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Purpose: This study aimed to investigate the regional spontaneous brain activity changes in 

primary dysmenorrhea (PD) patients in different phases of the menstrual cycle by regional 

homogeneity (ReHo) analysis.

Patients and methods: Thirty-three PD patients and 32 healthy controls (HCs) separately 

received resting-state functional magnetic resonance imaging during menstrual phase and 

follicular phase (non-menstrual phase). Cox retrospective symptom scale (RSS), Self-Rating 

Anxiety Scale (SAS) and Self-Rating Depression Scale (SDS) were applied to assess related 

symptoms and emotions.

Results: There was no significant difference between the two groups in demographic data. The 

PD patients obtained higher RSS score, SAS score and SDS score than HCs. Compared with 

HCs, the ReHo values of the PD patients were increased in left midbrain and hippocampus, right 

posterior cingulate cortex (PCC), insula and middle temporal cortex (MTC) and decreased in 

left dorsolateral prefrontal cortex and right medial prefrontal cortex (mPFC) in menstrual phase. 

In non-menstrual phase, enhanced ReHo values were found in bilateral S1 and precuneus, left 

S2 and MTC, and reduced ReHo values were observed in left mPFC and orbital frontal cortex. 

RSS score positively correlated with ReHo values of midbrain and negatively correlated with 

mPFC and PCC.

Conclusion: Our results suggested that PD is accompanied by dynamic regional spontaneous 

activity changes across the menstrual cycle, and the altered regions were involved in descending 

pain modulation, default mode network and sensory modulation. These abnormal activations 

might contribute to maintain the menstrual pain.

Keywords: primary dysmenorrhea, resting-state functional magnetic resonance imaging, 

regional homogeneity, spontaneous brain activity, descending pain modulation

Introduction
Primary dysmenorrhea (PD), which refers to lower abdominal pain or cramps occurring 

just before and/or during the menstrual period in the absence of evident pathology, is 

regarded as one of the most frequent gynecological complaints mainly experienced 

by adolescents.1 A recent review reported that dysmenorrhea prevalence varied 

between 45% and 95% among women of reproductive age, and 10% and 25% of the 

women suffered severe symptoms.2 The cramps are often accompanied by low back 

pain, nausea, vomiting and diarrhea, resulting in a negative impact on quality of life 

and even short-term absence from school or work in very severe cases.2 It has been 

demonstrated that increased secretion of peripheral vasoactive prostanoid was one of 
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the key factors of pathogenesis in PD, which directly gave 

rise to enhanced frequency of uterine contraction, decreased 

myometrial blood flow and further uterine hypoxia and dys-

menorrhea.2 In recent years, the central disorder has been 

investigated and abnormal variations in brain structure and 

function were found in moderate-to-severe PD patients.3–10

According to the studies, the microstructure of white 

matter, gray matter (GM) volumes and cortical thickness 

were all altered in PD patients compared with healthy con-

trols (HCs), and the disorders were mainly related to pain 

transmission and modulation, sensory processing and affect 

regulation.4,7,10 Functional neuroimaging studies reported 

that hypermetabolism was observed in the orbitofrontal 

cortex (OFC), medial prefrontal cortex (mPFC) and ventral 

posterior thalamus in PD patients, which suggested that the 

disinhibition of thalamo-orbitofrontal-prefrontal networks 

might partly underlie the cramps and hyperalgesia of PD.3,5 

The patients also revealed abnormal pain processing when 

suffering experimental stimuli.5 The resting-state studies 

found that the functional connectivity of periaqueductal gray 

(PAG) and default mode network (DMN) was maladaptive/

adaptive changed in PD patients.8,9 However, few studies 

focused on the spontaneous brain activity of the patients. 

On the basis of our previous studies and other findings, we 

will define all the aberrant brain areas as regions of inter-

est (ROIs) and then detect the corresponding spontaneous 

activities in PD patients.

Regional homogeneity (ReHo), based on the hypothesis 

that neighboring voxels within a functional brain region 

showed a temporal similarity that could be modulated in dif-

ferent states, is proved to be an effective approach to evaluat-

ing synchronization of resting-state blood-oxygenation level 

dependent (BOLD) signals according to Kendall’s coefficient 

concordance (KCC).11,12 ReHo analysis has been applied to 

explore the brain functional changes in many neurologi-

cal and psychiatric disorders, gastrointestinal diseases and 

chronic pain and gives a better understanding of the corre-

sponding brain mechanisms.13–17 Here, we employed ReHo 

approach to identify regional coherence of spontaneous brain 

activity in PD patients.

