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Abstract: Endogenous circadian timekeepers are found in most cells and organs of the 

body, including the different types of adipose tissues. This clock network orchestrates 

24-hour rhythms of physiology and behavior to adapt the organism to daily recurring 

changes in the environment. Energy intake and expenditure as well as adipose physiology 

are under circadian control and, therefore, energy homeostasis and circadian clock function 

are closely linked. In this review, we summarize the current knowledge about the regula-

tion and targets of adipocyte circadian clocks and how circadian rhythm disruption affects 

energy homeostasis and adipose tissue function. We provide a more detailed overview 

of metabolic phenotypes of different mouse models of circadian clock dysfunction and 

discuss the implications of (adipose) clock disruption on adipocyte–brain cross talk and 

metabolic homeostasis.
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Introduction
Due to the earth’s rotation around its axis, life is embossed by two opposing daily 

recurring conditions, day and night. To deal with the resulting predictable changes, 

most species have developed circadian clocks (from Latin circa – about, dies – day) 

allowing an anticipation of daily recurring events. While a master pacemaker is located 

in the suprachiasmatic nucleus (SCN) of the hypothalamus, almost all peripheral tis-

sues – including adipose tissues – and many brain nuclei harbor their own functional 

clocks.1,2 The SCN orchestrates these tissue clocks via the endocrine and nervous 

system to induce rhythmic behavior and physiology (Figure 1).

At the molecular level, circadian clocks are based on interlocked transcriptional–

translational feedback loops of clock genes/proteins such as the transcription factors 

Clock (circadian locomotor output cycles kaput) and Bmal1 (brain and muscle ARNT-

like protein 1, also known as Arntl) and the transcriptional modulators Period (Per1-3) 

and Cryptochrome (Cry1/2).3 The oscillation of the circadian clock machinery leads 

to rhythmic expression of tissue-specific programs of clock-controlled genes (CCGs) 

through activation of circadian promoter elements (E-boxes, D-boxes, and retinoid 

orphan response elements, ROREs). In mice, it was estimated that over 40% of all 

protein coding genes show circadian oscillations at least in one tissue.4 Many of them 

are involved in metabolic pathways, for example, glucose homeostasis and cholesterol 

and fatty acid (FA) metabolisms.5 Also, several adipokines, which will be discussed 

in the following text, have been shown to be directly regulated by the circadian clock, 

for example, leptin and adiponectin.6,7
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To generate exact 24-hour rhythms, the circadian system 

has to be synchronized with the external light–dark cycle. 

The main synchronizer (or zeitgeber) of mammalian clocks 

is light. Irradiation information is integrated by intrinsically 

photosensitive retinal ganglion cells (ipRGCs) and transmit-

ted to the SCN via the retinohypothalamic tract (Figure 1).8–10 

For peripheral clocks, the timing of food intake is a zeitgeber 

to align peripheral tissues such as the liver or adipose with 

energy availability.

Circadian rhythm disruption or genetic alterations in the 

clock gene machinery lead to pathophysiological effects 

ranging from sleep disorders to cardiovascular, mental, and 

metabolic impairments.11–13 Since energy homeostasis is 

centrally regulated, circadian misalignment of the brain–adi-

pose axis might play an important role in the development 

of metabolic disorders.14,15 In this review, we will summarize 

the current knowledge about adipose clock function with a 

focus on energy homeostasis.

Adipose tissue circadian clocks
Like in most cells, circadian clocks are present in adipocytes 

regulating many essential adipose tissue processes. Lipolysis, 

adipogenesis, inflammation, brown adipose tissue (BAT) 

thermogenesis, as well as expression and secretion of several 

adipose hormones are under circadian control (Figure 2). Cir-

cadian rhythm disruptions alter adipose tissue physiology and 

may affect whole body homeostasis. Hence, adipose clocks 

are interesting targets for preventing and treating metabolic 

impairments in circadian rhythm disorders, for example, in 

shift workers.

