Advances in the treatment of relapsing–remitting multiple sclerosis: the role of pegylated interferon β-1a

Kendra L Furber1–3
Marina Van Agten1–3
Charity Evans2,4
Azita Haddadi2
J Ronald Doucette3–5,†
Adil J Nazarali1–4

1Laboratory of Molecular Cell Biology, 2College of Pharmacy and Nutrition, 3Neuroscience Research Cluster, University of Saskatchewan, 4Cameco Multiple Sclerosis Neuroscience Research Center, City Hospital, 5Department of Anatomy and Cell Biology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada

†Dr. J Ronald Doucette passed away on May 15, 2016

Abstract: Multiple sclerosis (MS) is a progressive, neurodegenerative disease with unpredictable phases of relapse and remission. The cause of MS is unknown, but the pathology is characterized by infiltration of auto-reactive immune cells into the central nervous system (CNS) resulting in widespread neuroinflammation and neurodegeneration. Immunomodulatory-based therapies emerged in the 1990s and have been a cornerstone of disease management ever since. Interferon β (IFNβ) was the first biologic approved after demonstrating decreased relapse rates, disease activity and progression of disability in clinical trials. However, frequent dosing schedules have limited patient acceptance for long-term therapy. Pegylation, the process by which molecules of polyethylene glycol are covalently linked to a compound, has been utilized to increase the half-life of IFNβ and decrease the frequency of administration required. To date, there has been one clinical trial evaluating the efficacy of pegylated IFN. The purpose of this article is to provide an overview of the role of IFN in the treatment of MS and evaluate the available evidence for pegylated IFN therapy in MS.

Keywords: interferon, pegylation, multiple sclerosis, relapsing–remitting, disease-modifying therapy

Multiple sclerosis: an overview

Multiple sclerosis (MS) is a progressive, neurodegenerative disease affecting roughly 2.3 million people worldwide.1 MS is characterized by infiltration of auto-reactive T cells, B cells and other immune mediators into the central nervous system (CNS), causing demyelinating lesions, axonal degeneration and formation of sclerotic plaques.2 Neural damage may manifest symptomatically as optic neuritis, numbness or tingling in the extremities, muscle weakness, slurred speech and bowel/bladder dysfunction.3–5 There is also an increasing appreciation of “soft” or “hidden” symptoms such as fatigue,6–8 cognitive impairment8–10 and comorbidity with other psychiatric disorders.11 Diagnosis typically occurs between 20 and 40 years of age but may occur at any stage in life, and women are affected two to three times more often than men.1 The etiology of MS remains unknown; however, it is likely an interplay between genetics and environmental factors.12–15

The first episode of neurological symptoms, characteristic of an inflammatory demyelinating event in the brain or spinal cord, is classified as a clinically isolated syndrome (CIS).16 This remains so until a definite diagnosis of MS, with “dissemination of demyelinating lesions in space and time”, is made based on clinical episodes, magnetic resonance imaging (MRI) and/or analysis of cerebrospinal fluid.17,18 There are three subtypes of MS based on the manifestation of clinical symptoms:...
relapsing–remitting MS (RRMS), secondary progressive MS (SPMS) and primary progressive MS (PPMS), which can be further classified as active- or non-active based on clinical or MRI criteria. The most common diagnosis is RRMS, which affects 80–85% of patients and is characterized by acute exacerbations followed by periods of remission. Exacerbations, referred to as attacks or relapses, are defined as new symptoms in the absence of fever reflecting decreased neurological function, lasting at least 24 h and separated from other new symptoms by at least 30 days. Remission from relapse may be partial or complete; neurologic recovery following a relapse tends to be better in early stages of the disease but becomes less complete with repeated relapses. Approximately 75% of patients presenting with RRMS will convert to SPMS within 35 years of the initial symptoms, which is marked by a decline in acute relapses with a steady increase in the progression of disability.

PPMS is diagnosed in ~15% of cases and is characterized by a steady progression of disability from onset, which may occur with or without the presence of clinical relapses and/ or MRI activity.

Current therapies for disease management

There are currently 11 disease-modifying therapies (DMTs) approved for MS in Canada (Table 1), with several emerging therapies in Phase II and III clinical trials. All currently approved DMTs modulate immune functions and are indicated for treatment of CIS, RRMS and/or SPMS with relapses. To date, there are no approved DMTs to mitigate neurodegenerative disease mechanisms for progressive forms of MS, although some experimental therapies are targeted toward neural repair mechanisms. First-line therapies in Canada include interferon beta-1b (IFNβ-1b; Betaseron®, Extavia®), IFNβ-1a (Avonex®, Rebif®), pegylated IFNβ-1a (PEG-IFNβ-1a; Plergy®), glatiramer acetate (Copaxone®), teriflunomide (Aubagio®) and dimethyl fumarate (Tecfidera®). Second-line therapies available are fingolimod (Gilenya®), natalizumab (Tysabri®) and alemtuzumab (Lemtrada®). Given that there is no cure for MS, the goals of current therapeutic interventions are to reduce the number and severity of relapses, minimize long-term disability and improve overall quality of life. In clinical trials, outcomes typically examined include annualized relapse rates (ARRs), MRI parameters such as disease burden (T2 lesion volume) or disease activity (number of new/newly enlarging T2 lesions or gadolinium-enhancing T1 lesions) and disability progression (Expanded Disability Status Scale [EDSS]). The efficacy and safety profiles of currently available DMTs are briefly summarized in Table 1.

