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Purpose: Various genetic variants have been reported to be linked to an increased risk of 

meningioma. However, no confirmed conclusion has been obtained. The purpose of the study 

was to investigate potential meningioma-associated gene polymorphisms, based on published 

evidence.

Materials and methods: An updated meta-analysis was performed in September 2016. After 

electronic database searching and study screening, we selected eligible case-control studies and 

extracted data for meta-analysis, using Mantel–Haenszel statistics. P-values, pooled odds ratios 

(ORs), and 95% confidence intervals were calculated.

Results: We finally selected eight genes with ten polymorphisms: MLLT10 rs12770228, CASP8 

rs1045485, XRCC1 rs1799782, rs25487, MTHFR rs1801133, rs1801131, MTRR rs1801394, MTR 

rs1805087, GSTM1 null/present, and GSTT1 null/present. Results of meta-analyses showed that 

there was increased meningioma risk in case groups under all models of MLLT10 rs12770228 

(all OR .1, P,0.001), compared with control groups. Similar results were observed under the 

allele, homozygote, dominant, and recessive models of MTRR rs1801394 (all OR .1, P,0.05), 

and the heterozygote and dominant models of MTHFR rs1801131 in the Caucasian population 

(all OR .1, P,0.05). However, no significantly increased meningioma risks were observed 

for CASP8 rs1045485, XRCC1 rs25487, rs1799782, MTHFR rs1801133, MTR rs1805087, or 

GSTM1/GSTT1 null mutations.

Conclusion: Our updated meta-analysis provided statistical evidence for the role of MLLT10 

rs12770228, MTRR rs1801394, and MTHFR rs1801131 in increased susceptibility to 

meningioma.

Keywords: meningioma, meta-analysis, gene, SNP

Introduction
Meningiomata, common slow-growing intracranial tumors, originate from the 

derivatives between the meninges and meningeal gap of the central nervous system.1,2 

According to the World Health Organization (WHO) grading system, grade I menin-

gioma lesions are usually benign, whereas grade II–III meningioma lesions are mostly 

atypical, anaplastic, or malignant.3,4 Chromosomal abnormalities (chromosomes 22, 1p, 

9p, 10p, 11, 14q, 15, 17, and 18q) and associated genetic variants have been reported 

to be associated with meningioma risk.4–6 For example, mutation of the NF2 gene is 

reportedly related to meningioma risk.7 However, the role of various gene polymor-

phisms in susceptibility to meningioma remains unconfirmed.

In the present study, we aimed to analyze all the relevant publications and inves-

tigate potential functional gene polymorphisms associated with meningioma risk. 

Ten single-nucleotide polymorphisms (SNPs) of eight genes – MLLT10 rs12770228, 

CASP8 rs1045485, XRCC1 rs1799782, XRCC1 rs25487, MTHFR rs1801133, MTHFR 
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rs1801131, MTRR rs1801394, MTR rs1805087, GSTM1 

null/present, and GSTT1 null/present – were selected from 

20 eligible articles to conduct our meta-analysis.

There were several previous meta-analyses for associa-

tions between meningioma risk and gene polymorphisms, 

including MTHFR rs1801133, MTRR rs1801394, MTR 

rs1805087, GSTM1 null/present, and GSTT1 null/present.8–13 

However, an updated meta-analysis was still required. 

Moreover, no previous meta-analyses have been conducted 

to evaluate the association between MTHFR rs1801131, 

MLLT10 rs12770228, CASP8 rs1045485, XRCC1 rs1799782, 

rs25487 polymorphisms and meningioma risks. Our data 

highlighted the positive association between MLLT10 

rs12770228, MTRR rs1801394, MTHFR rs1801131, and 

increased meningioma risk.

Materials and methods
information sources
We retrieved the available articles from the online databases 

PubMed, Embase, Central, Web of Science, and CNKI/

Wanfang in September 2016. The following search terms 

were used: “polymorphism, genetic” or “polymorphisms, 

genetic” or “genetic polymorphism” or “polymorphism 

(genetics)” or “genetic polymorphisms” or “polymorphism” 

or “variant” or “variants” or “mutation” or “mutations” 

or “SNP” or “single nucleotide polymorphism”; “menin-

gioma” or “meningiomas” or “angioblastic meningiomas” or 

“angiomatous meningiomas” or “clear cell meningiomas” or 

“fibrous meningiomas” or “hemangioblastic meningiomas” 

or “intracranial meningiomas” or “intraventricular menin-

giomas” or “malignant meningiomas” or “multiple menin-

giomas” or “meningiomatosis” or “microcystic meningioma” 

or “olfactory groove meningioma” or “papillary menin-

gioma” or “posterior fossa meningioma” or “psammomatous 

meningiomas” or “secretory meningioma” or “sphenoid 

wing meningioma” or “spinal meningioma” or “transitional 

meningioma” or “xanthomatous meningioma” or “benign 

meningiomas” or “cerebral convexity meningioma”.