In vitro and in vivo experiments reveal rhythmic expres-

sion of clock genes in different white adipose depots in 

rodents16–18 and humans.19–24 In line with this, several hun-

dreds of genes display a diurnal expression rhythm in the 

adipose tissue of rodent4,17,25,26 and human,21 some of which 

are involved in core adipose functions such as lipolysis, 

adipogenesis, and metabolic inflammation (detailed genes 

are specified in Figure 2).18,21,25

The role of the circadian clock machinery in adipocyte 

physiology has been described in both in vitro and in animal 

studies. Knockdown of the clock genes, either Bmal1 or 

Rev-Erbα, in cells inhibits adipocyte differentiation while 

mutations of two other clock components, Per2 or retinoid 

orphan receptor α (RORα), increase adipogenesis.27–32 Both 

effects are mediated by peroxisome proliferator-activated 

receptor (PPARγ), a transcription factor crucial for ter-

minal adipocyte differentiation, which is a direct adipose 

CCG.33,34 Interestingly, Bmal1 seems to have a bimodal 

impact on adipocyte differentiation. Whereas its knockdown 

leads to an upregulation of adipogenic genes during early 

differentiation (by suppression of the canonical Wnt path-

way), fewer mature adipocytes survive at later stages.27,35 

Interestingly, adipose PPARγ (and clock gene) expression 

rhythms are dampened under high-fat diet (HFD) conditions 

in male mice.36 This effect was not observed in female ani-

mals,37 in line with a persistent normal diurnal food intake 

SCN

ipRGCs

ARC

CNS clocks

Figure 1 Different zeitgebers reset the circadian clock network. The circadian 
master pacemaker in the SCN receives light information via ipRGCs to coordinate 
peripheral and central subordinate clocks. in this way, behavior and physiological 
processes are aligned to time-of-day-specific requirements. Peripheral tissue clocks 
are sensitive to food-mediated signals and adjust to alterations in the diurnal feeding 
regime. Because food resetting does not affect the SCN, mistimed feeding promotes 
internal desynchrony.
Abbreviations: ARC, arcuate nucleus; SCN, suprachiasmatic nucleus; ipRGCs, 
intrinsically photosensitive retinal ganglion cells; CNS, central nervous system.
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Figure 2 Adipocyte clocks and adipose physiological rhythms. The expression 
patterns of several adipose genes are under circadian control regulating adipose 
over the course of the day.
Abbreviations: TGFβ, transforming growth factor beta; CCL2, C-C motif 
chemokine ligand; SReBF, sterol regulatory element-binding transcription factor; 
FABP4, fatty acid-binding protein 4; C/eBP, CCAAT-enhancer-binding protein; 
iL-10, interleukin-10;  TNFα, tumor necrosis factor alpha; PPARs, peroxisome 
proliferator-activated receptors; HSL, hormone-sensitive lipase.
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rhythm, which usually breaks down under HFD conditions 

in male mice.36,38–40 This example highlights the complex 

interaction of cellular adipose clocks with external signals 

(e.g., food composition and gender effects) in adipocyte 

differentiation.

Different aspects of lipid metabolism in white adipose 

tissue (WAT) and BAT are controlled by the circadian clock, 

including lipolysis, lipogenesis, and BAT thermogenesis.41,42 

This makes sense if one considers that these processes have 

to be timely regulated due to diurnal changes in systemic 

energy demands. Baseline lipolysis rates are elevated during 

the rest phase of the animal.43 This circadian rhythm persists 

ex vivo. In isolated adipocytes, adrenaline-induced lipolysis 

exhibits diurnal differences.44 Shostak et al18 have shown 

that, in mice, lipolysis is controlled by CLOCK:BMAL1-

mediated expression of Atgl (adipose triglyceride lipase) 