Considering the state alterations of GM volumes and 

the functional connectivity in PD patients,6,8 the spontane-

ous activity might also be varied with the menstrual cycle. 

Therefore, we hypothesized that the ReHo values might 

dynamically change with the phases of menstrual cycle in 

women with PD compared with HCs, and the aberrant regions 

might be included in the regions involved in the descending 

pain modulation pathways, DMN and sensory regulation.

Materials and methods
Subjects
Thirty-four right-handed PD patients (21.5±1.2 years) and 

34 age-matched right-handed HC females (22.2±1.7 years) 

were enrolled. All the subjects were recruited from the col-

lege students of Chengdu University of Traditional Chinese 

Medicine (TCM) and Sichuan University. The inclusion 

criteria of PD were primary dysmenorrhea (diagnosed by the 

details of menstrual questionnaires and pelvic ultrasound); 

regular menstrual cycle (28±3 days) and normal duration 

of menstruation (3–7 days); moderate or severe abdominal 

cramp pain (>4 points on a visual analog scale in which 0 

means no pain and 10 means the worst pain); suffered an 

attack at least 4 months in the past 6 months; nulliparous 

and nonsmoker. The inclusion criteria for HC were same 

to the PD patients except menstrual pain. The exclusion 

criteria for all the subjects were secondary dysmenor-

rhea induced by endometriosis or pelvic inflammatory 

disease (excluded by pelvic ultrasound); recurrent pelvic 

or lower abdominal pain; gastrointestinal diseases includ-

ing recurrent gastritis, gastric or duodenal ulcer; chronic 

pain; pregnant or intending to become pregnant during the 

course of the trial; history or evidence of serious diseases, 

neurological or psychiatric diseases; receiving nonsteroidal 

anti-inflammatory drugs (NSAIDs) (including aspirin) or 

analgesics or alcohol within 24 h leading up to magnetic 

resonance imaging (MRI) scanning; receiving oral contra-

ceptives within 6 months prior to the study and any contra-

indication of MRI scanning. This project was approved by 

the West China Hospital Research Ethics Committee, and 

written informed consent was obtained from each subject.

Psychological assessment
All subjects underwent two functional MRI (fMRI) scan-

ning. One scan was performed on the 1st–3rd day of the 

menstrual cycle (menstrual phase), while the other scan 

was performed on the 10th–12th day of the menstrual 

cycle (follicular phase). The scan order was randomized. 

Short-form McGill pain questionnaire (SF-MPQ) and Cox 

retrospective symptom scale (RSS)18 were used to evaluate 

the menstrual pain and associated symptoms experienced 

by each PD patient retrospectively in the past 3 months. 

SF-MPQ was also completed only before menstrual phase 

scan, and the questionnaire was replaced with an oral ques-

tion by supposing there was no pain before follicular phase 

scan. Self-Rating Anxiety Scale (SAS) and Self-Rating 

Depression Scale (SDS) were applied to assess the subject’s 

anxiety and depression level prior to each scan.
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Image acquisition
A standard birdcage head coil of a 3 T Siemens scanner 

(Allegra, Siemens Medical System) was used to collect 

imaging data at the Huaxi MR Research Center, West China 

Hospital of Sichuan University, Chengdu, China. Restrain-

ing foam pads were accompanied to minimize head motion 

and diminish the scanner noise. During the scan, subjects 

were requested to close the eyes and keep still in the supine 

position. In follicular phase, functional images were scanned 

using a gradient-echo echo planar imaging sequence (repeti-

tion time [TR] = 2000 ms; echo time [TE] = 30 ms; flip angle 

= 90°; slices = 30; field of view [FOV] = 240 mm × 240 mm; 

in-plane matrix resolution = 64 × 64; in-plane resolution = 

3.75 mm × 3.75 mm). After that, high-resolution T1-weighted 

images were acquired (TR = 1900 ms; TE = 2.26 ms; flip 

angle = 9°; slices = 176; slices thickness = 1 mm, FOV = 

256 mm × 256 mm; data matrix = 256 × 256; in-plane reso-

lution = 1 mm × 1 mm). In menstrual phase, only functional 

images were obtained.

