provides
improvements in bioavailability, biodistribution, specificity,
and pharmacokinetics of drugs delivered to the site of tumor.

Recently, several liposomal formulations have become
available in the market for treatment of cancer, such as
donxorubicin (Doxil®), cytarabine (Depocyt®), daunorubicin
(DaunoXome®), and vincristine (Onco-TCS®). Doxil has
been examined for head and neck cancer, brain tumors, ovari-
nian cancer, breast neoplasms, and acquired immunodeficien-
cy syndrome (AIDS)-related Kaposi’s sarcoma. Liposomal
drug delivery has shown great promise, but it still has obstacles
to overcome, including its short shelf life, limited loading
potential, insufficient bioavailability on oral administration,
decomposition of the drug inside the liposome, lack of enough
control of drug release, and the unpredictable clearance by
the reticuloendothelial system (RES). Polymeric, metal-, or
lipid-based nanoparticles have a fundamental advantage
for systemic drug delivery due to their smaller size, which
permits lower RES uptake, extended circulation time, and
better ability of penetration into capillaries.⁸⁹

Polyphenolic compounds comprise one of the most
diverse groups of plant secondary metabolites, with several
health-promoting properties, including antioxidant, anti-
inflammatory, and antineoplastic activities.¹⁰ Previous studies
have discussed the anticancer effects of numerous natural
polyphenols such as curcumin, resveratrol, and several
flavonoids;¹¹ thus, these compounds have attracted the attention
of scientists for more extensive research.

The aim of the current study is to review current avail-
able data on the nanoformulations of natural polyphenols as
chemopreventive and chemotherapeutic agents and to discuss
the molecular mechanisms of their anticancer action.

Description of study selection
Electronic databases including “Scopus”, “PubMed”, and
“ScienceDirect” were searched with the keywords “cancer”
in title/abstract, along with “plant”, “phytochemical”,
“extract”, and “herb” in the whole text. Data were collected
from the inception date until August 2016. Only English
language papers were included. Primarily obtained articles
were screened by two independent investigators. Articles that
had assessed nanoformulations of polyphenolic compounds
in an in vitro or in vivo model of cancer were selected for this
study, and conventional formulations (without using a nano-
ization technique), preparations of phytochemicals other
than polyphenols, eg, terpenoids or alkaloids, and animal or
cellular models of disease other than cancer were excluded.
References of the retrieved studies were also screened for
relevant articles. Included articles were screened for the name
of phytochemical, nanonization technique, and the type of
cancer in animal or cellular models. From a total of 1,939
results, 1,033 were excluded because of duplication, 138 for
being reviews, and 713 being irrelevant judged on the title
and/or abstract. From the 55 primarily selected papers, 15
were excluded based on the full texts (four were excluded
because they were not on polyphenols, four because no anti-
cancer effects were assessed, three because the cell cultures
were not cancerous cell lines, three because the polyphenol
was not prepared in the form of a nanoformulation, and 1
because the full-text was in Chinese). Finally, 40 articles
were included in this review. Table 1 shows the summary
of the obtained results.

Nanostructures and polymers
Several polymers and nanostructures have been used for the
preparation of polyphenolic compounds as anticancer agents.
Poly(lactic-co-glycolic acid) (PLGA) nanoparticles are a
group of hydrophobic, biocompatible, and biodegradable
polymers that have attracted immense interest since being
approved by the US Food and Drug Administration as a safe
drug delivery system. This polymer consists of lactic acid
and glycolic acid, which can be metabolized by the body, and
the degradation rate depends on their ratio.¹² Polyactic acid
Table 1 Polyphenols with anticancer activity and their mechanisms of action