and Hsl (hormone-sensitive lipase), encoding for two rate-

limiting lipolytic enzymes. Furthermore, expression of some 

enzymes regulating FA uptake and activation shows diurnal 

oscillation in murine WAT with a maximum in the early dark 

phase.43 This is in line with increased lipogenesis during the 

active phase. Consistently, plasma triglycerides, free fatty 

acid (FFA), and cholesterol concentrations display diurnal 

oscillations that even persist during fasting.25,45–47 Constant 

routine studies suggest that these self-sustained rhythms 

are preserved in humans.45 Interestingly, the products of 

lipid breakdown (i.e., glycerol and FA) make up over 75% 

of all rhythmic metabolites in the blood peaking in the 

late morning.45 An important mediator of circadian clock 

regulation of lipid metabolism is PPARα,48–50 a nuclear 

receptor involved in transport, activation, and storage of 

FA as well as BAT thermogenesis.51 BAT PPARα induces 

UCP1 (uncoupling protein) expression which is essential for 

non-shivering thermogenesis. Since Per2 acts as coactivator 

for PPARα-mediated Ucp1 expression and simultaneously 

promotes BAT expression of Fabp3 (fatty acid-binding 

protein) which enhances the UCP 1 activity, thermogenesis 

displays a circadian pattern. Deletion of Per2 results in a 

cold-sensitive phenotype.52 Furthermore, isolated brown 

adipocytes lacking Rev-Erbα show elevated Ucp1 expression 

which is normalized by overexpressing Rev-Erbα in these 

adipocytes. In line, during the active phase, wild-type mice 

show a reduced thermoregulatory capacity associated with 

high expression of Rev-Erbα in BAT. Deletion of Rev-Erbα 

leads to a time-of-day independent thermoregulation.53 As a 

consequence, circadian disruptions are often associated with 

impaired lipolysis and thermogenesis resulting in obesity 

(discussed in the following sections).18

Adipose function in clock gene-
mutant mice
Many clock gene-mutant mouse strains show changes in 

adipose physiology (Table 1) often associated with altered 

body weight. Clock-Δ19 mutants show increased body weight 

and fat content with adipocyte hypertrophy.18,38,54,55 Further-

more, these mice are hyperphagic and display a dampened 

feeding rhythm.18,38 In Clock-Δ19, WAT expression of Atgl 

and Hsl is arrhythmic and overall low, and mice show lower 

lipolytic responses during fasting. Because of a decreased 

lipid utilization, blood glycerol and FFA concentrations are 

reduced.42 On the other hand, Clock-Δ19 mice show elevated 

circulating cholesterol and triglyceride levels,38,56,57 likely due 

to hepatic overproduction and elevated intestinal absorp-

tion.56,57 Of note, the metabolic consequences of this Clock 

mutation depend on the genetic background. While most 

experiments were performed in the original C57BL/6J back-

ground, Clock-Δ19 mice on a (melatonin-proficient) CBA 

background show normal body weight and fat content.58–60 

Clock mutants on an ICR background also show increased 

food intake, but body weight is even lower than in wild-type 

littermates – a consequence of impaired lipid absorption.48,61

Mice with mutations in the gene encoding the CLOCK 

partner protein BMAL1 show less ambiguous phenotypes 

with elevated adiposity, despite unaffected food intake.7,35,62–67 

This could be explained by the WNT-mediated suppressive 

effect of Bmal1 on adipogenesis.35 However, since Bmal1 

knockout (KO) mice show an early aging phenotype, the 

adipose phenotype can only be observed in young animals.66

Genetic deletions in the negative limb of the circadian 

feedback loop provide varying results with regard to appetite 

and body weight control. While Cry double-mutant mice 

show dampened feeding rhythms on normal chow diet (NCD) 

and HFD, they are generally lighter and leaner than wild-type 

controls.7,40,68 Under HFD, however, they rapidly gain weight 

despite a lower food intake compared to wild types.40 This 

effect is explained by an enhanced potential of Cry-mutant 

adipocytes for lipid uptake and insulin-stimulated lipogen-

esis, making them highly susceptible to HFD-induced obesity.