Overall, treatment decisions are based on benefit/risk profile. First-line therapies have shown similar efficacy in placebo-controlled and head-to-head trials, which is supported by recent meta-analysis data. Second-line therapies show greater efficacy in reducing relapse rates and MRI activity but are also associated with more adverse side effects and potential toxicities. These second-line therapies are typically used only in patients who show disease activity while on first-line therapies, who cannot tolerate first-line therapies or who have extremely active RRMS from onset. Thus, the optimization of MS therapy ultimately depends on individual disease activity, response to treatment, tolerability and practitioner or patient preference. Proven efficacy and long-term safety information from numerous clinical trials make IFNβ an attractive first-line therapy; however, an important drawback is patient adherence due to frequent dosing schedules. Thus, the development of pegylated IFN (Plegridy®) has provided an alternative injectable agent that has similar efficacy and safety profiles as traditional IFNβ therapies but significantly reduces the frequency of administration. In this review, we focus our discussion on placebo-controlled trials of subcutaneous IFNβ-1a and head-to-head trials against other IFNβ formulations to evaluate the role of PEG-IFNβ-1a therapy in MS (Table 2).

Interferon β

IFNβ was the first biologic approved for MS therapy. IFNs are a family of cytokines involved in the regulation of innate and adapted immunity and are thus ideal candidates for immunomodulatory therapies in MS. Early attempts at IFN therapy in MS included the use of IFNγ, IFNα and IFNβ. Unexpectedly, administration of IFNγ resulted in activation of the immune system and increased the occurrence of relapses. Several different formulations of IFNα and IFNβ were explored with promising results, but IFNβ had a more acceptable patient safety profile. Both recombinant IFNβ-1b produced in Escherichia coli and recombinant IFNβ-1a produced in mammalian cells are approved for the treatment of MS (Table 1). Differences in post-translational modifications confer reduced biological activity of non-glycosylated IFNβ-1b compared to glycosylated IFNβ-1a, which is reflected in their dosages. Clinical trials with IFNβ have demonstrated a reduction in relapse rates and MRI activity. Delays in disease progression, as measured with EDSS, have also been reported over the 1- to 2-year clinical

Furber et al. Degenerative Neurological and Neuromuscular Disease 2017:7

Degenerative Neurological and Neuromuscular Disease downloaded from https://www.dovepress.com/ by 54.70.40.11 on 01-Jun-2019

For personal use only.
Table 1 Disease Modifying Therapies approved by Health Canada for the treatment of Multiple Sclerosis*

<table>
<thead>
<tr>
<th>DMT: Trademark</th>
<th>Indication</th>
<th>Dosage</th>
<th>Clinical Trial</th>
<th>Efficacy</th>
<th>Safety</th>
<th>Mechanism of Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>First line</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interferon-1b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Betaseron®</td>
<td>RRMS, CIS,</td>
<td>250 µg SC; QAD</td>
<td>IFNβ1 MSSG15</td>
<td>34%</td>
<td>decrease in pro-inflammatory and increase anti-inflammatory cytokine profiles</td>
<td></td>
</tr>
<tr>
<td>Teva®</td>
<td>RRMS, CIS,</td>
<td>250 µg SC; QAD</td>
<td>IFNβ1 MSSG15</td>
<td>34%</td>
<td>inhibition of Th1 cell proliferation</td>
<td></td>
</tr>
<tr>
<td>Interferon-1a</td>
<td>CIS, RRMS,</td>
<td>30 µg IM; QW</td>
<td>MSCRG21</td>
<td>18%</td>
<td>downregulation of antigen presentation by B cells and glial cells in CNS</td>
<td></td>
</tr>
<tr>
<td>Rebif®</td>
<td>RRMS, CIS,</td>
<td>22 µg SC; TIW</td>
<td>PRISMS24</td>
<td>27%</td>
<td>B cell and T cell-mediated adaptive immunity</td>
<td></td>
</tr>
<tr>
<td>PEG-Interferon</td>
<td>RRMS</td>
<td>125 µg SC; Q2W</td>
<td>ADVANCE15</td>
<td>36%</td>
<td>increase expression of neurotrophic factors</td>
<td></td>
</tr>
<tr>
<td>Plegridy®</td>
<td>RRMS</td>
<td>125 µg SC; Q2W</td>
<td>ADVANCE15</td>
<td>36%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Second line</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fingolimod</td>
<td></td>
<td></td>
<td>FreEDOMS40</td>
<td>54%</td>
<td>S1P receptor agonist; internalization and degradation</td>
<td></td>
</tr>
<tr>
<td>Gilena®</td>
<td>RRMS</td>
<td>0.5 mg PO; QD</td>
<td>FREEDOMS-II3</td>
<td>48%</td>
<td>inhibits egress of activated lymphocytes from lymph node</td>
<td></td>
</tr>
<tr>
<td>Natalizumab</td>
<td>RRMS</td>
<td>300 mg IV; Q4W</td>
<td>AFFIRM11</td>
<td>68%</td>
<td>modulate astrocyte function</td>
<td></td>
</tr>
<tr>
<td>Alemtuzumab</td>
<td>RRMS</td>
<td>0.5 mg IV; 5 consecutive days in year 1, then 3 consecutive days in year 2</td>
<td>CARE MS-II16</td>
<td>55%</td>
<td>humanized mAb that binds CD52</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: An additional DMT, daclizumab (humanized mAb that binds CD25) marketed as Zinbryta®, was approved by Health Canada for treatment of RRMS in December 2016 while manuscript was in print. Efficacy reported as % reduction in relapse rate compared to placebo, except for alemtuzumab (compared to IFNβ1-1a), in Phase III clinical trials; reported in Phase III clinical trials, except indicated as *recently reported by Health Canada (http://www.hc-sc.gc.ca; accessed January 14, 2017).* Proposed mechanisms based on known pharmacology and/or current evidence from clinical trials and animal models. (1-19) A *denotes a DMT, daclizumab (humanized mAb that binds CD25) marketed as Zinbryta®, was approved by Health Canada for treatment of RRMS in December 2016 while manuscript was in print; efficacy reported as % reduction in relapse rate compared to placebo, except for alemtuzumab (compared to IFNβ1-1a), in Phase III clinical trials; reported in Phase III clinical trials, except indicated as *recently reported by Health Canada (http://www.hc-sc.gc.ca; accessed January 14, 2017).* Proposed mechanisms based on known pharmacology and/or current evidence from clinical trials and animal models. (1-19) Abbreviations: BD, twice daily; CIS, clinically isolated syndrome; CNS, central nervous system; DMT, disease modifying therapy; GI, gastrointestinal; IFN, interferon; IM, intramuscular; IV, intravenous; LFT, liver function tests; mAb, monoclonal antibody; MMP, matrix metalloproteinase; MS, multiple sclerosis; NF-κB, nuclear factor-kappa B; NfL, nuclear factor-light subunits; PEG, polyethylene glycol; PO, per oral; PML, progressive multifocal leukoencephalopathy; QAD, once every other day; QD, once daily; QW, once weekly; Q2W, once every 2 weeks; Q4W, once every 4 weeks; RRMS, relapsing-remitting MS; rxn, reaction; S1P, sphingosine-1-phosphate; SC, subcutaneous; SPMS, secondary progressive MS; TIW, three times weekly; VCAM-1, vascular cell adhesion molecule 1.
Degenerative Neurological and Neuromuscular Disease 2017:7