<table>
<thead>
<tr>
<th>Phytochemical category</th>
<th>Phytochemical name</th>
<th>Nanoformulation</th>
<th>Cell line/animal model</th>
<th>Anticancer activity</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coumarin</td>
<td>4-Methyl-7-hydroxy coumarin</td>
<td>PLGA nanoparticles</td>
<td>Melanoma A375 cells</td>
<td>↓Cell viability ↑Apoptosis ↑DNA fragmentation ↑Caspase-3 and p53</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AGS gastric cancer cell line</td>
<td>↓Proliferation ↑Expression ratio of Bax/Bcl-2</td>
<td>35</td>
</tr>
<tr>
<td>Farnesiferol C</td>
<td></td>
<td>Dendrosomal nanoparticles</td>
<td>AGS gastric cancer cell line</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PLGA nanoparticles</td>
<td>GaSki and SiHa cervical cancer cells</td>
<td>↓Cell growth ↑Apoptosis and G1/S cell cycle arrest</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MPEG-PLA-PAE nanoparticles</td>
<td>Human breast cancer MCF-7 cells</td>
<td>↑Curcumin uptake ↓Cell growth</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PLGA nanoparticles</td>
<td>MCF-7 tumor-bearing mice</td>
<td>↓Tumor growth in vivo ↓Bcl-XL and Mcl-1</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PLGA nanoparticles</td>
<td>Cisplatin-resistant A2780CP ovarian cancer cells</td>
<td>↑Cell viability ↓Toxicity for normal cells ↑Apoptosis</td>
<td>41</td>
</tr>
<tr>
<td>Diarylheptanoid</td>
<td>Curcumin</td>
<td>PLGA nanoparticles</td>
<td>Human colorectal cancer HCT116 cells</td>
<td>↑Apoptosis by G2/M phase cell cycle arrest</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PLGA nanoparticles</td>
<td>Cisplatin-resistant A2780CP ovarian cancer and metastatic MDA-MB-231 breast cancer cells</td>
<td>↑Curcumin uptake ↑Proliferation and colony formation</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PNIPAAm-COOH nanoparticles</td>
<td>Human prostate cancer PC3, human breast cancer MCF-7 cells, and human nasopharyngeal cancer KB cells</td>
<td>↑Curcumin uptake</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cyclodextrin/cellulose nanocrystals</td>
<td>Human prostate cancer PC-3 and DU145, as well as human colorectal carcinoma HT-29 cells</td>
<td>↑Curcumin uptake ↑Proliferation</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Folate-modified PLA-PEG micelles</td>
<td>Human hepatocellular carcinoma</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PLGA nanoparticles by conjugation with anti-P-glycoprotein</td>
<td>HepG2 cells</td>
<td>↑Curcumin uptake</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dextran micelles</td>
<td>Human cervical carcinoma KB-V1 and KB-3-1 cells</td>
<td>↑Curcumin uptake</td>
<td>107</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dendrosomal nanoparticles</td>
<td>C6 glioma cells</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>F68-Cis–curcumin conjugate micelles</td>
<td>Human ovarian carcinoma A2780 and hepatocellular carcinoma SMMC 7721 cells</td>
<td>↑Curcumin cellular uptake</td>
<td>106</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PLGA nanoparticles</td>
<td>Diethylnitrosamine-induced hepatocellular carcinoma in Swiss albino rat</td>
<td>↑Apoptosis</td>
<td>108</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>↑Mitochondrial ROS generation</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>↑TGSH, SOD, and CAT</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>↑Mitochondrial cyt c release</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>↑iNOS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>↑ALP, AST, and ALT</td>
<td></td>
</tr>
</tbody>
</table>

(Continued)
<table>
<thead>
<tr>
<th>Phytochemical category</th>
<th>Phytochemical name</th>
<th>Nanoformulation</th>
<th>Cell line/animal model</th>
<th>Anticancer activity</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>PCL nanodroplets</td>
<td>S180 cancer-bearing mice</td>
<td>↓ Tumor growth</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PHEMA nanoparticles</td>
<td>Ovarian cancer SKOV-3 cells</td>
<td>↑ Tumor growth, ↓ Apoptosis</td>
<td>109</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Colloidal nanoparticles</td>
<td>Esophageal Barrett cancer OE19 and OE33 cells</td>
<td>↓ Proliferation in cancerous cells but not in normal cells, No significant effect on apoptosis</td>
<td>110</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nanoparticles prepared by ultrasonic spray</td>
<td>Human embryonic kidney HEK and human PC3 prostate cancer cells</td>
<td>↓ Cell viability (more obvious on HEK cells)</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nanostructured lipid carriers</td>
<td>Human neuroblastoma LAN5 cells</td>
<td>↑ Hsp70</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Polymer-coated magnetic nanoparticles</td>
<td>Human ovarian carcinoma SKOV-3 cells</td>
<td>↓ Cell viability</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lipid–polymer hybrid nanoparticles in combination with docetaxel</td>
<td>Human PC3 prostate adenocarcinoma cells, BALB/c nude mice</td>
<td>↑ Adherence ability of the nanocarriers to cell membrane in PC3</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Paclitaxel–baicalein dual-targeted ligands of folate and hyaluronic acid</td>
<td>Human lung cancer A549 and drug-resistant lung cancer A549/PTX cells, xenograft mouse model of A549/PTX drug-resistant human lung cancer</td>
<td>↓ Cell viability</td>
<td>82</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nanosuspension</td>
<td>Human hepatocellular carcinoma HepG2 cells</td>
<td>↓ Tumor growth in vivo</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Baicalein</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chrysin</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EGCG</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ca/Al(NO₃)₂-layered double-hydroxide nanoparticles</td>
<td>Human prostate cancer PC-3 cells</td>
<td>↑ Apoptosis</td>
<td>87</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chitosan nanoparticles</td>
<td>Human melanoma Mel 928 cells, xenograft athymic nu/nu mouse model of melanoma</td>
<td>↑ Apoptosis</td>
<td>88</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EGCG (+ paclitaxel)</td>
<td>Core–shell PLGA–casein nanoparticles in targeted and nontargeted form</td>
<td>Human breast cancer MDA-MB-231 and MCF-7 cells, breast cancer cells isolated from patients</td>
<td>↑ Apoptosis</td>
<td>89</td>
</tr>
</tbody>
</table>