eligibility criteria and data extraction
We screened and collected eligible studies based on our 

exclusion/inclusion criteria. The selected case-control studies 

had to contain genotype distributions of the case-control 

group. Genotype distribution in the control group had to be 

in line with Hardy–Weinberg equilibrium (HWE). Exclu-

sion criteria were comments, reviews, and letters; meeting 

abstracts; cases, trials, or not polymorphisms; not clinical 

data; other genes for which the number of case-control studies 

on specific variants was fewer than three; other diseases; 

meta-analyses; and lack of usable data. Then, four inves-

tigators independently performed methodological quality 

assessment using the Newcastle–Ottawa scale (NOS; http://

www.ohri.ca/programs/clinical_epidemiology/oxford.asp), 

and extracted the specific data, mainly genes, SNP, first 

author, year of publication, country, ethnicity, genotype 

frequencies of case-control, source of control, disease group, 

P-values of HWE test, genotyping methods, number of 

studies, sample size, and NOS score. NOS scores $7 mean 

a high-quality study. Emails were sent for unavailable data, 

and a discussion was needed for discrepancies.

Data synthesis
Stata/SE 12.0 (StataCorp, College Station, TX, USA) was 

utilized. P-values of association, summary odds ratios 

(ORs) and corresponding 95% confidence intervals (CIs) 

were estimated via Mantel–Haenszel statistics, based on the 

allele, homozygote, heterozygote, dominant, and recessive 

models. Two-sided P-values less than 0.05 were interpreted as 

statistically different; χ2 tests were used for HWE P-values.

heterogeneity analysis and publication 
bias
Cochran’s Q test and I 2 statistic were applied for assess-

ment of potential between-study heterogeneity. P-values 

for Q tests .0.1 or I 2 index ,25% indicate the existence 

of overall statistically significant heterogeneity and the uti-

lization of a fixed-effect model. Otherwise, a random-effect 

model was used.14,15 To analyze the main source of homoge-

neity, subgroup analysis by ethnicity and sensitivity analysis 

were conducted. In addition, Egger’s test and Begg’s test 

were carried out to evaluate potential publication bias.16–18

Results
study selection and characteristics
To identify studies on the association between potential 

genetic variants and meningioma risk, five online data-

bases (PubMed, Embase, Central, Web of Science, and 

CNKI/Wanfang) were searched in September 2016. A flow 

diagram of publication search and study screening for the 

meta-analysis is shown in Figure 1. The PRISMA (preferred 

reporting items for systematic reviews and meta-analyses) 

statement was followed.19 A total of 4,355 potentially rel-

evant articles were retrieved initially from the databases. 

After the removal of duplicated articles, 2,268 articles were 

excluded by screening title and abstract, with reasons shown 

in Figure 1. A total of 35 full-text articles were assessed for 

www.dovepress.com
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eligibility, and 15 were excluded for lack of usable data. As 

a result, 20 articles with ten polymorphisms of eight genes 

met our eligibility criteria and were selected for the meta-

analysis.20–39 Table 1 summarizes the characteristics of the 

articles included. NOS scores of all the studies were larger 

than or equal to 7, which indicated high quality. No signifi-

cant deviation from HWE was found for any of the studies. 

The SNPs MLLT10 rs12770228, CASP8 rs1045485, XRCC1 

rs1799782, XRCC1 rs25487, MTHFR rs1801133, MTHFR 

rs1801131, MTRR rs1801394, MTR rs1805087, GSTM1 null/

present, and GSTT1 null/present were analyzed (Table 2).

