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Abstract: Ebola virus (EBOV) is one of the lethal viruses, causing more than 24 epidemic 

outbreaks to date. Despite having available molecular knowledge of this virus, no definite 

vaccine or other remedial agents have been developed yet for the management and avoidance 

of EBOV infections in humans. Disclosing this, the present study described an epitope-based 

peptide vaccine against EBOV, using a combination of B-cell and T-cell epitope predictions, 

followed by molecular docking and molecular dynamics simulation approach. Here, protein 

sequences of all glycoproteins of EBOV were collected and examined via in silico methods 

to determine the most immunogenic protein. From the identified antigenic protein, the 

peptide region ranging from 186 to 220 and the sequence HKEGAFFLY from the positions 

of 154–162 were considered the most potential B-cell and T-cell epitopes, correspondingly. 

Moreover, this peptide (HKEGAFFLY)  interacted with HLA-A*32:15 with the highest bind-

ing energy and stability, and also a good conservancy of 83.85% with maximum population 

coverage. The results imply that the designed epitopes could manifest vigorous enduring 

defensive immunity against EBOV.

Keywords: Ebola virus, epitope, glycoprotein, vaccine design

Introduction
Ebola virus (EBOV) is an antisense-strand RNA virus from the Filoviridae family, 

and it is structurally filamentous.1 Although the initial discovery of EBOV was in 

1976, till now more than 24 epidemics have been reported from Africa, mostly with 

the Zaire species (http://who.int/mediacentre/factsheets/fs103/en/).2–4 The genome of 

EBOV enciphers the seven structural proteins, ie, nucleoprotein (NP), viral structural 

proteins (VP35, VP40, VP30, and VP24), glycoprotein (GP), and RNA-dependent 

RNA polymerase (L).5

Among these, three different versions of glycoprotein are transcribed by the GP 

gene.6–9 Both attachment protein (GP1) and entry/fusion protein (GP2) are expressed 

from the full length of the GP chain, which are synthesized from messenger RNAs 

(mRNAs), containing an additional nontemplated adenosine. The soluble GP (sGP) 

is synthesized from the unedited RNA transcript. On the contrary, small soluble GP 

(ssGP) is translated during this process by adding two additional adenosine  residues.10 

The GPs are expressed virally on the virion surface, which plays a crucial role in 

the catalysis of membrane fusion and amalgamation to host cells. As a result, it is 

considered not only a crucial component for vaccines but also an essential target for 

developing inhibitors and antibodies of attachment and fusion.11–13
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With the advances in genomics, proteomics, and the 

understanding of pathogens, the field of viral vaccine 

preparation has been recently expanded by a most promis-

ing approach, known as epitope-based vaccine design.14 

Epitope represents the negligible immunogenic region of a 

protein sequence, which specifically elicits accurate immune 

responses.15 Various studies recently reported that the vacci-

nation process based on epitope efficiently educes defensive 

immune responses against diverse pathogens.16–19 In this 

context, prediction of epitopes via in silico tools in vaccine 

designing process can significantly minimize the time and 

cost required in the development process.

Thereby, based on the available GP sequences of EBOV, 

this study attempted to design effective epitope-based peptide 

vaccines (T-cell and B-cell epitope) using various in silico 

tools. These results offer new epitope vaccine candidates for 

vaccine development against EBOV.

Materials and methods
The methodologies used for peptide vaccine development 

are shown in Figure 1.

Protein sequence retrieval, evaluation 
analysis, and antigenic protein identification
All available sequences of the GP of EBOV were extracted 

from the UniProt database.20 After that, multiple sequence 

alignment  was performed by using the ClustalW2 tool, and 

a phylogenetic tree was assembled by MEGA 6.021 software. 

And then, VaxiJen v2.022 was used to predict most efficient 

antigenic protein from the available protein sequences. 