(Continued)
<table>
<thead>
<tr>
<th>Phytochemical category</th>
<th>Phytochemical name</th>
<th>Nanoformulation</th>
<th>Cell line/animal model</th>
<th>Anticancer activity</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green tea polyphenols</td>
<td>Graphene nanosheets</td>
<td>Colon cancer HT29 and SW48 cells</td>
<td>↑ Photothermal destruction of SW48</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>Luteolin</td>
<td>Phytosome</td>
<td>Human MDA-MB-231 breast cancer cells</td>
<td>↓ Cell viability</td>
<td>92</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PLA-PEG-OH nanoparticles</td>
<td>Lung cancer H292 cells, squamous cell carcinoma of head-and-neck Tu212 cells, xenograft mouse model of head and neck cancer</td>
<td>↓ Tumor growth</td>
<td>93</td>
<td></td>
</tr>
<tr>
<td>Quercetin</td>
<td>Phytosome</td>
<td>Human breast cancer MCF-7 cells</td>
<td>↑ Apoptosis</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Liposome</td>
<td>Human breast cancer MCF-7 cells</td>
<td>↓ Cell proliferation</td>
<td>96</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pegylated nanoliposomes</td>
<td>Human hepatocellular carcinoma HepG2 cells</td>
<td>↓ Cell viability in cancerous cells but not in normal cells</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>Lignan</td>
<td>Honokiol</td>
<td>Mouse Lewis lung cancer cell lines LL/2</td>
<td>↓ Cell growth</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Silver nanoparticles</td>
<td>Human skin HaCaT and A431 cells</td>
<td>↑ Pyruvate kinase activity (more obvious in A431)</td>
<td>66</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pegylated coencapsulation with 5-FU</td>
<td>Human prostate cancer DU-145, PC-3, and LNCaP cells</td>
<td>↑ Apoptosis by production of free radicals</td>
<td>72</td>
<td></td>
</tr>
<tr>
<td>Naphthoquinone</td>
<td>Plumbagin</td>
<td>Murine melanoma B16F10 cells, Rat C6 glioma cells</td>
<td>↓ Cell growth and proliferation</td>
<td>68</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pegylated coencapsulation with 5-FU</td>
<td>Human NT8e head and neck cancer</td>
<td>↓ Tumor growth and Cell viability</td>
<td>69</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pegylated coencapsulation with 5-FU</td>
<td>Human prostate cancer DU-145, PC-3, and LNCaP cells</td>
<td>↑ Synergistic antineoplastic effect at high concentrations and antagonistic effect at low concentrations of resveratrol</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bovine serum albumin Nanoparticles</td>
<td>Human ovarian cancer SKOV3 cells</td>
<td>↑ Apoptosis</td>
<td>71</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: ALP, alkaline phosphatase; AST, aspartate aminotransferase; ALT, alanine aminotransferase; CAT, catalase; c c, cytochrome c; 5-FU, 5-fluorouracil; GSH, glutathione; HPV, human papillomavirus; IL, interleukin; iNOS, inducible nitric oxide synthase; miRNA, microRNA; MMP, mitochondrial membrane potential; MPEG, methoxy polyethylene glycol; MPEG-PLA-PAE, (MPEG)-poly(lactide)-poly(b-amino ester); OMe, methoxy group; PAE, poly(b-amino ester); PARP, poly(ADP-ribose) polymerase; PCL, poly(ε-caprolactone); PEG, polyethylene glycol; pegylated, conjugated with PEG; PHEMA, poly(2-hydroxyethyl methacrylate); PLA, polyactic acid; PLGA, poly(lactide-co-glycolic acid); PNIPAAm, poly(N-isopropylacrylamide); ROS, reactive oxygen species; SOD, superoxide dismutase; TNF, tumor necrosis factor.
(PLA) is another biodegradable and biocompatible polymer that is metabolized into monomeric units of lactic acid in the body. The preparation method for PLA nanoparticles is mostly via solvent evaporation, solvent displacement,13 salting out,14 and solvent diffusion.15 Recently, researchers have focused on polymeric systems activated by a watersoluble stimulus, which represents a phase transition in response to external stimuli such as pH, specific ions, temperature, and electrical field.

Dendrosome is an amphipathic, neutral, and biodegradable nanostructure that has been used for delivering genes into diverse cell lines.16 Dendrosomes are liposomes encapsulating dendrimers in their aqueous core and can be functionalized using different functional groups.17 Poly(β-amino ester) (PAE) is a biodegradable and pH-responsive polymer that is not soluble at pH of 7.4, but it turns into a soluble form at a lower pH (<6.8) through the protonation process of tertiary amino groups.18 Another popular polymer is poly(N-isopropylacrylamide) (PNIPAAm) that is used for the preparation of temperature- and pH-sensitive structures for biomedical applications.19 Cyclodextrins (CDs) consist of cyclic oligosaccharide molecular structures including six (a-), seven (b-), or eight (c-) D-glucopyranose units linked together by α-(1,4) glycosidic linkages. These structures are popular to form molecular complexes loaded with other molecules, eg, drugs.20 β-CD is the most commonly used type because of the easier synthesis, low price, and large loading capacity for polar molecules that can be loaded into the internal cavity.