Imaging data preprocessing and analysis
Preprocessing of the resting-state fMRI data was performed 

using SPM8 software package19 and composed of the 

following steps. Abandoned the first five images of each 

functional time series for the longitudinal magnetization to 

reach equilibrium; slice-timing adjusted and realigned to the 

first volume; motion-corrected by estimating six parameters 

capturing translation and angular rotation relative to the 

first volume (2 mm or 2 degrees rotation was discarded); 

normalized to Montreal Neurologic Institute (MNI) space 

using the normalization parameters estimated by T1 struc-

tural image unified segmentation and re-sampled to 3 mm 

voxels; removed estimated motion parameters, linear drift 

and average BOLD signals in ventricular and white matter 

regions through linear regression and reduced the effect of 

low-frequency drifts and high-frequency noise by temporal 

band pass filtering (0.01–0.08 Hz).

Individual ReHo maps were generated by calculating 

KCC, used to measure the correlation of the time series of a 

given voxel with the time series of its 26 nearest neighbors, 

within a prepared mask including the following regions: 

superior frontal cortex, middle frontal cortex (MFC), medial 

frontal cortex, inferior frontal cortex (IFC), OFC, precentral, 

primary somatosensory area (S1), secondary somatosen-

sory area (S2), inferior parietal cortex, cuneus, precuneus 

(Pcu), middle temporal cortex (MTC), inferior temporal 

cortex (ITC), insula, anterior and posterior cingulate cortex 

(PCC), thalamus, basal ganglia, hippocampus and brainstem. 

When the center cube was on the edge of the mask, we only 

calculated ReHo for a vessel if all the remaining nearest 

boxes were within the mask. For each participant, the KCC 

map was normalized by dividing KCC in each voxel by the 

mean KCC of the mask. At last, smooth was applied with a 

three-dimensional (3D) Gaussian kernel (full width at half 

maximum [FWHM] = 6 mm) to reduce noise and residual 

differences in gyral anatomy. All of these procedures were 

performed using DPARSF software.20

Statistical analysis
Two independent samples t-test were used to examine the 

consistency of age, body mass index, the onset of menses, 

length of menstrual cycle and menstrual phase and the dif-

ferences of psychological scores (SF-MPQ, RSS, SAS and 

SDS) between PD patients and HC by using SPSS 20.0. All 

p-values were two-sided, and p<0.05 was considered statisti-

cally significant.

In the group analysis, age was regressed out as covariate. 

Statistical maps were evaluated to determine the differences 

in ReHo values with a significance voxel level of p<0.05 

(false discovery rate [FDR] corrected) by using permutation 

test (SnPM13)21 in the following contrasts: 1) group differ-

ences between PD and HC in both menstrual phase [PD
(mens)

 

− HC
(mens)

] and follicular phase (non-menstrual phase) [PD
(non)

 

− HC
(non)

] were examined separately with two-sample t-test. 

2) The interaction between phase and group [PD
(mens-non)

 − 

HC
(mens-non)

] was examined by repeating (mens-non) measures 

within and independent measures between groups. Correla-

tion analysis was applied using REST software22 to detect 

the relationship of the ReHo values in the above significant 

areas to duration, RSS, SAS and SDS scores of PD patients. 

The significance level was set at p<0.05 (FDR corrected). 

Considering that half of the PD patients experienced no pain 

during the scanning in menstrual phase, here we chose RSS 

as the symptom score instead of SF-MPQ.

Results
Demographic data and psychological 
information
Thirty-three PD patients and 32 HC volunteers completed all 

the scans very well. The other three subjects were excluded 

because of significant head motion. There was no significant 

difference between the two groups in age, body mass index, 

the onset of menses, length of menstrual cycle and menstrual 

phase. Retrospective SF-MPQ, RSS scores and SF-MPQ 

scores of patients in menstrual phase were remarkably higher 

than HC group. The patients also obtained higher SAS and 
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SDS scores both in menstrual phase and in non-menstrual 

phase than HCs (Table 1).