MLLT10 rs12770228
We first evaluated the association between rs12770228 of 

MLLT10 and meningioma risk. As shown in Figure 2A 

and Table 3, a fixed-effect model was used under the allele 

(A vs G), homozygote (AA vs GG) and recessive (AA vs 

GG+GA) models, due to low degree or no heterogeneity 

(heterogeneity, all P.0.1, I 2,25%), whereas a random-

effect model was applied for others. Pooled analysis data 

suggested that increased meningioma risk was detected 

under all genetic models (Table 3, test of association, all 

ORs .1, P,0.001). In addition, the existence of publication 

bias was excluded (Figure 2B and C, Table 4, Begg’s test, 

Egger’s test, all P.0.05). We also performed a sensitivity 

meta-analysis and found that the corresponding pooled OR 

value did not differ significantly from that of the overall 

meta-analysis (Figure 2D for allele model; data not shown 

for other models). These results suggested that the MLLT10 

rs12770228 A/G polymorphism may be associated with 

increased meningioma risk.

CASP8 rs1045485
The association between CASP8 rs1045485 and susceptibil-

ity to meningioma was then analyzed. As shown in Table 3, 

a fixed-effect model was utilized for the allele, homozygote, 

dominant, and recessive models (heterogeneity, all P.0.1, 

I 2,25%), but not the heterozygote model (Table 3, I 2=26.4%). 

The genetic association between the rs1045485 G/C allele fre-

quency of CASP8 and increased meningioma risk was obtained 

under the C vs G model (OR 1.14, 95% CI 0.94–1.4; P=0.181). 

In addition, we did not observe significantly increased 

Figure 1 Flow diagram of publication search and study screening for the meta-analysis.
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genetic variants and meningioma risk

meningioma risk in any genetic model (Table 3, test of 

association, all P.0.05). No publication bias was observed 

under any model either (Table 4, Begg’s test, Egger’s test, 

all P.0.05). Sensitivity meta-analyses further confirmed the 

results (data not shown). Therefore, the CASP8 rs1045485 poly-

morphism seems not to be associated with meningioma risk.

XRCC1 rs1799782 and rs25487
Next, we conducted meta-analyses of the associations 

between XRCC1 rs1799782 and rs25487 polymorphisms 

and meningioma risk. For XRCC1 rs1799782, no or low 

heterogeneity was observed, and a fixed-effect model was 

thus used for all genetic models (Table 3, heterogeneity, 

all P.0.1, I 2,25%), apart from the heterozygote model 

(I 2=34.2%). The results of Table 3 show that significant 

differences were observed under the heterozygote (OR 0.75, 

95% CI 0.61–0.94; P=0.01), dominant (OR 0.82, 95% CI 

0.7–0.97; P=0.018), and recessive models (OR 1.43, 95% 

CI 1.05–1.95; P=0.022), but not other models. Furthermore, 

subgroup analyses based on ethnicity were performed under 

all models. A similar change for increased meningioma risk 

was observed in the Asian population under the heterozygote, 

dominant, and recessive models (Table 5). Begg’s test and 

Egger’s test data excluded the presence of large publication 

bias (Table 4, Begg’s test and Egger’s test, all P.0.05).

For XRCC1 rs25487, a random-effect model was used 

under all genetic models (Table 3, heterogeneity, all I2.25%). 

No significant difference and no publication bias were 

observed under any genetic models (Table 3, test of associa-

tion, all P.0.05; Table 4, Begg’s test and Egger’s test, all 

P.0.05). Sensitivity meta-analyses further confirmed these 

results (data not shown). The data failed to provide strong 

evidence for an association between XRCC1 rs1799782 or 

rs25487 polymorphisms and increased meningioma risk.

MTHFR rs1801133 and rs1801131
As shown in Table 3, a random-effect model was used for 

MTHFR rs1801133 (heterogeneity, all I 2.25%), while 

a fixed-effect model was used for MTHFR rs1801131 

(heterogeneity, all P.0.1, I 2=0%). No significant difference 

Figure 2 Meta-analysis of the association between the MLLT10 polymorphism and meningioma risk under the allele model.
Notes: (A) Forest plot analysis; (B) Begg’s test with size graph symbol by weights; (C) egger’s test with size graph symbol by weights; and (D) sensitivity meta-analysis. 
Weights are from fixed-effect analysis. The “given name study is omitted” was produced by the STAT12.0 software. It means the given name studies were omitted, and the 
meta-analysis data by other studies were showed.
Abbreviations: A, adenine; G, guanine; OR, odds ratio; CI, confidence interval; SE, standard error.
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was observed for rs1801133 or rs1801131 under any genetic 

model (Table 3, test of association, all P.0.05). No publica-

tion bias was observed under any models (Table 4, Begg’s 

test and Egger’s test, all P.0.05), apart from the allele and 

homozygote models of rs1801133 (Table 4, Egger’s test, 

P,0.05). Subgroup analyses of ethnicity further showed a 

significant difference only for rs1801131 under the heterozy-

gote (AC vs AA, OR 1.32, 95% CI 1.09–1.59; P=0.004) and 

dominant (AC+CC vs AA, OR 1.23, 95% CI 1.03–1.48; 