A new drug delivery system for anticancer drugs is based on cellulose nanocrystals (CNCs) consisting of uniform nanorods with liquid crystalline features, high mechanical resistance, high surface area-to-volume ratio, ability for sustained drug release, biodegradability, and biocompatibility.21 This structure is obtained by the acid hydrolysis of cotton fibers, and the surface can be easily modified.22

Micelles are lipid structures that are converted into a spherical form in water. This reaction is the result of the amphipathic properties of fatty acid molecules, which contain both hydrophilic polar heads and long hydrophobic regions. The hydrophilic head groups of micelles usually form the outside surface of micelles, and the hydrophobic tails are retained inside because they are nonpolar. The core–shell structure of the polymeric micelles is the result of the amphiphilic block, which is useful for solubilizing water-insoluble or poorly soluble drugs. Some advantages of the use of micelles as a drug delivery system include conjugation with the targeted molecules via surface modification, trapping of hydrophobic drugs into a hydrophobic core that protects drugs from fast degradation, and reduction of nonspecific uptake by RES.23

Poly(ε-caprolactone) (PCL) is a biodegradable and biocompatible polymer that is extensively studied for controlled drug delivery systems.24 A wide range of drugs are compatible with this polymer, which provides homogeneous drug dispersal in the formulation and lower degradation rate.24 Poly(2-hydroxyethyl methacrylate) (PHMA) is an artificially synthesized polymer with numerous applications in medical instruments and devices, such as soft contact lenses and artificial cornea, as well as in drug delivery systems.25 The polar hydroxyl groups and carbonyl functional groups on the repeating units of PHMA make it a water-compatible polymer. Hydrophobic α-methyl groups in the PHMA backbone result in better hydrolytic stability of the polymer.26 Among the different drug delivery systems, lipid nanoparticles, such as nanostructured lipid carriers, can be applied for the delivery of many types of drugs.27 Large-scale production in high quality and lack of need for organic solvent during the production are advantages of lipid-based nanocarriers. They have good stability during long storage and can be either lyophilized or steam sterilized.28 Nanostructured lipid carriers consist of standard ingredients for pharmaceutical use in humans and are recognized as safe structures.29

Polyphenol nanoformulations for cancer therapy

Coumarins

Coumarins are polyphenols with appetite-suppressing properties that discourage animals from eating plants containing them. They can also be used in the treatment of lymphedema.30 They can also cause bleeding, which is their most well-known feature.31 Fabaceae, Lamiaceae,32 and Rosaceae33 are among the natural sources of coumarins. These phytochemicals have shown anticancer properties via several mechanisms of action.

4-Methyl-7-hydroxycoumarin is a synthetic coumarin that is made by methylation of umbelliferone (7-hydroxycoumarin). PLGA nanoparticles of 4-methyl-7-hydroxy coumarin have demonstrated anticancer effects in melanoma A375 cell cultures by increasing cell apoptosis, DNA fragmentation, caspase-3, and p53 (tumor suppressor factors) and by decreasing cell viability.34 Farnesiferol C is another coumarin extracted from plant species such as Ferula asafoetida. Dendrosomal nanoformulation of farnesiferol C exhibited antineoplastic activity by decreasing cell proliferation in AGS gastric cancer cell line. The expression of Bax (an antiapoptotic marker) and Bcl-2 (a proapoptotic factor) was
modified so that the Bax/Bcl-2 ratio increased as a result of treatment with dendroosomal farnesiferol C.35

Diarylheptanoid (curcumin)

Curcumin is the principal diarylheptanoid polyphenolic structure extracted from turmeric (\textit{Curcuma longa}) rhizome, and it has numerous biological and pharmacological properties such as antioxidant, anti-inflammatory, and anticarcinogenic activities. It has been thoroughly studied in the field of cancer therapeutics.36