Per1- and Per2-mutant mice on the same genetic back-

ground show an opposite body weight phenotype. Whereas 

Per1m/m mice show reduced body weight, a mutation of Per2 

(Per2m/m mice) results in elevated body weight.69,70 Despite 

different body weight effects, food intake is increased in both 

strains suggesting a higher metabolic rate in Per1 mutants.69 

Per3-/- mice on NCD show increased body weight.71 On 

HFD, all Per mutants display elevated body weight and fat 

mass without an increase in absolute food intake suggesting 
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alterations in energy efficiency.72 Body weight and fat content 

of clock-deficient Per1/Per2 double mutants are elevated, 

indicating a dominant effect of Per2 mutation on energy 

metabolism.7 Food intake and body weight of Per1/Per2/

Per3 triple mutants are elevated during HFD. In summary, 

Per mutations in mice mostly lead to adiposity, in line with 

effects seen in adipocytes in vitro.28

Mice carrying mutations in genes involved in accessory 

loops of the clock machinery also show metabolic alterations. 

Mice with genetic deletion of the nuclear orphan receptor 

Rev-Erbα (Nr1d1) show normal to slightly increased body 

weight on NCD and an elevated body weight on HFD.73,74 

Body fat percentage is increased on both diets. Consistently, 

treatment of obese wild-type mice with a synthetic REV-

ERBα agonist reduces the obese phenotype due to increased 

energy expenditure and decreased expression of lipogenic 

genes.75 Opposite effects are seen if an activator of Bmal1 

expression, Rorα, is mutated. Body weight, fat mass, and adi-

pocytes of staggerer mice (carrying a Rorα loss-of-function 

mutation) are reduced independent of diet conditions.32,76 

Although food intake of staggerer mice is elevated on HFD 

compared to controls, they do not show typical HFD-induced 

Table 1 Overview of adipose tissue phenotypes of clock gene-mutant mice

Clock  
genes

Body weight Adipose tissue Food intake Blood lipids Adipokines References

Bmal1 ↓/↑ on NC (age  
effect)
↔/↑ on HFD

↑ adiposity on 
NC and HFD

↔ on NC and  
HFD

↑ TGs (n.r.)
↑ cholesterol and NeFAs 
on HFD
↓ FAAs and glycerol (n.r.)

↑ leptin, adiponectin, 
PAi-1

7,35,40,62,63,65,109

Clock 
(C57BL/6)

↑ on NC & HFD ↑ adiposity ↑ on NC and  
HFD dampened 
rhythm

↑ TGs and cholesterol
↓ FFAs and glycerol (n.r.)

↑ leptin 38,42

Clock (CBA) ↔ on NC
↓ on HFD

↔ adiposity ↓ FFAs on NC and HFD ↑ adiponectin on NC
↔ leptin on NC
↔ adiponectin on HFD
↓ leptin on HFD

59,60

Clock (ICR) ↔ on NC
↔/↓ on HFD

↔ on NC and  
HFD

↔/↓ TGs and FFAs on  
NC
↔ TGs on HFD
↑ FFAs on HFD

↔ leptin on NC and 
HFD

61

Cry1/2 ↓ on NC and  
HFD

↓ adiposity on NC
↑ adiposity on  
HFD

↔ on NC
↓ on HFD
dampened  
rhythm

↔ TGs, cholesterol and 
FFAs on HFD

↓ leptin on NC
↔ leptin on HFD

40,68,
69

Per1 ↓ on NC ↑ on NC (relative 
to body weight)