P=0.023) models of rs1801131 in the Caucasian popula-

tion (Table 5), suggesting that the AC genotype of MTHFR 

rs1801131 might be associated with increased meningioma 

risk in the Caucasian population. Sensitivity meta-analyses 

further confirmed these results (data not shown).

MTRR rs1801394 and MTr rs1805087
Fixed-effect models were used for MTRR rs1801394 and MTR 

rs1805087 (Table 3, heterogeneity, all P.0.1, I 2,25%). Sig-

Table 3 Pooled analysis of the associations between MLLT10, CASP8, XRCC1, MTHFR, MTRR, and MTR polymorphisms and 
meningioma risk

Gene SNP Comparison Number 
of studies

Sample size Test of association Heterogeneity Model

Case Control OR (95% CI) P-value I2 P-value

MLLT10 rs12770228 a vs g 4 1,880 3,068 1.36 (1.24–1.48) ,0.001 16.6 0.309 F
aa vs gg 4 1,880 3,068 1.84 (1.53–2.23) ,0.001 0 0.438 F
ga vs gg 4 1,880 3,068 1.32 (1.13–1.54) ,0.001 27.7 0.246 r
ga+aa vs gg 4 1,880 3,068 1.42 (1.23–1.64) ,0.001 28.7 0.24 r
aa vs gg+ga 4 1,880 3,068 1.36 (1.24–1.48) ,0.001 0 0.552 F

CASP8 rs1045485 c vs g 7 806 1,271 1.14 (0.94–1.4) 0.181 2.6 0.406 F
cc vs gg 6 730 1,199 1.67 (0.86–3.26) 0.129 5.5 0.382 F
gc vs gg 7 806 1,271 1.06 (0.8–1.4) 0.687 26.4 0.227 r
gc+cc vs gg 7 806 1,271 1.11 (0.89–1.39) 0.181 14.7 0.318 F
cc vs gg+gc 6 730 1,199 1.14 (0.94–1.4) 0.102 3.6 0.393 F

XRCC1 rs1799782 T vs c 8 1,382 2,896 0.94 (0.82–1.07) 0.327 0 0.469 F
TT vs cc 8 1,382 2,896 1.22 (0.89–1.69) 0.219 0 0.83 F
cT vs cc 8 1,382 2,896 0.75 (0.61–0.94) 0.010 34.2 0.155 r
cT+TT vs cc 8 1,382 2,896 0.82 (0.7–0.97) 0.018 23.8 0.24 F
TT vs cc+cT 8 1,382 2,896 1.43 (1.05–1.95) 0.022 0 0.969 F

XRCC1 rs25487 a vs g 3 722 2,114 1.08 (0.89–1.31) 0.440 37 0.205 r
aa vs gg 3 722 2,114 1.14 (0.67–1.95) 0.632 49.3 0.139 r
ga vs gg 3 722 2,114 1.09 (0.85–1.4) 0.495 27.8 0.25 r
ga+aa vs gg 3 722 2,114 1.1 (0.87–1.39) 0.429 25.3 0.262 r
aa vs gg+ga 3 722 2,114 1.09 (0.63–1.86) 0.766 54.2 0.112 r

MTHFR rs1801133 T vs c 10 1,323 1,883 1.14 (0.93–1.39) 0.222 64.2 0.003 r
TT vs cc 10 1,323 1,883 1.31 (0.87–1.98) 0.201 52 0.027 r
cT vs cc 10 1,323 1,883 1.19 (0.95–1.49) 0.132 43.8 0.066 r
cT+TT vs cc 10 1,323 1,883 1.19 (0.92–1.53) 0.180 58.9 0.009 r
TT vs cc+cT 10 1,323 1,883 1.22 (0.87–1.71) 0.239 36.6 0.115 r