Several studies have assessed the antineoplastic properties of curcumin-loaded PLGA nanoparticles on different cancerous cell lines. The anticancer activity of nanocurcumin in cervical cancer has been investigated, wherein CaSki and SiHa cells were treated with nanocurcumin, which resulted in reduction of cell growth and cellular proliferation. The formulation also induced apoptosis via G1/S cell cycle arrest.37 Beta-catenin is a protein involved in transcription and cell proliferation, whose phosphorylation is controlled by glycogen synthase kinase 3 (GSK3); thus, any malfunction in β-catenin signaling can result in abnormal cell proliferation.38 Small noncoding sequences of RNA, known as microRNAs (miRNAs), are found to have regulatory effects on oncogenic or tumor suppressor genes and to be involved in tumorigenesis. Investigations have suggested miRNAs as novel therapeutic targets for cancer. The potential therapies of miRNAs with oncogenic activities include miRNA masking, microRNA sponges, and anti-miRNA oligonucleotides. Natural agents that block or enhance the expression of specific miRNAs can lead to the suppression of oncogenic effects.39,40 Nanocurcumin has been shown to knock down the levels of miRNA-2, nuclear β-catenin, and E6/E7 human papillomavirus (HPV) oncoproteins in an orthotopic mouse model of cervical cancer.37 Using the same formulation, Xie et al41 showed the anticancer effects in human colorectal cancer HCT116 cells via decrease in cell viability, increase in apoptosis by G2/M phase cell cycle arrest, and decrease in the toxicity for normal cells. In another study, PLGA nanocurcumin showed antineoplastic properties for cisplatin-resistant A2780CP ovarian cancer cells, as well as metastatic MDA-MB-231 breast cancer cell cultures by increasing apoptosis and decreasing tumor cell proliferation and colony formation.42 The same formulation could elevate mitochondrial cytochrome (cyt) C release and reduce both mitochondrial reactive oxygen species (ROS) generation as well as levels of inducible nitric oxide synthase (iNOS), alkaline phosphatase (ALP), aspartate aminotransferase (AST), and alanine aminotransferase (ALT), in diethylnitosamine-induced hepatocellular carcinoma in Swiss albino rat.43

PLGA nanoparticles loaded with curcumin and conjugated with anti-P-glycoprotein could exhibit cytotoxic effects in human cervical carcinoma KB-V1 and KB-3-1 cells, which resulted in increased curcumin solubility and cellular uptake as well as decreased cell viability.44 A micellar system based on methoxy polyethylene glycol (MPEG)-poly(lactide)-poly(b-amino ester) (MPEG-PLA-PAE) copolymers loaded with curcumin was assessed for its anticancer activity in MCF-7 human breast cancer cell cultures and MCF-7 tumor-bearing mice. The study showed better cellular internalization than free curcumin and significantly diminished tumor cell growth both in vitro and in vivo.45 A nanoformulation of thermoresponsive chitosan-g-poly(N-isopropylacrylamide) co-polymeric nanoparticles (TRC-NPs) loaded with curcumin was tested for anticancer effects in human prostate cancer PC3, breast cancer MCF-7 cells, and human nasopharyngeal cancer KB cells.46 The formulation yielded a better uptake of curcumin by cancerous cells, decreased the cell viability, and augmented apoptosis in PC3 cells, as well as diminished the mitochondrial membrane potential in PC3 cells.47 In a recent study,48 CD/CNCs loaded with curcumin were examined. The formulation improved the cellular uptake of curcumin and could inhibit cell proliferation in human prostate cancer PC-3 and DU145 cells and in human colorectal carcinoma HT-29 cells.49 In another study, folate-modified PLA-PEG micelles loaded with curcumin were examined in human hepatocellular carcinoma HepG2 cells, which resulted in decreased cell growth.50 Dextran micelles loaded with curcumin were studied as a pH-sensitive drug delivery system in C6 glioma cells, which demonstrated improved cellular uptake and reduction of cell proliferation.23 Dendroosomal nanoparticles loaded with curcumin exhibited antineoplastic activity in metastatic breast cancer cells in BALB/c mice by reducing the tumor size and expression of the \textit{STAT3}, interleukin-10 (\textit{IL-10}), and arginase-1 genes, as well as by augmentation of \textit{STAT4} and \textit{IL-12} gene expression.48 Curcumin-loaded caprolactone was also found to decrease tumor growth in S180 cancer-bearing mice.49 Curcumin-loaded PHEMA nanoparticles could increase apoptosis and inhibit tumor cell growth in ovarian cancer SKOV-3 cells.49 The colloidal system of curcumin nanoparticles in esophageal Barrett cancer OE19 and OE33 cells was tested.50 The results showed a decrease in proliferation rate of cancer cells, but not in normal cells. The formulation also activated apoptosis of T cells and reduced the production of IL-1β, IL-6, IL-8, IL-10, and tumor necrosis factor (TNF)-α.50 Nanoparticles
of curcumin prepared by ultrasonic spray also showed anti-
cancer properties in human PC3 prostate cancer and human
embryonic kidney HEK cell lines.51 Nanostructured lipid
carriers loaded with curcumin were examined in human
neuroblastoma LAN5 cells, which showed diminishing cell
viability and increasing Hsp70 activity.52 Polymer-coated
magnetic nanoparticles of curcumin could decrease cell
viability in human ovarian carcinoma SKOV-3 cells.53 Lipid-
polymer hybrid nanoparticles loaded with a combination of
docetaxel and curcumin were studied in human PC3 prostate
adenocarcinoma cells, which resulted in better adherence of
the nanoparticles to the cell membrane and antitumor effects
in PC3 cells.54 In vivo tumor growth was also inhibited by
a docetaxel–curcumin nanoformulation in a BALB/c nude
doe mouse model of the disease.54