Table 2 Summary of PRISMS, INCOMIN, EVIDENCE and ADVANCE trials

<table>
<thead>
<tr>
<th>PRISMS15 – Prevention of Relapses and Disability by Interferon beta-1a Subcutaneously in Multiple Sclerosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inclusion criteria</td>
</tr>
<tr>
<td>Exclusion criteria</td>
</tr>
<tr>
<td>Intervention</td>
</tr>
<tr>
<td>Primary outcome</td>
</tr>
<tr>
<td>Summary of results</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>INCOMIN31 – Independent Comparison of Interferon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inclusion criteria</td>
</tr>
<tr>
<td>Exclusion criteria</td>
</tr>
<tr>
<td>Intervention</td>
</tr>
<tr>
<td>Primary outcome</td>
</tr>
<tr>
<td>Summary of results</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EVIDENCE32 – Evidence of Interferon Dose-response-European North American Comparative Efficacy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inclusion criteria</td>
</tr>
<tr>
<td>Exclusion criteria</td>
</tr>
<tr>
<td>Intervention</td>
</tr>
<tr>
<td>Primary outcome</td>
</tr>
<tr>
<td>Summary of results</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ADVANCE33 – Pegylated Interferon beta-1a for Relapsing–Remitting Multiple Sclerosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inclusion criteria</td>
</tr>
<tr>
<td>Exclusion criteria</td>
</tr>
<tr>
<td>Intervention</td>
</tr>
<tr>
<td>Primary outcome</td>
</tr>
<tr>
<td>Summary of results</td>
</tr>
</tbody>
</table>

Abbreviations: ARR, annualized relapse rate; EDSS, expanded disability status scale; IFNβ, interferon beta; IM, intramuscular; MS, multiple sclerosis; PEG, polyethylene glycol; QAD, once every other day; QW, once weekly; Q2W, once every 2 weeks; Q4W, once every 4 weeks; RRMS, relapsing–remitting MS; MRI, magnetic resonance imaging; SC, subcutaneous; TIW, three times weekly.

trial periods,23,24 and long-term benefits have been associated with continued IFNβ treatment in follow-up studies.56,57 However, a large retrospective study by Shirani et al58 reported no link between IFNβ treatment and the long-term disability progression, which has renewed debate around this issue.59–61

Dosage and administration
IFN treatment is currently indicated for the treatment of CIS, RRMS and SPMS with relapses. Commercially available formulations of IFNβ-1b include Betaseron® and Extavia®, which are administered subcutaneously (SC) every other day (QAD) at a dose of 250 µg. IFNβ-1a is marketed as Avonex® administered intramuscularly (IM) once weekly (QW) at a dose of 30 µg or Rebif® administered SC three times weekly (TIW) at a dose of 22 or 44 µg.

Mechanisms of action
The precise mechanisms of action of IFNβ in MS therapy are unknown but have been attributed to its antiproliferative, antiviral and immunomodulatory abilities.52 Systemic
administration of IFNβ is believed to primarily modulate immune cell function in the periphery. In general, IFNβ appears to oppose the pathogenic processes associated with MS disease progression by shifting from a pro-inflammatory to an anti-inflammatory immune profile (Figure 1). A key player in MS pathology are auto-reactive T cells that migrate across the blood–brain barrier (BBB), initiating inflammatory cascades in the CNS inflicting damage on axons, neurons and myelin sheaths. IFNβ therapy is associated with a decrease in the expansion of pro-inflammatory Th1 and Th17 subtypes and promotes the expansion of anti-inflammatory Th2 subtype. IFNβ has also been shown to modulate the function of regulatory T cells, B cells, natural killer cells and dendritic cells. The complexity of immune cell signaling networks makes it difficult to delineate the direct and indirect effects of IFNβ on each cell type. Effects of IFNβ on T cell function are mostly likely mediated indirectly through up-regulation of anti-inflammatory mediators, such as interleukin (IL)-10, and down-regulation of pro-inflammatory cytokines, such as IL-17, osteopontin and tumor necrosis factor α (TNFα), secreted from other types of immune cells.

IFNβ has also been implicated in acting at the BBB, impeding migration of leukocytes into the CNS. Matrix metalloproteinases (MMPs), more specifically MMP-9 and tissue inhibitor of metalloproteinase-1 (TIMP-1), are involved in the degradation and remodeling of the extracellular matrix. IFNβ has been shown to decrease serum levels

Figure 1 Schematic depicting the role of PEG-IFNβ therapy in MS.