Regional spontaneous activity changes
In menstrual phase, the ReHo values of the PD patients 

significantly increased in left midbrain and hippocam-

pus, right PCC, MTC and insula and decreased in left 

dorsolateral prefrontal cortex (dlPFC) and right mPFC 

(Table  2; Figure  1A). Among these areas, midbrain and 

hippocampus survived the phase and group interaction 

differences (Table 2; Figure 1C). It was worth noting that 

PAG became remarkable during the interaction analysis. The 

other regions did not survive, indicating that these regions 

in the group differences were not statistically significant 

across phases. In non-menstrual phase, enhanced ReHo 

values were found in bilateral S1 and Pcu, left S2 and 

MTC. Reduced ReHo values were observed in left OFC 

and mPFC (Table 2; Figure 1B). Furthermore, the results 

of the interaction displayed three more areas that did not 

exist in either phase, including left pons, ITC and right 

temporal pole (TP) (Table 1; Figure 1C).

Correlation between ReHo values and 
questionnaire data
The correlations between questionnaire scores and the 

regions that showed significant ReHo value changes during 

group comparisons in both phases were analyzed. During 

menstrual phase, RSS score was positively correlated with 

the ReHo values of midbrain and negatively related to mPFC 

and PCC. In addition, there was a negative correlation 

between the ReHo value of PCC and SAS scores (Figure 2). 

No obvious correlation between questionnaire scores and 

the regions with abnormal ReHo values was detected in 

non-menstrual phase.

Discussion
In this study, we used ReHo analytical method to explore 

the resting-state spontaneous brain activity of PD patients 

in different phases. The present results demonstrated that 

the altered ReHo value regions were varied with the phases 

of menstrual cycle in PD patients, which was corresponding 

with the previous structural and functional neuroimaging 

findings of PD.6,8 The abnormal ReHo value regions were 

mostly involved in the pain modulation network and DMN 

in menstrual phase and sensorimotor processing and DMN 

in non-menstrual phase. Furthermore, midbrain, mPFC and 

PCC were correlated with the clinical symptom scores in PD 

patients, and PCC also exhibited correlation with anxiety 

score.

Abnormal spontaneous activities in 
descending pain modulation pathway
Accumulated evidences indicate that dysregulation in 

descending pain modulation makes a significant contribution 

to the development of chronic pain.23 In this study, increased 

ReHo values were observed in midbrain, which is considered 

as a key role in the endogenous descending pain inhibitory 

system.24 Both animal and human studies have proved that 

the PAG is rich in opioid receptors and manifests a notable 

analgesic effect.24,25 Various chronic pain such as migraine, 

chronic low back pain and fibromyalgia presented GM altera-

tions or abnormal functional connectivity in PAG, and the 

dysfunction might be a potential pathogenic mechanism of 

chronic pain.26–29 An acupuncture research further supported 

this point based on the results that the functional connectivity 

between PAG and rostral ACC in migraine patients restor-

atively increased after treatment and the recovery was sig-

nificantly associated with clinical symptom improvement.30 

Previous studies of PD patients have also showed that the 

regional GM volume in midbrain was increased compared 

with HCs, and the functional connectivity of PAG with dlPFC 

and DMN appeared maladaptive decreased.4,8 Similarly, the 

correlation of midbrain and RSS score in our results inferred 

that the symptoms of PD patients were closely related to 

the dysfunction of the midbrain. The survival of PAG dur-

ing interaction analysis revealed its abnormal spontaneous 

activity altered with the menstrual phase.

Table 1 Details of demographic data and menstrual pain-related 
questionnaires information

Demographics PD HC p-Value

Age (years) 21.5±1.2 22.2±1.7 0.063

Body mass index 20.1±1.9 19.5±1.7 0.225

Onset of menses (years) 12.4±1.2 12.8±1.3 0.231

Length of menstrual cycle (days) 28.6±1.6 28.7±1.9 0.760
Length of menstrual phase (days) 3–7 3–7
Duration of dysmenorrhea (years) 6.5±2.6 null
Questionnaires
Retrospective SF-MPQ 13.4±8.7 null