Retrieving of sequences of EBOV GP protein

Antigenic protein identification

Multiple sequence alignments

Molecular evaluation

B-cell epitope identification

B-cell epitope

T-cell epitope

3D modeling of common HLA
molecule and epitope

Docking and binding energy estimination

Top scored eiptope subjected to
100 ns MD simulation
**RMSF
**RMSD
**Hydrogen bond occupency analysis

Secquence, having highest
 vaxijen score

Prediction of B cell epitope, using-**T cell epitope prediction by proteasomal
C terminal cleavage, TAP transport efficiency
and MHC class 1 binding
**Epitopes with IC50 value less than 50 for
their binding to MHC class 1 molecule from
IEDB analysis along with binding to highest
number of alleles in both analyses were
chosen
**Epitope conservancy analysis
**Population coverage analysis

**Kolaskar and Tongaonkar antigenicity scale48

**Emini surface accessibility prediction47

**Karplus and Schulz flexibility prediction49

**Bepipred linear epitope prediction50

**Chou and Fasman beta turn prediction52

Vaxijen analysis with a
threshold score of >0.5

Secquence, having highest
 vaxijen score

Phylogenetic tree construction

Vaxijen analysis with a
threshold score of >0.5

Figure 1 Graphical depiction of the methodologies used in peptide vaccine design.
Abbreviations:  EBOV, Ebola virus; GP, glycoprotein; RMSF, root mean square function; RMSD, root mean square deviation; MD, molecular dynamics; HLA, human 
leukocyte antigen; IEDB, immune epitope database.
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T-cell epitope identification and 
conservancy analysis
T-cell identification was done using the NetCTL 1.2 server,22 

setting thresholds at 0.5, 0.89, and 0.94 for sensitivity and 

accuracy. MHC-I binding of the identified epitopes and epi-

tope conservancy were then calculated using tools from the 

immune epitope database (IEDB).24–26 These tools calculate the 

half maximal inhibitory concentration (IC
50

) value of epitope 

binding to human leukocyte antigen (HLA) molecules using 

the stabilized matrix base method.26,27 The restriction for epi-

tope identification was set to 12 MHC-I supertypes. Prior to 

the run, all the alleles were considered, and the length of the 

peptides was set at 9.0.

Prediction of population coverage and 
allergenicity assessment
The population coverage tool from IEDB was applied to 

determine the population coverage for every single epitope 

by selecting HLA alleles of the corresponding epitope.

Allergenicity of the predicted epitope was calculated 

using AllerHunter,27 which can predict both nonallergens 

and allergens with a high level of accuracy , by comparing 

the input sequence with the sequence of known allergen.29

Molecular simulation analysis of HLA 
allele interaction
Design of the three-dimensional structure of epitope 
and HLA protein
The three-dimensional structures of all the five epitopes 

were predicted by a PEP-FOLD web-based server.30 For 

each sequence, this server predicted the five most provable 

structures, the best of which, having the lowest energy model, 

was chosen for further analysis.

To validate the binding of identified epitope and HLA 

molecule, we considered the homology modeling as there is 

no relevant structure available in the protein data bank. We 

selected homology modeling using the most popular online 

protein fold recognition server, Phyre2,31 to generate the 

three-dimensional structure of HLA-A*32:1532 (accession 

id: AM422702). Then, ModRefiner33 was used to minimize 

and correct the hypothetical structure. The validation of the 

predicted structure was done using PROCHECK,34 verify 

3D,35 ERRAT,36 PROVE,37 and QMEAN.38

Docking analysis
Molecular docking analysis was performed using AutoDock 

Vina,39 by considering HLA molecule as a protein and 

identified epitopes as ligands. First, we used the protein 

preparation wizard of UCSF Chimera40 to prepare the hypo-

thetical protein for docking analysis by adding hydrogens 

and Gasteiger–Marsili charges.41 The prepared file was then 

converted into pdbqt format. The parameters used for the 

docking simulation were set to default. The size of the grid 

box in AutoDock Vina was kept at 36.3095, 54.3374, and 

48.025, respectively, for X, Y, and Z. The energy range was 

kept at 4, according to the default setting. AutoDock Vina 

was implemented via the shell script offered by AutoDock 

Vina developers. Docking results were observed by negative 

score in kcal/mol, as binding affinity of ligands.39

Binding energy estimation and molecular dynamics 
(MD) simulation
The binding free energy of HLA-epitope complexes were 

calculated by using MM (CHARMm)42 – Generalized Born 

Surface Area (GBSA) and Poisson–Boltzmann Surface 

Area (PBSA) protocols, implemented in Accelrys Discov-

ery Studio 2.5. Using implicit solvent models of GBSA and 

PBSA, the binding free energy (ΔG
bind

) for each epitope 

was calculated by maintaining salt concentration of 0.15 M. 