MTHFR rs1801131 c vs a 11 1,855 3,331 1.05 (0.95–1.15) 0.335 0 0.97 F
cc vs aa 11 1,855 3,331 1.01 (0.82–1.24) 0.597 0 0.829 F
ac vs aa 11 1,855 3,331 1.13 (0.99–1.29) 0.060 0 0.793 F
ac+cc vs aa 11 1,855 3,331 1.11 (0.98–1.25) 0.108 0 0.935 F
cc vs aa+ac 11 1,855 3,331 0.94 (0.77–1.15) 0.574 0 0.594 F

MTRR rs1801394 g vs a 8 1,231 2,437 1.18 (1.06–1.31) 0.002 0 0.682 F
gg vs aa 8 1,231 2,437 1.4 (1.14–1.73) 0.002 0 0.756 F
ag vs aa 8 1,231 2,437 1.1 (0.93–1.3) 0.250 0 0.67 F
ag+gg vs aa 8 1,231 2,437 1.18 (1.01–1.37) 0.036 0 0.622 F
gg vs aa+ag 8 1,231 2,437 1.33 (1.1–1.61) 0.003 0 0.883 F

MTR rs1805087 g vs a 7 939 1,210 0.89 (0.75–1.04) 0.140 0 0.51 F
gg vs aa 7 939 1,210 0.96 (0.6–1.53) 0.867 0 0.985 F
ag vs aa 7 939 1,210 0.84 (0.69–1.02) 0.074 10.4 0.35 F
ag+gg vs aa 7 939 1,210 0.85 (0.7–1.02) 0.084 5.7 0.384 F
gg vs aa+ag 7 939 1,210 1.02 (0.64–1.61) 0.946 0 0.986 F

Abbreviations: SNP, single-nucleotide polymorphism; OR, odds ratio; CI, confidence interval; F, fixed; R, random; A, adenine; G, guanine; C, cytosine; T, thymine.
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nificantly increased meningioma risk was observed for MTRR 

rs1801394 under the allele (G vs A), homozygote (GG vs AA), 

dominant (AG+GG vs AA), and recessive (GG vs AA+AG) 

models (Table 3, test of association, all OR.1, P,0.05). 

Nevertheless, no increased meningioma risk was observed for 

MTR rs1805087 under any model (Table 3, test of association, 

all P.0.05). Subgroup analyses further indicated that there 

was increased meningioma risk for MTRR rs1801394 under 

the allele, homozygote, and recessive models in the Asian 

population and the allele and homozygote models in the Cau-

casian population (Table 5, test of association, all P,0.05). 

No publication bias was detected for MTRR rs1801394 or 

MTR rs1805087 under any model (Table 4, Begg’s test and 

Egger’s test, all P.0.1). The results were further confirmed 

by sensitivity meta-analyses (data not shown). These data 

demonstrated that MTRR rs1801394, but not MTR rs1805087, 

is more likely to be linked to increased meningioma risk.

GSTM1 and GSTT1 null/present
Finally, we investigated the genetic relationship between the 

null/present genotype of GSTM1 and GSTT1 and meningioma 

risk. A fixed model was used for GSTM1 (Figure 3A, het-

erogeneity, P=0.289, I2=20.1%), whereas a random model 

was used for GSTT1 (Figure 4A, heterogeneity, P=0.108, 

I2=50.6%). No increased or decreased meningioma risk 

was observed for the null genotype of GSTM1 (Figure 3A, 

test of association, P=0.73) or GSTT1 (Figure 4A, test of 

association, P=0.099). No publication bias was detected 

(Figure 3B and C, Figure 4B and C, Begg’s test and Egger’s 

test, all P.0.05). Sensitivity meta-analyses (Figures 3D 

and 4D) further confirmed the results. These results demon-

strated that the polymorphisms of GSTM1 and GSTT1 may 

not be associated with meningioma risk.

Discussion
In the present study, we performed an updated meta-

analysis to investigate potential genetic variants associ-

ated with meningioma risk. Ten genetic variants of eight 

genes were targeted. These genes can be classified into five 

categories: 1) chromosomal rearrangement-associated gene, 

MLLT10; 2) apoptosis-associated gene, CASP8; 3) DNA 

repair-associated gene, XRCC1; 4) folate-metabolism genes, 

MTHFR, MTRR, and MTR; 5) and drug metabolism-related 

genes, GSTM1 and GSTT1.