RSS 39.3±22.3 4.0±3.2 0.000

SF-MPQ (days 1–3) 4.6±6.0 0.6±1.5 0.000

SAS (days 1–3) 42.7±9.9 33.4±7.4 0.000

SDS (days 1–3) 44.5±9.7 36.8±11.7 0.005

SAS (days 10–12) 36.3±7.6 31.5±7.8 0.013

SDS (days 10–12) 38.6±11.5 32.5±7.2 0.014

Note: Data presented as mean ± SD.
Abbreviations: PD, primary dysmenorrhea; HC, healthy control; SF-MPQ, short-
form McGill pain questionnaire; RSS, Cox retrospective symptom scale; SAS, Self-
Rating Anxiety Scale; SDS, Self-Rating Depression Scale.
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It had been suggested that dlPFC is another important 

region in descending pain modulation pathway and might 

act as a pain inhibitor during pain processing.31 Insula, 

which showed disordered functional connectivity to PFC in 

chronic pain and intrinsic connectivity with PAG,32,33 was 

also involved in the descending pain modulation.34 A heat 

allodynia study implied that the effect of pain control in 

dlPFC might derive from suppressing the activity of insula, 

midbrain and medial thalamic.35 When painful stimulation 

was controllable, the negative connectivity between dlPFC 

and insula was increased and that could be the downregula-

tion effect of dlPFC to pain-evoked activation.36 In chronic 

pain patients, the abnormal GM structure was found in 

dlPFC and insula,37,38 and the abnormal changes restored in 

accordance with the reduction of pain and physical disability 

after treatment.39 The PD studies have been reported that the 

decreased metabolism was observed in dlPFC and insula3 and 

the cortical thickness of insula was significantly increased;7 

both the regional GM volumes of dlPFC and insula covaried 

negatively with the menstrual pain experience.4 This study 

presented the consistent findings that ReHo values decreased 

in dlPFC and insula in menstrual phase of PD patients. 

Therefore, we suggested that the spontaneous activities of 

PD patients are abnormal in descending pain modulation 

during menstrual phase. DlPFC, insula and midbrain might 

all contribute to the dysregulation.

Abnormal spontaneous activities in DMN
In this study, a majority of ReHo values changed regions 

gathered in DMN, including mPFC, PCC, hippocampus 

and MTC in menstrual phase and mPFC, Pcu and MTC in 

non-menstrual phase. DMN is referred to brain activation of 

subjects when they received no task or pay no attention to 

the present sensory world by using resting-state functional 

MRI.40 It is considered as one of the most important networks 

for pain connectome and plays a significant role in the per-

sistence of pain.41 In chronic pain conditions, the functional 

connectivity within DMN, especially chronic pain hubs PCC/

Pcu and mPFC to other regions, exhibited abnormal enhance-

ment or diminution.42–44 The aberrant functional connectivity 

Table 2 Brain areas with significantly changed ReHo values in PD patients compared with HCs

Contrast Brain regions BA Voxels MNI T value

x y z

The menstrual phase

PD(mens) − HC(mens)
Midbrain L 35 −15 −24 −9 5.18
Hippocampus L 28/35/36 47 −21 −15 −21 5.89
PCC R 31 15 3 −39 45 4.59
MTC R 21 6 60 −57 0 3.7
Insula R 13 11 36 −21 12 3.74
dlPFC L 46/47 26 −39 48 0 −4.62
mPFC R 8/9 28 15 54 30 −3.57

The non-menstrual phase
PD(non) − HC(non)

S1 L 2/3/40 44 −47 −24 56 4.07
R 3/40 24 45 −36 60 3.69

Pcu L 7 10 −9 −75 39 3.57
R 7 8 12 −66 48 3.51

S2 L 40 10 −18 −42 63 3.59
MTC L 21/20 17 −57 3 −33 3.91
OFC L 11/47 12 −36 48 −15 −3.83
mPFC L 6/9 11 −15 54 27 −4.01

The interaction
PD(mens-non) − HC(mens-non)

Hippocampus L 28/35/36 56 −21 −12 −18 −3.85
R 28/34 15 15 3 −24 −4.29

Midbrain L 20 −15 −24 −9 −3.90
R 8 3 −27 −12 −3.00

Pons L 6 −12 −27 −33 −3.20
ITC L 20 7 42 −3 −39 −3.09
TP R 38 9 36 12 −30 −4.11

Abbreviations: ReHo, regional homogeneity; PD, primary dysmenorrhea; HC, healthy control; BA, Brodmann area; MNI, Montreal Neurologic Institute; L, left; PCC, 
posterior cingulate cortex; R, right; MTC, middle temporal cortex; dlPFC, left dorsolateral prefrontal cortex; mPFC, medial prefrontal cortex; S1, primary somatosensory 
area; Pcu, precuneus; S2, secondary somatosensory area; OFC, orbitofrontal cortex; ITC, inferior temporal cortex; TP, temporal pole
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between DMN and other regions such as insula and PAG also 