Default value was set for conformational entropy and ligand 

minimization. The distance cutoff value was set to 14.0 Å. The 

binding energy was calculated by using following equation: 

ΔG
bind

 = G
complex

 − (G
HLA

 + G
epitope

)

where G = <G
intra

> + <G
inte

> + <G
pol

> + <G
np

> − TΔS.

The entire dynamics simulation study for the HLA-

epitope complex was accomplished in YASARA Dynamics 

software. Prior to simulation, the complex was cleaned and 

optimized the hydrogen bond network.43 After that, a cubic 

simulation cell was created with a periodic boundary con-

dition, and the atoms of the complex were typed using the 

AMBER1444 force field. The pKa (acid dissociation constant) 

values of protein titratable amino acids were calculated and 

solvated the simulation box using the transferable intermo-

lecular potential3 points (TIP3P) water model (density: 0.997 

g/L–1). The system consistent with 46406 atoms was energy 

minimized using the steepest gradient approach (5000 cycles) 

followed by simulated annealing method. Restrained and 

unrestrained all-atom molecular dynamics simulation were 

performed in solvent using the PME method to describe 

long-range electrostatic interactions at a cut off distance of 8 

Å at physiological conditions (298 K, pH 7.4, 0.9% NaCl).45 

A multiple time step algorithm together with a simulation 

time step interval of 2.50 fs was chosen.46 Molecular dynam-

ics simulations of 100 ns long were performed at constant 

temperature using a Berendsen thermostat and constant 
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pressure. The MD trajectories were saved every 250 ps for 

analysis. The trajectories generated from the simulation were 

analyzed for the stability by various evaluative measures 

viz. RMSD, RMSF (RMS fluctuations), and initial and final 

protein backbone comparisons using YASARA structure built 

in macros and VMD software.

Identification of the B-cell epitope
To detect B-cell epitope, various tools from IEDB were 

used to identify the B-cell antigenicity, together with the 

Emini surface accessibility prediction,47 Kolaskar and Ton-

gaonkar antigenicity scale,48 Karplus and Schulz flexibility 

 prediction,49 and Bepipred linear epitope prediction analy-

sis.50 Since antigenic parts of a protein belong to the beta 

turn regions,51 the Chou and Fasman beta turn prediction 

tool52 was also used.

Results
Evolutionary analysis of the GP 
sequences
A total of 46 GP sequences from the different variants of 

EBOV were collected from the UniProtKB database. Mul-

tiple sequence alignment analysis was then performed, and a 

phylogenetic tree (Figure 2) was constructed thereby. Using 

the unweighted pair-group method with arithmetic mean, a 

phylogram was constructed using the bootstrap with 1,000 

replications in MEGA6.53 From the multiple sequence align-

ment analysis, it is clearly seen that protein sequences that 

isolated from various strains were having a close relation-

ship. Also, from the multiple comparison result, the selected 

sequences of EBOV of the same subtype have 78%–99% 

similarity. This result also confers the possibilities of muta-

tion in glycoprotein of all strains, which demonstrates a good 

agreement with the results from Veljkovic et al.54

Antigenic protein prediction
Protein sequences in this study were considered to screen 

out using VaxiJen web server for the identification of potent 

antigenic protein. As a corollary, UniProtKB id: Q9YMG2 

was identified as the most potent antigenic protein having a 

maximum total prediction score of 0.5390. Here the threshold 

of 0.5 is considered as the potent antigenicity.55 This sequence 

was used for further analysis.

Prediction of potent T-cell epitope
On the basis of the high combinatorial score, the five best epi-

topes were predicted by the NetCTL server from the selected 

protein sequence in a preselected environment. The identified 

epitopes are represented in Table 1. In combination with 

several methods such as proteasomal cleavage/transporter 

associated with antigen processing (TAP)/MHC-I combined 

predictor, MHC-I processing of the NetCTL server calculates 

an overall score for each peptide’s intrinsic potential from a 

protein for the designing of T-cell epitope. Peptides with a 

higher score represent higher processing capabilities.