Folate metabolism-associated gene mutations have been 

reported to be associated with several diseases.12,40 The MTHFR 

protein, a kind of folate-metabolizing enzyme, is required for 

the methylation of homocysteine to methionine.41–44 Both the 

MTRR and MTR genes are also indispensable for the folate 

metabolic pathway.40 Polymorphisms of MTHFR, MTRR, 

and MTR have been reported to be linked to susceptibility 

to meningioma in certain populations. For example, MTHFR 

rs1801133 or MTRR rs1801394 was found to be associated 

with meningioma risk in the Chinese population.20,26 How-

ever, the role of MTHFR polymorphisms in the presence of 

meningioma is still conflicting. For instance, there was no 

significant genetic association between MTHFR rs1801133 

Table 4 Begg’s test and egger’s test data

Gene SNP Comparison Begg’s test Egger’s test

z P-value t P-value

MLLT10 rs12770228 a vs g 0.34 0.734 -0.59 0.613
aa vs gg 1.02 0.308 -0.32 0.778
ga vs gg 1.02 0.308 -2.02 0.18
ga+aa vs gg 0.34 0.734 -1.24 0.341
aa vs gg+ga 0.34 0.734 0.27 0.814

CASP8 rs1045485 c vs g 0.6 0.548 -0.17 0.87
cc vs gg 0.38 0.707 -0.61 0.572
gc vs gg 0.6 0.548 -0.4 0.708
gc+cc vs gg 0.90 0.368 -0.31 0.77
cc vs gg+gc 0.38 0.707 -0.64 0.56

XRCC1 rs1799782 T vs c 0.12 0.902 -0.71 0.506
TT vs cc 0.37 0.711 0.36 0.731
cT vs cc 0.37 0.711 -0.79 0.46
cT+TT vs cc 0.62 0.536 -0.6 0.569
TT vs cc+cT -0.12 1 0.28 0.792

XRCC1 rs25487 a vs g 0 1 0.35 0.784
aa vs gg 0 1 0.07 0.955
ga vs gg 1.04 0.296 4.08 0.153
ga+aa vs gg 1.04 0.296 1.3 0.418
aa vs gg+ga 0 1 -0.16 0.897

MTHFR rs1801133 T vs c 1.43 0.152 -2.33 0.048
TT vs cc 0.54 0.592 -2.51 0.036
cT vs cc 1.61 0.107 -1.88 0.097
cT+TT vs cc 1.43 0.152 -2.23 0.056
TT vs cc+cT 0.54 0.592 -1.96 0.086

MTHFR rs1801131 c vs a 1.09 0.276 -0.59 0.571
cc vs aa 1.09 0.276 -2.14 0.061
ac vs aa 0.93 0.35 1.45 0.181
ac+cc vs aa 0.47 0.64 0.92 0.38
cc vs aa+ac 1.4 0.161 -2.37 0.042

MTRR rs1801394 g vs a 1.11 0.266 -0.55 0.605
gg vs aa 1.11 0.266 -0.64 0.544
ag vs aa -0.12 1 0.33 0.753
ag+gg vs aa -0.12 1 0.01 0.99
gg vs aa+ag 1.61 0.108 -1.21 0.272

MTR rs1805087 g vs a 0 1 -1.55 0.183
gg vs aa 0.3 0.764 -0.73 0.497
ag vs aa 0.3 0.764 -0.95 0.385
ag+gg vs aa 0.3 0.764 -1.21 0.28
gg vs aa+ag 0.3 0.764 -0.46 0.662

Abbreviations: snP, single-nucleotide polymorphism; a, adenine; g, guanine; c, 
cytosine; T, thymine.
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and meningioma risk in the Turkish population.28 The TT 