had been reported.42,44–47 Furthermore, following therapy, the 

restorative reduction of connectivity between the DMN and 

insula correlated positively with diminished clinical pain.46 

Similarly with other chronic pain, a resting-state study of 

PD patients showed hypoconnectivity between ventromedial 

PFC and ACC and hyperconnectivity between ventromedial 

PFC and dorsomedial PFC during both menstrual phase and 

non-menstrual phase.9 Our research found that the spontane-

ous activation of DMN dynamically changed in PD patients 

across the menstrual cycle comparing with HCs, which was 

in keeping with the previous findings. Moreover, the results 

also displayed significant relations between DMN (mPFC 

and PCC) and RSS scores in menstrual phase, and then we 

suggested that DMN might contribute to maintaining the 

cramps in PD patients during menstrual phase.

Abnormal spontaneous activities in other 
sensory regions
OFC was considered as the crucial region in sensory inte-

gration, self-control and emotional expression.48,49 Patients 

presented the corresponding behavioral changes such as 

deficit in recognition of emotional expression following 

OFC lesions.49 The animal study had been proved that 

50

–14 –36 –12

–44

–22 27 –37

–68 –26

46 –2A B C

Figure 1 Significant ReHo value differences between PD group and HC group in menstrual phase and non-menstrual phase and the interaction effects. PD>HC are shown 
as purple. PD<HC are shown as green. (p<0.05, FDR corrected).
Notes: (A) In menstrual phase, ReHo values in PD group increased in left midbrain and hippocampus, right PCC, insula and MTC and decreased in left dlPFC and right mPFC. 
(B) In non-menstrual phase, ReHo values in PD group increased in bilateral S1 and Pcu, left S2 and MTC and decreased in left mPFC and OFC. (C) Significant differences in 
the interactions, including bilateral hippocampus and midbrain, left pons and ITC and right TP.
Abbreviations: ReHO, regional homogeneity; PD, primary dysmenorrhea; HC, healthy control; FDR, false discovery rate; PCC, posterior cingulate cortex; MTC, middle 
temporal cortex; dlPFC, dorsolateral prefrontal cortex; Pcu, precuneus; mPFC, medial prefrontal cortex; OFC, orbitofrontal cortex; ITC, inferior temporal cortex; TP, 
temporal pole.
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the OFC was selectively connected with other prefrontal 

(dlPFC and mPFC) and sensory cortices including olfac-

tory, gustatory, somatosensory, auditory and visual pro-

cessing and the amygdala.50 Furthermore, OFC was found 

to participate in pain modulation.51–53 The irritable bowel 

syndrome patients exhibited enhanced cortical thickness in 

OFC, and the cortical thickening was strongly correlated 

with greater severity of abdominal pain complaints.51 The 

OFC of PD patients also manifested increased cortical 

thickness and hypermetabolism, and the abnormal changes 

were separately correlations with PD durations and pain 

ratings.3,7 In agreement with this, we found the decreased 

ReHo values of OFC in PD patients in non-menstrual phase 

compared with HC group. Meanwhile, the ReHo values of 

S1 and S2 enhanced in non-menstrual phase. The aberrant 

spontaneous activities in OFC, S1 and S2 might implicate 

in hyperalgesia or allodynia in PD patients even in the 

absence of pain.54,55

There are some limitations in this study. It is difficult 

to collect image on time in PD patients when the cramp 

occurring, so about half of the patients did not experience 

noticeable pain during the menstrual phase scanning. We have 

not tested the hormone levels in the study. So the influence 

of the hormone cross group and phase cannot be excluded. 

We evaluated only the regional spontaneous activities in 

this study; brain networks of PD patients will be explored 

in the future.

Conclusion
The imaging data presented here implied that PD is 

accompanied by dynamic regional spontaneous activity 

changes during menstrual phase and non-menstrual phase. 

The abnormal activated regions were basically involved in 

descending pain modulation pathways, DMN and sensory 

processing. Among these regions, midbrains, mPFC and 

PCC were correlated with symptom experience during men-

strual phase. In light of the results, we suggest that abnormal 

activations of descending pain modulation network and 

DMN may have close correlations with the maintenance 

of menstrual pain. It remains to be illuminated the causal 

relationship between these functional changes and the 

repeated regular cramps.
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