Notes: (A) In MS, pro-inflammatory cytokines stimulate CD4+ cells to proliferate and differentiate into Th1 and Th17 effector cells. Activated T cells express VLA-4, which interacts with VCAM-1 on endothelial cells, to facilitate crossing the BBB. In the CNS, auto-reactive T cells and macrophages result in damage to the myelin sheath, axons and neurons. Inflammatory demyelinating lesions result in the clinical presentation of MS. (B) IFNβ is conjugated to PEG to increase the molecule’s serum concentration and half-life. Proposed actions of IFNβ include modulating cytokine milieu to favor anti-inflammatory pathways, which inhibits expansion of Th1/Th17 and promotes expansion of Th2 cells. Down-regulation of VLA-4 and inhibition of MMP-9 reduce migration of activated T cells into CNS. (C) Linking of anti-VCAM-1 antibodies to the PEG tail may enhance IFNβ anti-inflammatory actions by 1) blocking interaction of leukocytes expressing VLA-4 with VCAM-1 and 2) increasing local concentration of PEG-IFNβ at BBB.

Abbreviations: BBB, blood–brain barrier; CNS, central nervous system; IFNβ, interferon beta; M, macrophage; MMP, matrix metalloproteinase; MS, multiple sclerosis; PEG, polyethylene glycol; PEG-IFNβ, pegylated interferon β1; TIMP-1, tissue inhibitor of metalloproteinase-1; VCAM-1, vascular cell adhesion molecule 1; VLA-4, very late activation antigen-4.
of MMP-9 and modulate MMP-9:TIMP-1 ratio, and this was associated with a decrease in the number of new and/or active MRI lesions.81,82 To facilitate crossing the BBB, activated T cells up-regulate adhesion molecules, such as very late activation antigen-4 (VLA-4), which interact with vascular cell adhesion molecule 1 (VCAM-1) receptor expressed by endothelial cells (Figure 1). Evidence suggests that administration of IFNβ down-regulates expression of VLA-4/α4 integrin, thereby inhibiting lymphocyte migration into the CNS.83–85 Together, these mechanisms reduce the number of pro-inflammatory immune cells in circulation and suppress the ability of activated leukocytes to enter the CNS. In addition to immunomodulatory effects, IFNβ treatment has been associated with increased expression of neurotrophic factors,86–88 which may convey cytoprotective effects.

Clinical trials

The Prevention of Relapses and Disability by Interferon beta-1a Subcutaneously in Multiple Sclerosis (PRISMS) study23,89,90 was pivotal multi-centered, randomized, double-blind, placebo-controlled clinical trial investigating the benefit of SC IFNβ-1a administration QW for RRMS (Table 2). Participants were randomized to either 22 or 44 µg or placebo groups with a primary outcome of number of relapses during the 2-year study period.23 The number of relapses was lower in both intervention groups compared to placebo: 27% (95% confidence interval [95% CI] 14–39) reduction for the 22 µg dose (1.82 vs 2.56) and 33% (95% CI 21–44) reduction for the 44 µg dose (1.73 vs 2.56) (Table 3). This included a delay in the time to relapse and a decreased number of severe relapses, steroid courses and hospitalizations with IFNβ-1a treatment. Monitoring of disease activity with MRI81,82 showed a corresponding decrease in the number of Gd-enhancing T1 lesions, number of active T2 lesions and reduction in burden of disease (T2-weighted). Participants receiving placebo showed a 10.9% increase in total lesion volume compared to a 1.2% decrease for the 22 µg intervention and 3.8% decrease for the 44 µg intervention. After 4 years, IFNβ-1a treatment continued to reduce ARR (0.90 in year 1 vs 0.44 in year 4 for high-dose group) and improve MRI outcomes.90 Furthermore, both 4-year treatment groups showed favorable outcomes compared to the delay-treatment, crossover groups. Follow-up analyses at both 891 and 15 years56 are indicative of long-term benefit of IFNβ-1a therapy on disease course, favoring early treatment intervention, higher dosages and longer exposure times.

Following the PRISMS study, head-to-head trials further investigated the efficacy of different IFNβ formulations and dosage in the Independent Comparison of Interferon (INCOMIN) study31 and Evidence of Interferon Dose-response-European North American Comparative Efficacy (EVIDENCE) study.32 The INCOMIN trial31 compared 250 µg IFNβ-1b SC injections QAD with 30 µg IFNβ-1a IM injections QW over 2 years (Table 2). The primary outcome of the proportion of patients remaining relapse free favored IFNβ-1b therapy (49%) over IFNβ-1a therapy (33%); this was also reflected by a 29% reduction in the ARR (0.5 for IFNβ-1b vs 0.7 for IFNβ-1a). For MRI outcomes, IFNβ-1b SC therapy increased the proportion of patients who remained free from Gd-enhancing T1 lesions or new T2 lesions compared to IFNβ-1a. The burden of disease for participants receiving IFNβ-1b decreased 2.8% whereas IFNβ-1a increased 11.7%. However, due to multiple variables in treatment regimen, it is difficult to ascertain whether improved outcome relates to difference in formulation, dosage, frequency or route of administration.

The EVIDENCE trial32 compared IFNβ-1a treatment at a dosage of 44 µg administered by SC injections TIW (TIW) with a dosage of 30 µg administered by IM injections QW over 1 year (Table 2). The primary outcome was the proportion of patients remaining relapse free, which favored 44 µg SC TIW therapy (56%) over 30 µg IM QW therapy (48%). There was a 17% reduction in ARR in the 44 µg SC TIW group (0.54) compared to the 30 µg IM QW group (0.65), and the mean number of active T2 lesions was also reduced by 36%. Thus, both the IFNβ-1b SC (cumulative dose 28 MIU/week) in the INCOMIN study and the IFNβ-1a SC (cumulative dose 36 MIU/week) in the EVIDENCE trial showed greater efficacy than IFNβ-1a IM (cumulative dose 6 MIU/week). Pharmacokinetic studies indicate that the bioavailability of IFNβ does not appear to differ substantially between SC and IM administration.92 Taken together, data from the PRISMS, INCOMIN and EVIDENCE trials demonstrated that higher, more frequent dosing of IFNβ improve patient outcomes.