70

Per2 ↑ on NC
↑ on HFD

↑ adiposity on  
HFD

↔/↑ on NC
↑ on HFD 
dampened  
rhythm

70,72

Per3 ↔ on NC
↑ on HFD

↑ adiposity on NC 
and HFD

↔ on chow and 
HFD

73

Per1/2 ↑ on NC ↑ adiposity ↔ on chow 
dampened  
rhythm

↑ leptin (n.r.) 74

Per1–3 ↑ on HFD ↑ adiposity on  
HFD

↑ on chow (rel.  
to Bw) and HFD

72

RevErbα ↔/↑ on NC
↑ on HFD

↑ adiposity on NC 
and HFD

↔ on chow ↓ TGs and glycerol on  
HFD
↑ LDL, cholesterol and 
NeFAs on HFD

↑ leptin & adiponectin  
on NC & HFD

72,73

RORα ↓ on NC and  
HFD

↓ adiposity on NC 
and HFD

↑ on HFD ↓ cholesterol, HDL, and 
NeFAs
↓ FFAs on HFD

↓ leptin mRNA in wAT 32,76

Note: Arrows indicate increased (↑), unaltered (↔), and decreased (↓) levels compared to controls.
Abbreviations: n.r, not rhythmic; NC, normal chow; HFD, high-fat diet; FFA, free fatty acid; NEFA, non-esterified fatty acid; TG, triglyceride; BW, body weight; L/HDL, 
low-/high-density lipoprotein.
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obesity.76 This is associated with decreased expression of 

lipogenic genes (e.g., sterol regulatory element-binding 

protein [Srebp-1c] and FA synthase [Fas]) and increased 

expression of genes regulating oxidative metabolism (e.g., 

PPARγ coactivator 1 [Pgc-1α/β] and lipin1).

Adipocyte-specific clock disruption
A frequent problem in interpreting the phenotypes of clock 

gene-mutant mice is the difficulty to pinpoint which tissue 

clock determines the effect. This is particularly true for 

WAT, which is heavily influenced by systemic factors such 

as hormones and metabolic state. Therefore, although most 

clock gene mutants show alterations in adipose function, 

it cannot be excluded that these originate from outside 

the WAT. To study the specific role of the adipocyte clock 

itself, mouse models with CRE/loxP-driven deletion of the 

essential clock component Bmal1 have been developed.77 

Comparable to conventional Bmal1 KO mice, animals carry-

ing an aP2-Cre-driven deletion of Bmal1 primarily targeting 

WAT show hyperphagy and increased obesity independent 

of the type of diet. In line with this, they display increased 

serum leptin levels with dampened diurnal rhythmicity.7,77 

In contrast, mice in which Bmal1 deletion is mediated by 

another adipose-targeting CRE driver, Adipoq (adiponectin), 

show a much milder phenotype with normal body weight 

on NCD, but an increased vulnerability to the obesogenic 

effects of HFD.77 In aP2-Cre × Bmal1-flox mice, the mecha-

nisms of this change in metabolic state have been further 

characterized. Mutant mice show a lower concentration of 

polyunsaturated fatty acids (PUFAs) in WAT and plasma due 

to lower expression of the lipolytic gene Ces1d (carboxyles-

terase 1d) at CT4 and of Elovl6 (elongation of long-chain 

fatty acids) and Scd1 (stearoyl-coenzyme A desaturase 1), 

which catalyze the biosynthesis of long-chain PUFAs. All 

these genes contain circadian E-box regulatory elements in 

their promoter regions. PUFAs can cross the blood–brain 

barrier and inhibit appetite.78,79 The lower PUFA levels in 

aP2-Cre × Bmal1-flox mice could, therefore, explain the 

observed hyperphagy and elevated body weight. Indeed, 

aP2-Cre × Bmal1-flox mice fed with a PUFA-rich diet show 

wild-type-like food intake and body weight gain, energy 

expenditure, and normalized circadian expression of orexi-

genic and anorexigenic neuropeptides in the hypothalamus.77 

Of note, ectopic activity of the aP2 driver has been reported 

in several tissues including the brain.80 Therefore, it will be 

important to investigate if these physiological changes are 

also observed in other adipose-specific clock mutants such 

as Adipoq-Cre × Bmal1-flox mice.