The five T-cell epitopes were subjected to MHC-I bind-

ing prediction, using the stabilized matrix base method. The 

epitopes that elicited higher affinity (IC
50

 <200 nM) were 

subjected to afterward analysis (Table 2). Notably, proteins 

are transformed into peptides by proteasome complex, 

which cleaved the peptide bonds. By combining with Class 

I MHC molecules, these peptides were deported to the cell 

membrane, where they were introduced to T helper cells.

As shown in Table 2, a 9-mer T-cell epitope HKEGAFFLY 

was detected to interact with most MHC-I alleles, includ-

ing HLA-B*15:02; HLA-C*03:03; HLA-A*32:15; HLA-

B*15:03; HLA-B*27:20; HLA-C*12:03; HLA-A*68:23; 

HLA-B*40:13; and HLA-A*32:07 with higher affinity, 

among the five T-cell epitopes.

Furthermore, this epitope retained the highest con-

servancy of 83.85%, according to the IEDB conservancy 

analysis, as tabulated in Table 2. As population coverage in 

vaccine design generally plays a crucial role, it was calculated 

in this study.

Population coverage and allergenicity 
analysis
The cumulative percentage of population coverage was 

obtained for the predicted epitope HKEGAFFLY. As shown 

in Table 3, the population coverage for East Africa was found 

to be 66.98%; in West and North Africa, it was 69.50% and 

63.89%, respectively; and for Central Africa it was observed to 

be 75.93%. The population coverage was recorded at 55.88% 

for the East Asian region, which was a major hotspot for viral 

infection. For North America, the population coverage was 

found to be 58.69%. In current vaccine design pipeline, aller-

genicity is considered the most prominent barrier in vaccine 

designing, since most vaccines convert the immune system 

into an “allergic” reaction56 by inducting Type 2 T helper cells 

and immunoglobulin E. That is why we predicted allergenic-

ity of the selected epitope by the AllerHunter web server, 

where the probability is >0.06. The epitope HKEGAFFLY 

was scored 0.00 (sensitivity =91.6%, specificity =89.3%), 

and was thus considered a nonallergen, according to the Food 

and Agriculture Organization/World Health Organization 

evaluation system of allergenicity prediction.
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L7QHW1 Second secreted glycoprotein Zaire EBOV

Q05320 Envelope glycoprotein Zaire EBOV (strain Mayinga-76)

P60170 Pre-small/secreted glycoprotein Zaire EBOV (strain Mayinga-76)

A9QPM0 sGP Zaire EBOV

P0C773 Super small secreted glycoprotein Zaire EBOV (strain Kikwit-95)

P87666 Envelope glycoprotein Zaire EBOV (strain Kikwit-95)

A9QPL9 GP12 Zaire EBOV

Q6V1Q5 Second nonstructural secreted glycoprotein Zaire EBOV (strain Kikwit-95)

P87670 Pre-small/secreted glycoprotein Zaire EBOV (strain Eckron-76)

P87671 Envelope glycoprotein Zaire EBOV (strain Eckron-76)

O11457 Envelope glycoprotein Zaire EBOV (strain Gabon-94)

O11458 Pre-small/secreted glycoprotein Zaire EBOV (strain Gabon-94)

A0A068J419 GP12 Zaire EBOV

A0A0A1EDT0 Virion spike glycoprotein Zaire EBOV

X5H5A9 Virion spike glycoprotein Zaire EBOV

G8DB50 sGP Zaire EBOV

G8DB49 Surface glycoprotein Zaire EBOV

G8DB42 Second nonstructural secreted glycoprotein Zaire EBOV

X5HMX4 Virion spike glycoprotein Zaire EBOV

Q66811 Pre-small/secreted glycoprotein Tai Forest EBOV (strain Cote dilvoire-94)

B8XCP0 Soluble secreted glycoprotein Tai Forest EBOV

B8XCN9 Spike glycoprotein Tai Forest EBOV

B8XCP1 Putative second secreted glycoprotein Tai Forest

P0C772 Super small secreted glycoprotein Sudan EBOV (strain Uganda-00)

Q7T9E0 Pre-small/secreted glycoprotein Sudan EBOV (strain Uganda-00)

Q7T9D9 Envelope glycoprotein Sudan EBOV (strain Uganda-00)