Therapeutic considerations

Safety profile

IFNs are naturally occurring cytokines and generally well tolerated. The PRISMS study23 reported common adverse events of IFNβ-1a treatment to include injection-site reactions (redness, swelling), flu-like symptoms, fever, headache and myalgia. However, flu-like symptoms were also commonly reported in placebo group (24% vs 25% and 27% in 22 and 44 µg treatment groups, respectively). Most injection-site reactions were mild, with only eight incidences of skin necrosis (>150,000 injections). Less common, but serious, adverse events include decreased numbers of white blood cells and platelets and elevated liver enzymes. Similar safety
profiles were reported in 4-year follow-up studies. Over 4 years, there were three deaths reported none of which were related to the treatment.90,92

There were initially reports of IFNβ therapy causing an increase in the incidence of depression. Given the neurologic pathology of MS and its chronic progressive nature, the estimated lifetime prevalence of major depression in MS is as high as 50%.93,94 With such a high comorbidity rate of depression among MS patients,11 it is difficult to definitively link IFNβ therapy with an increased risk of depression. There was no significant difference among treatment groups in the PRISMS trial; depression was reported by 28% of patients receiving placebo, 21% of patients receiving 22 µg of IFNβ and 24% of patients receiving 44 µg of IFNβ.23 During the study, one patient in the placebo group committed suicide and three patients in each group reported attempting suicide or

Table 3 Comparison of currently available data on interferon β-1a and pegylated interferon β-1a

<table>
<thead>
<tr>
<th></th>
<th>IFNβ-1a</th>
<th></th>
<th>PEG-IFNβ-1a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administration</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Placebo SC; TIW</td>
<td>22 µg</td>
<td>44 µg</td>
<td>Placebo SC; 125 µg</td>
</tr>
<tr>
<td>Placebo Q2W</td>
<td></td>
<td></td>
<td>Q2W SC; Q2W</td>
</tr>
<tr>
<td>Number of patients enrolled</td>
<td>187 (170)</td>
<td>189 (167)</td>
<td>184 (165)</td>
</tr>
<tr>
<td>Number of patients enrolled</td>
<td>500 (456)</td>
<td>512 (438)</td>
<td>500 (438)</td>
</tr>
<tr>
<td>% Completed treatment</td>
<td>91</td>
<td>88</td>
<td>90</td>
</tr>
<tr>
<td>Clinical outcomes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relapse rateb</td>
<td>2.56</td>
<td>1.82</td>
<td>1.73</td>
</tr>
<tr>
<td>% reduction of relapse rate vs placebo</td>
<td>–</td>
<td>27</td>
<td>33</td>
</tr>
<tr>
<td>% relapse free (1 year)</td>
<td>22</td>
<td>37</td>
<td>45</td>
</tr>
<tr>
<td>Disability progressionc</td>
<td>0.48</td>
<td>0.23</td>
<td>0.24</td>
</tr>
<tr>
<td>MRI outcomes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Burden of disease4</td>
<td>10.9%</td>
<td>–1.2%</td>
<td>–3.8%</td>
</tr>
<tr>
<td>T2 new/enlarging lesions</td>
<td>4.5</td>
<td>1.3</td>
<td>0</td>
</tr>
<tr>
<td>T1 Gd-enhancing lesions</td>
<td>8.0</td>
<td>1.4</td>
<td>1.3</td>
</tr>
<tr>
<td>New active lesionsd</td>
<td>10.6</td>
<td>2.1</td>
<td>1.3</td>
</tr>
<tr>
<td>NAbs</td>
<td>–</td>
<td>Anti-IFN: 23.8%</td>
<td>Anti-IFN: 12.5%</td>
</tr>
<tr>
<td>Adverse events (%)f</td>
<td>Injection-site reactions</td>
<td>22</td>
<td>61</td>
</tr>
<tr>
<td>Influenza-like illness</td>
<td>24</td>
<td>25</td>
<td>27</td>
</tr>
<tr>
<td>Headache</td>
<td>44</td>
<td>47</td>
<td>45</td>
</tr>
<tr>
<td>Fatigue</td>
<td>16</td>
<td>14</td>
<td>19</td>
</tr>
<tr>
<td>Myalgia</td>
<td>8</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>Fever</td>
<td>6</td>
<td>13</td>
<td>12</td>
</tr>
<tr>
<td>Abnormal blood cell counts</td>
<td>Leukopenia</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Lymphopenia</td>
<td>4</td>
<td>5</td>
<td>13</td>
</tr>
<tr>
<td>Elevated liver enzymes</td>
<td>Alanine aminotransferase</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Aspartate aminotransferase</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Adverse events resulting in discontinuation</td>
<td>1</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Pharmacokineticsg</td>
<td>AUC</td>
<td>12 IU·h/mL</td>
<td>71.6 IU·h/mL</td>
</tr>
<tr>
<td>Cmax</td>
<td>–</td>
<td>1.3 IU/mL</td>
<td>12.8 IU/mL</td>
</tr>
<tr>
<td>Tmax (h)</td>
<td>1–2</td>
<td>0.25</td>
<td>35.9</td>
</tr>
<tr>
<td>half-life (h)</td>
<td>–</td>
<td>n.a.</td>
<td>12.8</td>
</tr>
</tbody>
</table>