The role of SCN pacemaker in 
adipose rhythms
As mentioned earlier, signals derived from other tissues – 

and, thus, clocks in other tissues – may impinge on adipose 

rhythms. Of particular interest in this context is the SCN 

pacemaker itself as coordinator of all endogenous clocks and 

rhythms. Lesions of the SCN lead to arrhythmic locomotor 

activity, drinking behavior, and serum leptin levels.81,82 This 

dampened rhythm in oscillating leptin seems to be a direct 

effect of the SCN lesion and not of altered food intake since 

regularly scheduled meals have no effect on the rhythm of 

leptin.82 However, lesions of the SCN do not just affect the 

clock in the SCN but also destroy the SCN neuronal structure 

that serves as a relay of external light information to peripheral 

clocks.83 To bypass this issue, mouse models with (more or less) 

tissue-specific genetic deletion of SCN clock function have 

been developed.26,84,85 While under light-dark (LD) conditions 

peripheral clock gene and behavioral rhythms are preserved 

in SCN Bmal1-KO mice, they become in constant darkness 

behaviorally arrhythmic while peripheral clocks and hormone 

rhythms only gradually desynchronize and, thus, continue to 

cycle for some days.85 Microarray studies in WAT of these mice 

reveal that many adipose transcripts associated with lipid and 

carbohydrate metabolism lose their rhythm suggesting a depen-

dence on SCN clock-driven rhythmic behavior independent of 

adipocyte clock function.26 Interestingly, expression of some 

immune genes gains rhythmicity in the absence of a functional 

SCN clock. This may indicate a counteractive regulation of 

cellular immunity by SCN and adipocyte clocks.26

Modulation of adipose rhythms by 
food
The daily rhythm of food intake has a strong influence on 

metabolic homeostasis,86–88 which may in part be mediated 

by its synchronizing effects on peripheral clock function 

(Figure 1).89 Most studies investigating peripheral clock gene 

entrainment so far have focused on the liver, and the data for 

food resetting of adipose clocks are limited.

Nocturnal rodents, like mice and rats, with restricted 

access to food during the light phase – their normal rest 

phase – gain more weight than littermates with dark phase-

restricted food intake.90,91 This effect does not concur with 

increased total food intake and it seems that the mistiming 

of food intake is the key to this maladaptation. Rest-phase 

feeding leads to higher lipogenic gene expression, abolishes 

the rhythm in lipolytic gene expression, and alters rhythms of 

circulating leptin and insulin, energy metabolism, and body 
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temperature.91–93 On the other hand, nighttime-restricted feed-

ing leads to lower serum leptin, higher BAT thermogenesis, 

and lower WAT expression of pro-inflammatory cytokines.94 

To which extent these adipose effects are direct consequences 

of alterations in energy supply or follow food-mediated reset-

ting of adipocyte clocks remains to be explored.

Adipokine rhythms
WAT is a very active endocrine tissue. Depending on energy 

state, adipocytes secrete a large array of different peptides, 

the so-called adipokines, several of which show diurnal 

expression patterns.16,95 Besides peripheral targets, many 

adipokines enter the brain where they modulate central regu-

latory circuits of appetite control and energy expenditure, 

thus providing bottom-up feedback about the peripheral 

energy state of the body to ensure homeostasis (Figure 3). 

Disruption of this adipocyte–brain cross talk is associated 

with a broad range of mental and metabolic impairments.96–100 

In obese humans, altered adipose clock gene expression is 

associated with metabolic impairments.101 In line, deleting the 

clock specifically in adipose tissue affects hypothalamic gene 

expression of appetite-regulating neuropeptides resulting in a 

dampened feeding rhythm.77 These central alterations due to 

circadian disruptions in the WAT might be, at least partially, 

mediated by modulated adipokine secretion.