Flavonolignans
Flavonolignans are natural compounds of flavonoids and
lignans with antioxidant and hepatoprotective properties.
Silibinin, silychristin, silydianin, dehydroisilybin, and
deoxyisilycistin are the examples of flavonolignans that can
be found in sylimarin, the extract of milk thistle (\textit{Silybum
marianum}), and in other plants of the Asteraceae family.55

Silibinin in combination with glycyrhrhizic acid (a triter-
pene from licorice), formulated as nanoliposomes containing
its PEG conjugate (pegylated nanoliposomes), demonstrated
its anticancer effect by decreasing the cell viability in human
hepatocellular carcinoma HepG2 cells. The nanoformulation
was about 10-fold more potent than the free molecules.55

Lignans
Lignans are plant chemical compounds that are found in
dietary fiber; thus, fiber-rich food items can be a good source
for lignans. Plants of Pedaliaceae56 and Linaceae57 families
are among the well-known sources of lignans. Lignans have
several therapeutic activities such as anti-inflammatory and
antioxidant properties, which are beneficial for the manage-
ment of pathologic conditions in humans.58

Honokiol is a lignan extracted from the seed cones, bark,
and leaves of trees of the Magnoliaceae family.59 A nano-
formulation of honokiol caused an anticancer effect in the
mouse Lewis lung cancer LL/2 cell lines by induction of cell
cycle arrest at the G0/G1 phase.60

Naphthoquinones
Naphthoquinones are a subcategory of phenolic compounds
derived from naphthalene. Alkanin from \textit{Alkanna tinctoria}61
and juglone from \textit{Juglans regia}62 are well-known examples
of naphthoquinones. Naphthoquinones have an important
role in blood coagulation and ossification. Overuse of
naphthoquinones can cause internal bleeding and peptic
ulcers.63 Naphthoquinones have also demonstrated accept-
able anticancer properties and have attracted the attention of
scientists to be formulated as a novel drug delivery system
such as nanoparticles.

Plumbagin is a naphthoquinone that is extracted from
\textit{Plumbago} spp, family Plumbaginaceae, and it has demon-
strated anticancer activity in human cancerous cell lines.64
Silver nanoparticles of plumbagin induced apoptosis in
cancerous human skin HaCaT and A431 cells by producing
free radicals. The compound also showed anticancer effect
by increasing pyruvate kinase activity (an enzyme that
catalyzes pyruvate and ATP synthesis in glycolysis and
has a crucial role in the metabolism of normal as well as
cancerous cells).55,66

Stilbenes
Stilbenes are E- or Z-isomers of 1,2-diphenylethene deriva-
tives. These compounds are distributed in a few number of
plant families, especially Vitaceae (grapes family), which
is the source of the most well-known stilbene, resveratrol.57
There are numerous studies on the anticancer properties
of resveratrol. Nanoformulated resveratrol using PLGA-
PEG demonstrated anticancer effects by decreasing cell
growth and proliferation in human prostate cancer DU-145,
PC-3, and LNCaP cell lines.68 Another study also reported
the antineoplastic activity of resveratrol PCL nanocapsule
formulation on cultures of mouse B16F10 skin melanoma
cells.69 In rat C6 glioma cells, resveratrol nanofor-
mulated with MPEG–PCL polymer exhibited cytotoxic effects.70
Bovine serum albumin nanoparticles of resveratrol also
inhibited tumor growth in a nude mouse model of human
ovarian cancer SKOV3 cells.71 Resveratrol coencapsulated
with 5-fluorouracil (5-FU) using PEG polymer showed
mixed cytotoxicity in human N8T8e head and neck cancer,
because the effect was synergistic at high concentrations of
resveratrol, whereas an antagonistic effect was observed with
low resveratrol concentrations.72 This shows that the use
of resveratrol in cancer should be closely monitored; otherwise,
it may cause undesirable results.

Flavonoids
Flavonoids are a group of polyphenols that have several sub-
classes, such as chalcones, flavones, isoflavones, flavanones,
flavanols, and anthocyanins.73 Many pharmacological effects
of flavonoids have been reported, such as antioxidant,74
anti-inflammatory, immunomodulatory, and antineoplastic activities. Flavonoids can be extracted from higher plants. They can be found in yellow, orange, or red colors and are widely available as colorful fruits and vegetables in the human diet: Apiaceae (parsley), Ericaceae (blueberries), Rutaceae (citrus fruits), Rosaceae (apple), as well as the popular delicious product of Theobroma cacao, namely, dark chocolate. Flavonoids have demonstrated antineoplastic activity in several studies.