Notes: Comparison of placebo-controlled studies; no head-to-head trials have directly compared IFNβ-1a to PEG-IFNβ-1a. *Defined as number of relapses over 2-year study period (PRISMS) or ARR at 48 weeks (ADVANCE). Defined as change in EDSS over duration of study (PRISMS) or proportion of patients with 12-week sustained progression in EDSS ≥1.0 (ADVANCE). Defined as change in total in T2 lesion volume from baseline (PRISMS, mm³; ADVANCE, cm³). Defined as the sum of T1 Gd-enhancing and new or newly enlarging T2 lesions (PRISMS, clinically unique; ADVANCE new active). Reported at 2 years.121 PRISMS reported adverse events in first 3 months of therapy and ADVANCE reported adverse events over the full 48 weeks. *Measured over 8 h for 22 µg IFNβ-1a and measured over 168 h for 44 µg IFNβ-1a and 125 µg PEG-IFNβ-1a. Cmax, maximum serum concentration; Tmax, time to reach Cmax; AUC, area under curve; EDSS, Expanded Disability Status Scale; IFN, interferon; Q2W, once every 2 weeks; MRI, magnetic resonance imaging; n.a., not available; NAbs, neutralizing antibodies; PEG, polyethylene glycol; SC, subcutaneous; TIW, three times weekly.
suicidal ideation. Furthermore, no difference in the incidence of depression has been found between patients receiving IFNβ and glatiramer acetate therapy.95

Neutralizing antibodies
Another concern associated with IFNβ-1a therapy is the production of neutralizing antibodies (NAbs). In the PRISMS study, 23.8% of participants receiving the 22 µg dose and 12.5% of participants receiving the 44 µg dose were positive for NAbs but concluded that NAbs had no impact on the mean relapse rate in either intervention.23 The INCOMIN study reported more frequent production of NAbs with IFNβ-1b (30%) than with IFNβ-1a (7%) therapy, but again this did not appear to negatively impact treatment efficacy.31 In contrast, the EVIDENCE study with IFNβ-1a reported a higher prevalence of NAbs within the 44 µg SC TIW (26%) compared to the 30 µg IM QW (3%) intervention and noted that NAbs developed earlier among the high-dose intervention.32 Disease activity was significantly greater in participants receiving 44 µg SC TIW who were positive for NAbs compared to those who were negative for NAbs; however, NAb+ve and NAb−ve participants had less MRI activity than their 30 µg IM QW counterparts.

The clinical implications of NAbs in IFNβ therapy remain unclear. High titers of NAbs appear to be related to the formulation, dosing regimen and route of administration.31,32,96–98 NAbs levels often peak within 6–12 months of starting therapy and then decline, with ~10% of patients developing persistent NAbs.98 At persistently high titers, NAbs can reduce biological activity99,100 and negatively impact long-term drug therapy.97,99,101–103 The most recent treatment recommendations provide little consensus on how to approach this issue.21 Current practices include periodic testing of NAb levels, testing for NAbs only when considering switching therapies or opting to base treatment decisions solely on clinical outcomes.

Adherence
Frequent IFNβ administration has been shown more effective for managing RRMS;31,32 however, given that the disease is chronic and progressive, this dosing regimen may not be amenable for many patients. Overall, adherence rates of injectable DMTs requiring frequent administration (i.e., ≥QW) have been estimated at 27–76%,104–110 with decreased adherence associated with an increased risk of relapse.105,106 The most commonly reported reasons for discontinuation were lack of efficacy, tolerability (i.e., adverse effects such as flu-like symptoms and injection-site reactions) and patients’ decision (i.e., both practical issues and mental exhaustion).111–115 Discontinuation due to adverse effects typically occurs within the first year of treatment.114,115 but this can be mitigated by dose titration, prophylactic treatment of flu-like symptoms and injection-site reactions, increased patient education and the use of autoinjectors.116,117 Another viable approach has been drug modification to increase pharmacokinetic profile and prolong bioavailability to reduce frequency of administration, such as the pegylation of IFNβ-1a.44

Pegylated interferon β
Pegylation is the process by which molecules of polyethylene glycol (PEG) are chemically conjugated to a biological product. The addition of PEG increases the size of a macromolecule, generally increasing its solubility, stability and mobility in solution.118,119 Pegylation decreases the rate of renal clearance and may also reduce receptor- or antibody-mediated clearance and proteolytic degradation.44,118 This results in increased exposure, half-life and serum concentrations of the therapeutic agent. Other potential benefits of pegylation are reduced antigenicity and immunogenicity, as PEG could potentially mask recognition of epitopes.44,118 Addition of large PEG molecules can often decrease binding to target through steric hindrance,119 yet the overall goal is to balance pharmacodynamic and pharmacokinetic properties to improve treatment efficacy.118 These attributes are ideal for a biomolecule such as IFNs, which are rapidly cleared without any modifications.95 For example, pegylated forms of IFNα-2a (Pegasys®; Hoffman La Roche) and IFNα-2b (PegIntron®; Schering-Plough) have been used in the management of chronic hepatitis C for over a decade.119,120 The development of PEG-IFNβ-1a, a 20 kDa linear methoxy PEG molecule conjugated to the alpha amino group of the N-terminal amino acid residue of IFNβ, demonstrated a desirable pharmacokinetic and pharmacodynamic profile to decrease the frequency of administration for the management of MS.44

Dosage and administration
PEG-IFNβ-1a is marketed as Plegridy® and currently indicated for the treatment of RRMS. PEG-IFNβ-1a is administered SC every 2 weeks (Q2W) at a dose of 125 µg.