genotype of MTHFR rs1801133 may be related to the lower 

risk of meningioma in the Korean population.39

Ding et al conducted a meta-analysis of nine case-

control studies, and found that the CT genotype of MTHFR 

rs1801133 might be linked to high meningioma risk in 

Caucasians.13 Xu et al found that significantly increased 

meningioma risk was only observed under the TC vs CC 

model in a meta-analysis of four studies.9 A meta-analysis by 

Zeng et al showed that the MTRR rs1801394 polymorphism 

(seven case-control studies), but not MTR rs1805087 (seven 

case-control studies), may be associated with meningioma 

risk in adults.8 We removed data that did not meet the HWE, 

such as the rs1805087 data of Zhang et al,20 and added 

data from case-control studies, such as the WHO grade III 

meningioma group.21 As such, MTHFR rs1801133 (eleven 

case-control studies), MTRR rs1801394 (eight case-control 

studies) and MTR rs1805087 (seven case-control studies, all 

in the Caucasian population) were enrolled in the present 

updated meta-analysis. Our results indicated that MTRR 

rs1801394, but not MTHFR rs1801133 or MTR rs1805087, 

is likely to be associated with meningioma risk, and the AC 

genotype of MTHFR rs1801131 may confer high suscepti-

bility to meningioma in the Caucasian population. The pre-

cise molecular mechanisms of MTHFR and MTR mutations 

in the incidence of meningioma remain unclear. Due to its 

close relationship with the synthesis, methylation, and repair 

of DNA, folate is essential for the production or mainte-

nance of normal cells and the inhibition of tumor cells.45–47 It 

is possible that the harmful mutation of MTHFR rs1801131 

or MTRR rs1801394 confers susceptibility to meningioma 

via abnormal of enzyme activity and folate-involved DNA 

metabolism. More experiments are needed.

In addition to folate-metabolism genes, susceptibility 

loci of drug metabolism-related genes GSTM1 and GSTT1, 

apoptosis-associated gene CASP8, DNA repair-associated 

Table 5 subgroup analysis of the association between XRCC1, MTHFR, and MTRR polymorphisms and meningioma risk

Comparison XRCC1
rs1799782

MTHFR
rs1801133

MTHFR
rs1801131

MTRR
rs1801394

Asian Caucasian Asian Caucasian Asian Caucasian Asian Caucasian

m vs M
studies, n 6 2 2 8 4 7 3 5
case-control 739/872 643/2,024 349/574 974/1,309 917/2,120 938/1,211 600/1,800 631/637
Or 0.95 0.89 1.19 1.11 1.02 1.07 1.17 1.19
95% ci 0.82–1.1 0.68–1.17 0.42–3.22 0.97–1.27 0.9–1.16 0.94–1.23 1.01–1.34 1.02–1.4
P-value 0.511 0.408 0.775 0.129 0.73 0.301 0.032 0.03

mm vs MM
studies, n 6 2 2 8 4 7 3 5
case-control 739/872 643/2,024 349/574 974/1,309 917/2,120 938/1,211 600/1,800 631/637
Or 1.2 2.3 1.44 1.18 1.08 0.92 1.41 1.4
95% ci 0.86–1.66 0.45–11.8 0.22–9.34 0.86–1.62 0.81–1.44 0.68–1.26 1.06–1.86 1.01–1.94
P-value 0.283 0.32 0.703 0.302 0.592 0.618 0.016 0.04

Mm vs MM
studies, n 6 2 2 8 4 7 3 5
case-control 739/872 643/2,024 349/574 974/1,309 917/2,120 938/1,211 600/1,800 631/637
Or 0.7 0.86 1.07 1.17 0.99 1.32 1.02 1.21
95% ci 0.52–0.95 0.64–1.14 0.35–3.26 0.97–1.42 0.83–1.19 1.09–1.59 0.82–1.27 0.94–1.54
P-value 0.022 0.282 0.902 0.11 0.931 0.004 0.827 0.136

Mm+mm vs MM
studies, n 6 2 2 8 4 7 3 5
case-control 739/872 643/2,024 349/574 974/1,309 917/2,120 938/1,211 600/1,800 631/637
Or 0.8 0.87 1.13 1.17 1.01 1.23 1.12 1.26
95% ci 0.66–0.97 0.66–1.15 0.31–4.17 0.98–1.4 0.85–1.19 1.03–1.48 0.91–1.37 1–1.59
P-value 0.026 0.331 0.85 0.08 0.932 0.023 0.277 0.052

mm vs MM+Mm
studies, n 6 2 2 8 4 7 3 5
case-control 739/872 643/2,024 349/574 974/1,309 917/2,120 938/1,211 600/1,800 631/637
Or 1.41 2.33 1.48 1.07 1.09 0.8 1.39 1.26
95% ci 1.03–1.93 0.45–11.99 0.42–5.25 0.79–1.44 0.83–1.43 0.6–1.08 1.08–1.78 0.94–1.68
P-value 0.031 0.31 0.547 0.674 0.552 0.146 0.01 0.121