I7FLM2 Secreted glycoprotein Sudan EBOV - Nakisamata

I7F2J9 Structural glycoprotein Sudan EBOV - Nakisamata

P60173 Pre-small/secreted glycoprotein Sudan EBOV (strain Maleo-79)

Q66814 Envelope glycoprotein Sudan EBOV (strain Boniface-76)

B0LPL7 Structural glycoprotein Sudan EBOV

B0LPL8 Nonstructural soluble secreted glycoprotein Sudan EBOV

C6G8E4 Structural glycoprotein OSReston EBOV (strain Philippines-96)

C6G8E5 Small/secreted nonstructural glycoprotein Reston EBOV (strain Philippines-96)

C6G8D6 Structural glycoprotein Reston EBOV (strain Philippines-96)

C6G8F3 Small/secreted nonstructural glycoprotein Reston EBOV (strain Philippines-96)

C6G8D7 Small/secreted nonstructural glycoprotein Reston EBOV (strain Philippines-96)

C6G8F2 Structural glycoprotein Reston EBOV (strain Philippines-96)

Q91DD8 Envelope glycoprotein Reston EBOV (strain Philippines-96)

P0C770 Super small secreted glycoprotein Reston EBOV (strain Philippines-96)

P60172 Pre-small/secreted glycoprotein Sudan EBOV (strain Boniface-76)

Q89569 Pre-small/secreted glycoprotein Reston EBOV (strain Siena/Philippine-92)

Q66800 Pre-small/secreted glycoprotein Reston EBOV (strain Reston-89)

P0C771 Super small secreted glycoprotein Reston EBOV (strain Reston-89)

Q66799 Envelope glycoprotein Reston EBOV (strain Reston-89)

Figure 2 Evolutionary divergence analysis of available glycoproteins of different strains of EBOV; results are represented in a phylogenetic tree.
Abbreviations: EBOV, Ebola virus; GP, glycoprotein; sGP, soluble GP.
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protein model  having >90% of the residues in the core and 

allowed regions can be considered a high-quality model.57 

The hypothetical model was further analyzed using ERRAT 

and Verify 3D.58 For a good model, structure should retain 

an ERRAT score >80.00, against which the model in this 

study obtained an ERRAT score of 89.859.55 Verify 3D graph 

indicates that 100.00% of residues of this model had an aver-

aged 3D-1D score of 0.2, which is good.59 Along with the 

QMEAN analysis, the protein model in our interest resulted in 

a Z-score of −1.33, and the total score was 0.636. This value 

denotes a higher quality of the model, where the acceptable 

score ranges between 0 and 1 (Figure 3B).38 On the basis 

of the results obtained from the aforementioned structural 

validation programs, the model (Figure 3C) showed much 

reliability and was considered for further study.

Molecular docking simulation revealed that the proposed 

epitopes bound in the cleft of the HLA-A*32:15  (Figure S2), 

where the highest binding affinity was −7.6 kcal/mol 

(Table S2, observed for the HKEGAFFLY epitope). The 

Chimera40 program was used to visualize the interactions of 

docked HLA-A–epitope complexes, as shown in Figures 4 

and S2. Then, binding energy calculation was carried out 

to understand the binding of HLA with epitopes. Here the 

binding free energies of MM-GBSA and MM-PBSA are 

approximate free energies of binding, so a more negative 

value denotes stronger binding. From MM-GBSA analysis, 

the highest binding free energy was observed for  HLA-

A*32:15 with epitope (HKEGAFFLY) of –63.89 kj/mol 

(Table S1). On the contrary, the lowest binding free energy 

was obtained for ATEDPSSGY epitope, i.e. –44.86 kj/mol. 

In contrast of MM-GBSA, the HKEGAFFLY epitope was 

also resulted the highest binding energy of –38.48 kj/mol, 

while the lowest binding free energy was seen for TEDPSS-

GYY epitope, –20.98 kj/mol. Since HKEGAFFLY epitope 

obtained the highest docking affinity and binding free energy, 

its complex subjected for molecular dynamics simulation.