Mechanisms of action
The mechanisms of action of PEG-IFNβ-1a are presumably similar to its parent compound. The N-terminus of IFNβ, which is known not to be critical for its activity, was chosen for the site of attachment.44 Although predicted not to affect ligand-binding interactions, a size-dependent decrease in antiviral activity was observed with increasing size of PEG molecules. As smaller PEG molecules did not convey the desired pharmacokinetic properties, 20 kDa was
chosen for the pegylation of IFNβ-1a. In healthy controls, PEG-IFNβ-1a and IFNβ-1a administration resulted in similar changes in cytokine gene expression favoring an anti-inflammatory profile. To our knowledge, the anti-inflammatory properties of PEG-IFNβ-1a have not yet been directly investigated or reported in clinical trials or animal models of MS.

Clinical trials

To date, there has been one randomized, double-blind, placebo-controlled clinical trial investigating PEG-IFNβ-1a in RRMS. The ADVANCE trial was a 2-year study, consisting of a 48-week placebo-controlled phase and a 48-week crossover phase, comparing the efficacy of 125 µg PEG-IFNβ-1a administered by SC injection Q2W or every 4 weeks (Q4W; Table 2). At 48 weeks, the primary outcome of ARRs showed a benefit for both PEG-IFNβ therapy regimens compared to placebo. The ARRs were 0.256 (95% CI 0.206–0.318) for the Q2W intervention and 0.288 (95% CI 0.234–0.355) for the Q4W intervention compared to 0.397 for placebo (95% CI 0.328–0.481), corresponding to a 36% and 28% reduction in the Q2W and Q4W, respectively. MRI outcomes showed a decrease in the number of new or newly enlarging T2 lesions in both PEG-IFNβ treatment groups but only a significant decrease in the number of Gd-enhancing and T1 hypointense lesions in the Q2W group compared to placebo. Total T2 lesion volume increased in the placebo group by 0.77 cm³ and Q4W treatment group by 0.06 cm³ and decreased in the Q2W treatment group by 0.26 cm³. The proportion of patients achieving “no evidence of disease activity” (NEDA), defined as absence of both clinical and MRI disease activity, was 33.9% in the PEG-IFNβ Q2W, 21.5% in the PEG-IFNβ Q4W and 15.1% in the placebo group. These data demonstrate a benefit of both PEG-IFNβ treatments but suggest an advantage of a more frequent dosing regimen to minimize disease activity.

Upon completion of the first year, participants receiving placebo were re-randomized to one of the treatment interventions and participants already receiving drug intervention remained on the same dosing regimen. Both continuous intervention groups showed a reduction in the ARR compared to the corresponding delayed-treatment groups, 37% reduction and 17% reduction in the Q2W and Q4W dosing, respectively. The ARR decreased among participants receiving continuous PEG-IFNβ Q2W from 0.230 (95% CI 0.183–0.291) to 0.178 (95% CI 0.136–0.233), while the ARR was roughly maintained among participants receiving continuous PEG-IFNβ Q4W (0.286 [95% CI 0.231–0.355] and 0.291 [95% CI 0.231–0.368]). Also, the number of new or newly enlarging T2 lesions continued to decline for both the continuous Q2W and Q4W groups. When directly comparing the two dosing regimens, there was a 24% reduction in ARR and 60% reduction in the number of new or newly enhancing T2 lesions in the Q2W compared to the Q4W. Subgroup analysis indicated that the efficacy of PEG-IFNβ was similar across different populations of RRMS patients. A recent preliminary report from the ATTAIN study, an extension of the ADVANCE trial, indicates that the efficacy of each treatment was maintained over 3 years. This suggests, similar to other IFNβ formulations, that early intervention, higher cumulative dosage and increased exposure time are advantageous.

Therapeutic considerations

Safety profile

Reported side effects of PEG-IFNβ were similar to those previously reported for both SC and IM injections of IFNβ. These included mild-to-moderate adverse events such as injection-site reactions, influenza-like illness, fever, chills, headache and myalgia. In year 1, the incidence of discontinuation of the study due to adverse events was 6% in both treatment groups and 1% in the placebo group, the most commonly reported reason being influenza-like illness. The rate of severe adverse events was similar among the three study groups: 11% in the placebo, 18% for the every 2-week intervention and 16% for the every 4-week intervention. Participants in both intervention groups had decreased number of blood cells and elevated liver enzymes, but neither was determined to be clinically significant and the majority returned to normal ranges within 2 years. The incidence of abnormal white blood cell counts remained low (≤10% of participants) across both intervention groups. Over the 2-year study, nine deaths occurred; however, an independent safety-monitoring board reported that these events were not likely related to the study drug and did not change the risk–benefit profile of PEG-IFNβ. A 3-year follow-up from the ATTAIN study indicates that PEG-IFN continues to show a similar safety profile. As with other pegylated pharmaceuticals, adverse side effects are associated primarily with the active drug not the PEG moiety.

Neutralizing antibodies

As stated previously, traditional SC IFNβ-1a therapy can result in persistently high levels of NAbs (~10% of patients), which may negatively impact the treatment efficacy. Development of IFNβ antibodies was <1% in both interventions, whereas development of antibodies against PEG was reported at 6% in Q2W and 8% in Q4W interventions. The appearance of NAbs was determined not to impact efficacy or safety.
of treatment, but due to low rate of incidence in this study, data should be interpreted with caution.126

Adherence
The use of PEG-IFNβ-1a has been estimated to reduce the number of injections by >90% compared to other first-line therapies.37 In the ADVANCE study, 88% of the participants completed the first year25 and 90% of continuing patients completed the second year.122 Tolerability and adverse events, such as flu-like symptoms and injection-site reactions, were still major factors leading to discontinuation; however, management strategies similar to standard IFN therapies can be used to mitigate impact.127 Adherence to treatment, defined by the number of doses received divided by the number of doses expected to receive, was >99% in each group.25 It should be noted that adherence in controlled trials is usually greater than in a clinical setting.110 While reduced frequency of administration is expected to increase adherence,44,45,47,49 this will need to be further evaluated as PEG-IFN therapy is integrated into clinical practice.