Notes: M, major allele; m, minor allele.
Abbreviations: OR, odds ratio; CI, confidence interval.
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gene XRCC1, and chromosomal rearrangement-associated 

gene MLLT10 have also been reported in various clinical 

diseases.48–52 For instance, GSTM1 and GSTT1 polymorphisms 

might be associated with renal cell carcinoma risk or treat-

ment outcomes of breast cancer.48,49 XRCC1 polymorphisms 

are likely linked to the risk of lung cancer in Caucasian popu-

lation.51 Cryptic XPO1–MLLT10 translocation was related to 

homeobox A-locus deregulation in T-cell acute lymphoblastic 

leukemia.52 Here, the results of our meta-analysis under all 

genetic models showed that the rs12770228 polymorphism 

of MLLT10 was significantly associated with increased 

meningioma risk. However, no strong association between 

GSTM1, GSTT1, CASP8, XRCC1 and meningioma suscep-

tibility was obtained. The negative associations between 

GSTM1 and GSTT1 null/present and meningioma risk were 

partly in line with previous results on the role of GSTM1 and 

GSTT1 polymorphisms in brain-tumor risk.10,11 In spite of this, 

the possibility of potential roles of these polymorphisms in 

inherited meningioma risk still cannot be ruled out.

limitations
Although the strict exclusion and inclusion criteria were 

utilized to select eligible studies, several limitations in our 

meta-analysis must be acknowledged. We tried our best 

to search the electronic databases for relevant articles, and 

analyzed the potential meningioma-associated genetic variants 

via meta-analysis. Multiple genes, such as CDKN2 and PON1, 

were initially retrieved.23,53 However, genes for which the 

number of case-control studies on specific variants was fewer 

than three were removed. As such, only eight genes were 

collected. We admit that there was a very limited number of 

included studies and very small sample size in case-control 

studies for our meta-analysis. Considering the limitation of 

small study numbers on the evaluation efficiency of pub-

lication bias via Begg’s test,16 there is still the potential of 

publication bias, which may have affected our conclusions.

Even though the Mantel–Haenszel statistics under the 

random-effect model and sensitivity analyses were used for 

between-study heterogeneity, there were small sample sizes, 

Figure 3 Meta-analysis of the association between the GSTM1 polymorphism and meningioma risk.
Notes: (A) Forest plot analysis; (B) Begg’s test with size graph symbol by weights; (C) egger’s test with size graph symbol by weights; and (D) sensitivity meta-analysis. 
Weights are from fixed-effect analysis. The “given name study is omitted” was produced by the STAT12.0 software. It means the given name studies were omitted, and the 
meta-analysis data by other studies were showed.
Abbreviations: OR, odds ratio; CI, confidence interval; SE, standard error.
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Figure 4 Meta-analysis of the association between the GSTT1 polymorphism and meningioma risk.
Notes: (A) Forest plot analysis; (B) Begg’s test with size graph symbol by weights; (C) egger’s test with size graph symbol by weights; and (D) sensitivity meta-analysis. 
Weights are from random-effect analysis. The “given name study is omitted” was produced by the STAT12.0 software. It means the given name studies were omitted, and 
the meta-analysis data by other studies were showed.
Abbreviations: OR, odds ratio; CI, confidence interval; SE, standard error.

and other unpublished or unavailable data are still needed. 

SNPs, disease characteristics, and other environmental 

effect modifiers contribute to meningioma risk. Several 

factors, such as ionizing radiation, estrogen level, and trau-

matic brain injury, might be involved in the complicated 

etiology or pathology of meningiomas.54–56 Unfortunately, 

only stratified analysis according to ethnic background 

was performed for XRCC1 rs1799782, MTHFR rs1801133, 

rs1801131, and MTRR rs1801394. More subgroup analysis 

based on more factors (eg, sex, disease type, or other clini-

cal characteristics) were needed for a proper judgment of 

the genetic association between the measured variants and 

meningioma risk.

Very limited genome-wide association study (GWAS) 

data, genome-wide SNP linkage-disequilibrium mapping, 

or exome sequencing was obtained.33,57,58 We found that 

the MLLT10 gene was identified from the GWAS data on 

meningioma risk.32,33 However, the positive association of 

MTRR rs1801394 and MTHFR rs1801131 failed to obtain 

the support of GWAS data. Further investigations with more 

subjects are warranted to confirm the role of CASP8, XRCC1, 

MTHFR, MTRR, MTR, GSTM1, GSTT1, and other genes 

identified from high-throughput analysis, such as PIAS2 

and KATNAL2.

Conclusion
Our updated meta-analysis concluded that MLLT10 

rs12770228 and MTRR rs1801394 polymorphisms may be 

meningioma risk factors. Also, the AC genotype of MTHFR 

rs1801131 appears to be associated with increased suscepti-

bility to meningioma in the Caucasian population.
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