The mRNA of leptin, the most prominent adipokine, is 

rhythmically expressed in adipocytes,16,102 and its circulating 

concentration rises during the night in humans103,104 and noc-

turnal rodents.7,82,105,106 In obesity, leptin serum concentrations 

are increased in mice and humans, while oscillations are 

dampened,103,104 probably due to the concomitant dampened 

feeding rhythm.36,38–40 Kettner et al7 showed rhythmic binding 

of BMAL1 to E-boxes in the Lep promoter that modulate C/

EBPα-controlled Lep transcription in a daytime-dependent 

manner. The rhythmicity of leptin seems to be critical for 

energy homeostasis. Leptin-deficient (ob/ob) mice treated 

with leptin in anti-phase to their food intake rhythm gain more 

weight than mice treated in line with the feeding rhythm.93

Other adipokines such as adiponectin also show diurnal 

oscillations. Adipoq mRNA expression in WAT and adipo-

nectin blood concentrations peak during the active phase of 

mice and humans.6,16,107–110 Like leptin, adiponectin serum 

concentrations display dampened circadian and ultradian 

oscillations in obese subjects.107,109 The Adipoq promoter 

contains several E-box-like sequences and can be activated by 

CLOCK:BMAL.6,111 Interestingly, overexpression of human 

adiponectin in the liver of KK/Ta mice, which have low endog-

enous adiponectin levels, partly restores the circadian rhythm 

and free-running period of locomotor activity, indicating a 

role of adiponectin in central behavior regulation.112 Gene 

expression of this insulin-sensitizing adipokine is modulated 

by food intake; thus, its circadian action could be important 

for the circadian regulation of insulin sensitivity.62,113

Some of the other adipokines that show diurnal expres-

sion rhythms are resistin, visfatin (nicotinamide phosphori-

bosyltransferase, Nampt), plasminogen activator inhibitor-1 

(Serpine1, PAI-1), TNFα (tumor necrosis factor alpha), and 

IL-6 (interleukin-6). Expression of PAI-1 and visfatin is 

known to be directly controlled by the circadian clock.114–121 

Additionally, visfatin can feed back on the circadian clock 

via the NAD+ salvage pathway.119,120 In murine WAT, mRNA 

expression of resistin and visfatin peaks during the dark 

phase,16,120,122 while mRNA expression of PAI-1 is highest 

during the light phase.114 Activity of plasma PAI-1, however, 

is highest at the beginning of the active phase.114,123,124 TNFα 

peaks in serum of lean rats during the inactive phase.125,126 

Interestingly, if mice are fed a HFD, the peak of serum 

TNFα shifts to the active phase.125 IL-6 shows rhythmic 

gene expression in human subcutaneous WAT.21 Furthermore, 

diurnal oscillations of serum IL-6 are well documented in 

humans,127,128 but the situation is less clear in rodents.125,126,95 

To which extent these adipose-derived cytokine oscillations 

contribute to metabolic inflammatory processes (see the fol-

lowing text) remains to be explored.

Appetite

POMC

Adipokines

Blood

Lipogenesis Lipolysis

Adipose

MBH

Leptin
Adiponectin
IL-6
Nesfatin

Leptin
Adiponectin

IL-6
TNFα

NPY

Energy
expenditure

Figure 3 Adipose–brain cross talk in the regulation of energy homeostasis. 
Rhythmically regulated adipokines cross the blood–brain barrier to affect appetite- 
and energy expenditure-regulating circuits in the mediobasal hypothalamus (MBH). in 
turn, altered energy intake and demands remodulate adipose function along the day.
Abbreviations: POMC, pro-opiomelanocortin; NPY, neuropeptide Y; iL-6, 
interleukin 6; TNFα, tumor necrosis factor alpha.
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It should be noted that even in the absence of rhythmic 

hormone concentrations time-of-day-dependent effects can 

be achieved in target tissues. For example, leptin transport 

into the brain and the mRNA expression of its receptor, LepR 

(or ObR), show diurnal rhythmicity in the hypothalamus.129,130 

This could indicate circadian rhythms in the central sensitiv-

ity to leptin and interpretation of the leptin signal (circadian 

gating). Indeed, destruction of LepR-expressing neurons in 

the arcuate nucleus leads to dampened feeding rhythms and 

to arrhythmicity of locomotor activity in DD.131 Interestingly, 

LepR is also expressed in the SCN of humans and rodents 

indicating a possible direct effect of leptin on the central 

pacemaker132–134 (note the reported absence of LepR in the 

SCN reported by Caron et al135).