Baicalein is a flavonoid that can be found in the roots of Scutellaria baicalensis and S. lateriflora. Baicalein nanoparticles with dual-targeted ligands of folate and hyaluronic acid demonstrated anticancer effect on human lung cancer A549 as well as paclitaxel-resistant lung cancer A549/PTX cells by decreasing cell viability and inhibiting tumor growth in xenograft mouse model of A549/PTX. Chrysins is another flavonoid that can be extracted from many plants such as Passiflora spp., as well as from some mushrooms such as Pleurotus ostreatus. Chrysins have many pharmacological effects such as anti-inflammatory, antioxidant, and anticancer properties. A nanosuspension of chrysins showed anticancer effects on human hepatocellular carcinoma HepG2 cells by inhibiting cell growth. EGCG can be found in several plants, especially in green tea. The flavonoid demonstrated anticancer effects on human and animal cells by several different mechanisms. EGCG formulated as Ca/Al-NO₃ layered double-hydroxide nanoparticles induced apoptosis, decreased cell viability, and inhibited colony formation in human prostate cancer PC-3 cells. Another study reported that chitosan nanoparticles of EGCG exhibited anticancer effects on human melanoma Mel 928 cells by apoptosis via increase in Bax levels, increased poly (ADP-ribose) polymerase (PARP) cleavage, G2/M phase cell cycle arrest, inhibition of cyclin D1 and D3, induction of p21 and p27, decrease in Bcl-2, caspase-3 and caspase-9 protein expression, which resulted in the reduction of cancer cell viability. The anticancer effect of EGCG chitosan nanoparticles on xenograft athymic mouse model of melanoma was shown by suppression of tumor growth and proliferation, inhibition of CDK4 and 6, and an increase in apoptosis. EGCG core–shell PLGA–casein nanoparticles in combination with paclitaxel also showed anticancer activity on MCF-7 cells and human MDA-MB-231 breast cancer cells by increasing apoptosis and decreasing NF-κB activation. Green tea polyphenols containing EGCG as one of the major components were nanoformulated by graphene nanosheets and showed anticancer effects on colon cancer HT29 and SW48 cells, via photothermal destruction of cells, assessed by high-efficiency near-infrared photothermal therapy. Luteolin is a flavonoid with yellow crystalline appearance and is widely found in plants and vegetables of human diet. Phytosomes containing luteolin demonstrated anticancer effects on human MDA-MB-231 breast cancer cells by reducing cell viability and decreasing the expression of Nrf2 and its related downstream gene Ho1. The formulation also reduced sensitivity of cells to the chemotherapeutic agent doxorubicin. Another study reported that nanoformulated luteolin with PLA-PEG polymer possesses anticancer effects against lung cancer H292 cells and TU212 head and neck squamous cell carcinoma, demonstrated by inhibition of tumor growth and colony formation. In addition, these effects were observable in xenograft mouse model of head and neck cancer, which resulted in reduced tumor growth and tumor size. Quercetin is another widely distributed flavonoid that can be found in several fruits such as the apple. Quercetin supplements are used for their cancer-preventive effects. Quercetin nanoformulated as phytosomes had anticancer effects on human breast cancer MCF-7 cells by increasing apoptosis and decreasing mRNA expression of Nrf2 downstream genes NQO1 and MRPI; however, quercetin did not make a significant change in Nrf2. In another study, quercetin nanoformulated in liposomes showed anticancer effects on human breast cancer MCF-7 cells by reducing cancer cell proliferation and induction of antitoxic effects.

Concerns regarding the safety of nanopolyphenols

Although most of the current evidence supports the idea of anticancer activity of natural polyphenols, there are some concerns regarding their antioxidant properties, which may not only help normal cells but also increase the surveillance of cancerous cells against oxidative stress caused by conventional anticancer agents. In other words, polyphenols should act in an intelligent manner in order to support the viability of only normal cells, not the cancerous ones, which is not currently guaranteed with respect to available evidence.

Another concern is with reference to the safety of the nanostructures used for formulation of polyphenols. As nanotechnology is rather a new field of science and research, many questions are still left unanswered. Some types of nanostructures can accumulate at the site of injection and may not be completely cleared from the blood circulation. It should be mentioned that nanoformulations of a drug have different physicochemical properties in comparison to their simple preparations; thus, different pharmacokinetics and pharmacodynamics are expected. Hence, studies performed
on the simple form of the drugs cannot totally reflect the toxicity of the nanoformulated products, and toxicological studies should be conducted for nanoformulations. \(^{100,101}\)

Discussion

Cancer has always been a major calamity for health care providers all over the world due to difficulties in the selection of a suitable treatment approach. Chemotherapy, radiotherapy, immunotherapy, and surgery are currently used in cancerous patients; nevertheless, fast cellular and molecular changes in the cells, which result in drug-resistant types of the disease, can prevent achieving the ideal results. \(^{102}\)

Severe adverse effects of chemotherapy such as gastrointestinal complications, alopecia, bone marrow suppression, and secondary malignancies have limited its use. Lower cellular permeability, unusual vascularization, and abnormal expression of surface molecules (such as drug-resistant pumps) have caused chemotherapeutic drugs to have a low concentration in these cells. \(^{11}\) Nanonization, as a recently developed technique in drug delivery systems, can improve the bioavailability of antineoplastic agents via passive or active targeting. \(^{103}\) Table 2 shows a summary of the advantages and disadvantages of nanoformulations in comparison to conventional drugs. In the current paper, we have discussed the nanoformulation of polyphenols and their application as anticancer agents. Figure 1 summarizes the main anticancer properties of nanoformulated polyphenols.