Interferon β versus pegylated interferon β
A comparison of the efficacy, safety profile and pharmacokinetics data for PEG-IFNβ-1a and its parent compound IFNβ-1a is reported in Table 3. A considerable amount of data are available regarding the pharmacokinetic properties of different IFNβ formulations, dosages and routes of administration; the only factor that substantially alters the pharmacokinetic profile is pegylation.62 PEG-IFNβ-1a administration by IM injection showed a fourfold increase in drug exposure, assessed by the area under the curve (AUC), compared to an equal dosage of IFNβ-1a.121 PEG-IFNβ and IFNβ administration both resulted in altered cytokine expression profiles, but the pharmacological response with PEG-IFNβ had a more rapid onset and was sustained for a longer period.121 Only one study has done a direct comparison between standard therapeutic doses of IFNβ-1a and PEG-IFNβ-1a administered by SC injection over the course of 2 weeks.123 When healthy participants were evaluated for accumulative drug exposure with six doses of 44 µg IFNβ-1a SC compared to a single dose of 125 µg PEG-IFNβ-1a, the AUC was found to be 60% higher for the PEG-IFNβ dosage regime. This corresponds to approximately fourfold increase in Cmax, approximately sixfold increase in Tmax and approximately twofold increase in half-life. Thus, pegylation of the IFNβ-1a molecule results in an increased serum concentration and greater drug exposure compared to the traditional IFNβ-1a therapy. The tolerability of PEG-IFNβ was favorable with a lower incidence of adverse events compared to the IFNβ dosing regimen.128 This was presumably due to the need for less frequent injections with PEG-IFNβ.

To date, there are no published head-to-head clinical trials comparing PEG-IFNβ to the alternative formulations of IFNβ or any other DMT. In the PRISMS study23 and the ADVANCE study,25 similar efficacy was observed between IFNβ-1a and PEG-IFNβ-1a interventions when comparing % relative reduction in relapse rate. Both studies also reported favorable MRI outcomes, including a decrease in disease activity (T1- and/or T2-weighted) and burden of disease (total lesion volume) with treatment. However, due to different methodology and reporting measures, direct comparisons of study outcomes are difficult. Although meta-analysis of efficacy and safety profiles37 and cost-effectiveness analysis29 tend to favor PEG-IFNβ-1a, these are relatively premature. Full results from the ATTAIN study will provide further data on the long-term efficacy on safety of PEG-IFNβ therapy. In addition to clinical trial data, longitudinal studies with IFNβ-1a treatment also suggest positive effects on cognitive function130–132 and long-term benefits of disease progression,55,90 but these types of data sets are not yet available for PEG-IFNβ-1a. Ultimately, head-to-head clinical trials and observational studies from clinical practice will continue to inform us about the role of PEG-IFNβ in MS disease management.

What are future therapeutic possibilities for PEG-IFN?
The conjugation of PEG to IFNβ-1a has expanded the therapeutic options for the management of MS. By prolonging the half-life of IFNβ-1a, increasing its exposure and decreasing its elimination,41,62 this novel formulation provides a safe and effective first-line therapy with a decreased frequency of administration. This new PEG-IFNβ formulation has also created a platform upon which other immunomodulatory molecules may be added (Figure 1). This may serve to enhance the efficacy of IFNβ by 1) providing opportunity to develop combination therapies and 2) targeting the IFNβ to specific locations within the body. For example, by specifically targeting VCAM-1, expressed on activated endothelial cells, the anti-VCAM-PEG-IFN molecule could more effectively block activated T cells from crossing the BBB. Theoretically, this would also increase the local concentration of IFNβ to the BBB possibly directing its immunomodulatory effects to this compartment and reduce non-specific systemic effects. Whether these hypothetical modifications would enhance IFN activity has yet to be determined. However, if successful it may lead to targeted delivery of IFNβ with...
potentially greater efficacy and a reduction in frequency of side effects.

Conclusion

IFNβ, a naturally occurring cytokine, was the first DMT approved for MS therapy. Clinical evidence has consistently demonstrated a decrease in relapse rates and MRI activity; however, the inherent physical properties require it to be frequently administered in order to maintain therapeutic concentrations. The conjugation of PEG molecules to IFNβ alters the pharmacokinetic properties of the parent drug, thereby decreasing the frequency of administration. This also provides a novel platform for combination therapy approach.

ADVANCE is currently the only clinical trial with published results on the efficacy of PEG-IFNβ-1a compared to placebo in the treatment of RRMS; to date, there are no head-to-head trials comparing PEG-IFNβ-1a to other approved DMTs. Furthermore, there are no treatment guidelines for practitioners that include initiating or switching to PEG-IFNβ therapy. Here, we have made an effort to compile currently available information regarding IFNβ therapy options with respect to various formulations. All available data suggest that the efficacy and safety profile of PEG-IFNβ-1a is comparable to other IFNβ therapies, with the added benefit of a decreased dosing schedule. This provides patients and practitioners with a viable alternate first-line therapy in the treatment of MS.

Acknowledgments

Funding from Canadian Institutes of Health Research, Saskatchewan Health Research Foundation and Natural Sciences and Engineering Research Council of Canada is gratefully acknowledged. KLF is supported by the endMS Postdoctoral Fellowship from the Multiple Sclerosis Society of Canada. We thank Dr. Katherine Knox for review of an earlier draft of the manuscript. This manuscript is dedicated to our colleague Dr. J. Ronald Doucette who passed away last year.

Disclosure

The authors report no conflicts of interest in this work.

References