Circadian rhythms and 
metaflammation
Metaflammation (short for metabolic inflammation) depicts 

a low-grade chronic inflammatory state resulting from over-

nutrition and playing a crucial role in the development of 

obesity-associated insulin and leptin resistance and cardio-

vascular complications.136 Metaflammation originates from 

WAT, but later spreads to other peripheral tissues such as liver, 

skeletal muscle, pancreatic islets, and the hypothalamus.136,137

Under obese conditions, the number of WAT infiltrating 

macrophages releasing pro-inflammatory cytokines (M1 

macrophages) increases.138 Furthermore, pro-inflammatory 

cytokine production is enhanced by elevated activation of 

pro-inflammatory kinases like c-Jun N-terminal kinase, 

inhibitor of κB kinase, and protein kinase R and their sig-

naling cascades.139,140 Additionally, the inflammasome and 

toll-like receptors, components of the innate immune system, 

are activated during metaflammation.141–143 The triggers and 

mechanisms of metaflammation are still poorly understood, 

but it has been noted that in obesity, feeding rhythms are 

dampened leading to an uninterrupted inflammatory stimu-

lus.136 In a similar way, exposure to dim light during the dark 

phase influences clock gene expression in WAT and activates 

the expression of pro-inflammatory cytokines (macrophage-1 

antigen, TNFα).144,145 Time-restricted HFD access, on the 

other hand, has been shown to not just improve diurnal 

oscillations of clock gene expression but also to prevent 

increased macrophage infiltration and increased cytokine 

production in WAT.146

Circadian clock KO mice seem to be more susceptible for 

pro-inflammatory stimulus. LPS treatment of bone marrow-

derived macrophages leads to a higher induction of TNFα 

and IL-1β expression in Per-mutant mice.147 Furthermore, Per-

mutant mice show a higher percentage of M1 macrophages in 

WAT. HFD-fed mice with myeloid-specific disruption of Per1/2 

display elevated gene expression of TNFα, IL-6, and IL-1β 

and increased macrophage infiltration in WAT. This seems to 

be mediated by PPARγ, which is downregulated in Per1/2-

mutant mice. Myeloid-specific deletion of Bmal1 results in 

elevated numbers of inflammatory monocytes in WAT and BAT, 

increased body weight gain, and impaired glucose tolerance.148 

It will be interesting to follow up this clock-inflammation lead 

as a potential target for the treatment of metaflammation.

Conclusion
Many important adipose functions including adipose dif-

ferentiation, lipid metabolism, and adipokine expression are 

controlled by the adipocyte circadian clock or systemic fac-

tors such as food intake and SCN-dependent hormones. Vice 

versa adipose-derived factors, the adipokines, can modulate 

circadian appetite and energy metabolism rhythms in the 

brain. Circadian rhythm disruption, thus, has double effects 

on energy homeostasis; it affects WAT function via resetting 

of adipocyte clocks and alters central metabolic regulation 

directly and through modulation of adipokine signaling. This 

circadian aspect of the adipocyte–brain cross talk may have 

an important role in the regulation of obesity-associated 

metaflammation.

Considering the rising numbers of patients with meta-

bolic disorders, targeting the circadian clock system may 

be a promising preventive and therapeutic approach.41,149,150 

In particular, those adipokines that do not lose their central 

anorexigenic properties during obesity, like nesfatin or 

adiponectin, may have chronotherapeutic potential.151 Other 

approaches may affect clock proteins directly such as the 

nuclear orphan receptor REV-ERBα for which small molecule 

modulators have already been developed.75
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