Polyphenols, as a group of phytochemicals with a wide range of pharmacological and therapeutic activities, have been extensively studied in the area of oncology. Nanoformulations of polyphenols have been prepared using a wide variety of techniques that use carriers such as liposomes, dendrosomes, nanocapsules, and nanosheets. In addition, micelles of polymers such as PLA, PLGA, PEG, PHEMA, CD, dextran, and chitosan, as well as bovine serum albumin and silver nanoparticles, have been used. These polymers were activated by using different functional groups such as carboxyl (COOH) or methoxy (OMe) groups. Most of these nanostructures were successful in demonstrating anticancer activity. Curcumin, resveratrol, EGCG, chrysins, baicalein, luteolin, quercetin, honokiol, silibinin, and coumarin derivatives are among the polyphenols assessed for their anticancer properties in nanoformulated forms (Table 1).

Polyphenol nanoformulations perform their anticancer activity via several cellular mechanisms, including induction of cell cycle arrest at different phases of cancer cell cycle, activation of caspase enzymes, reduction of tumor vascularization, reducing tumor cell invasion and metastasis, induction of mitochondrial damage, as well as apoptosis in the neoplasm. Apoptosis, an important indicator for anticancer therapy, is one of the main functions of nanoformulated polyphenols in cancer cells. Many natural products exert their anticancer effect through apoptosis, which is the programmed cell death responsible for removal of unwanted cells. Among the Bcl-2 family proteins that regulate apoptosis, Bcl-2 and Bax possess opposite actions in the apoptosis process. Bcl-2 blocks apoptosis, while Bax promotes apoptosis. \(^{104,105}\) The elevation of the ratio of Bax/Bcl-2 has a pivotal contribution to apoptosis, which is considered as one of the main mechanisms of these drugs in the induction of apoptosis in cancer cells.

Natural remedies have been broadly administered as complementary and alternative medicines for thousands of years for the management of different types of malignancies to achieve optimal body performance. The conventional medicines delivered via currently available dosage forms provide anticancer potential only up to a suboptimal degree. Hence, the existence of limitations in the management of malignancies is predictable. This requires exploring novel drug delivery strategies for the development of targeted and safe drug delivery medicines with enhanced therapeutic activity. The most important improvement in nanoformulated polyphenols, in comparison to their free molecules, is their higher antineoplastic activity and better bioavailability, which can improve passive targeting of cancerous cells. In the meantime, this scenario requires lower doses of drugs to obtain optimum response while bypassing the pharmacokinetic problems of conventional formulations. Several studies have suggested that phytochemicals, including polyphenols, have

| Table 2 Advantages and disadvantages of conventional formulations versus nanoformulations |
|---|---|
| Nanoformulations | Conventional formulations |
| **Advantages** | **Disadvantages** |
| Higher surface area-to-volume ratio | Short shelf life |
| Improved bioavailability | Unpredictable toxicity, predictability |
| Targeted drug delivery | stability, and pharmacokinetics |
| Sustained drug release | More expensive |
| **Advantages** | **Disadvantages** |
| Specified safety profile, predictability | Untargeted drug delivery |
| toxicity, stability, and pharmacokinetics | Uncontrollable release |
| Less expensive | Undesirable pharmacokinetics |
anticaner properties exploitable in an intelligent manner, i.e., showing cytotoxicity only against neoplasms, not against normal cells, whereas no such intelligence has been detected for conventional anticaner agents.43,52,106

Conclusion
Thus, polyphenols are suitable candidates to be studied as future anticaner agents. Nanoformulation techniques are suggested to be promising alternatives relative to the conventional drug delivery systems as they encompass exclusive drug delivery properties. It is concluded that nannization can potentiate the beneficial effects of natural polyphenols against cancer by different mechanisms, hence opening a new field of research in oncology. However, it should be mentioned that all of the abovementioned formulations were evaluated in cellular and/or animal models of malignancies; thus, a long path lies ahead of commercializing these agents, including assessment of their safety and efficacy in healthy as well as cancerous subjects in preclinical and clinical settings.

Author contributions
All authors contributed toward data analysis, drafting and critically revising the paper and agree to be accountable for all aspects of the work.

Disclosure
The authors report no conflicts of interest in this work.

References