Table 1 Five most potent T-cell epitopes, according to the 
overall score predicted by the NetCTL server

Number Epitopes Overall score (nM)

1 ATEDPSSGY 2.8069
2 TEDPSSGYY 1.5503
3 LFEVDNLTY 1.1224
4 HKEGAFFLY 1.0887
5 LLQLNETIY 0.9753

Table 2 Interaction, binding, and conservancy of identified T-cell 
epitopes

Epitope Interacting MHC-I allele 
(proteasome score, TAP score, 
MHC-I score, processing score)

Epitope 
conservancy 
(%)

ATEDPSSGY HLA-B*15:02 (0.59) HLA-A*26:02 
(0.59), HLA-A*32:07 (1.03), 
HLA-B*15:17 (1.05), HLA-C*03:03 
(1.06), HLA-C*05:01 (1.21), 
HLA-C*12:03 (1.23), HLA-A*68:23 
(1.93)

66.23

TEDPSSGYY HLA-B*40:13 (0.52), HLA-B*15:02 
(0.64), HLA-A*32:15 (0.69), 
HLA-A*68:23 (0.7), HLA-A*32:07 (0.77), 
HLA-C*05:01 (0.87), HLA-B*27:20 
(1.21), HLA-C*12:03 (1.52)

66.23

LFEVDNLTY HLA-B*40:13 (0.6), HLA-A*32:15 
(0.63), HLA-C*03:03 (0.67), 
HLA-A*29:02 (0.8), HLA-C*14:02 
(0.9), HLA-A*68:23 (1.11), 
HLA-B*27:20 (1.11), HLA-C*12:03 
(1.36), HLA-A*32:07 (1.66)

66.28

HKEGAFFLY HLA-B*15:02 (0.23), HLA-C*03:03 
(0.31), HLA-A*32:15 (0.72), 
HLA-B*15:03 (0.73), HLA-B*27:20 
(0.91), HLA-C*12:03 (1.08), 
HLA-A*68:23 (1.09), HLA-B*40:13 
(1.1), HLA-A*32:07 (1.22)

83.85

LLQLNETIY HLA-B*15:02 (0.45), HLA-B*15:03 
(0.7), HLA-C*03:03 (0.71), 
HLA-C*14:02 (0.71), HLA-A*32:15 
(0.74), HLA-A*68:23 (1.11), 
HLA-C*12:03 (1.17), HLA-A*32:07 
(1.26), HLA-B*27:20 (1.41)

60.38

Notes: MHC-I alleles that have an interacting affinity lower than 200 nm are 
represented, and total processing scores are shown as enclosed numbers.
Abbreviations: HLA, human leukocyte antigen; MHC-I, major histocompatibility 
complex I.

Table 3 Analysis of the population coverage for the proposed 
epitope against EBOV

Population Coverage (%)a Average hitb PC90c

East Africa 66.98 1.00 0.23
West Africa 69.50 0.89 0.25
North Africa 63.89 1.13 026
Central Africa 75.93 1.04 0.23
North America 58.69 0.98 0.21
East Asia 55.88 2.11 0.29
Europe 67.57 1.00 0.23
Southeast Asia 63.00 1.45 0.30

Notes: aProjected population coverage. bAverage number of epitope hits/HLA 
combinations recognized by the population. cMinimum number of epitope hits/HLA 
combinations recognized by 90% of the population.
Abbreviations: EBOV, Ebola virus; HLA, human leukocyte antigen.

Validation of predicted T-cell epitope
As described in the “Materials and methods” section, the 

hypothetical structure of HLA-A*32:15 protein was gener-

ated using the homology technique. The structure was then 

analyzed through various web-based protein validation 

software. As shown in Figure 3, the Ramachandran plot 

generated by the PROCHECK34 server showed that about 

98.9% of the residues of protein are located in the most 

favored region, as against 0% in the outlier region and 1.1% 

in the generously allowed region. It should be noted that the 
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Figure 3 Evaluation of structural superiority by (A) Ramachandran plot, (B) QMEAN assessment, and (C) three-dimensional structure of final model of HLA-A*32:15.
Abbreviations: PDB, Protein Data Bank; HLA, human leukocyte antigen; SSE, secondary structure element; ACC, accessibility.

and remained stable in the range from 2.0 Å to 3 Å. In case 

of epitope, similar RMSD pattern was observed, where the 

order of magnitude was seen to fluctuate in some range. The 

average energy of the simulation was –578125.270 kj/mol; 

the average Coulombic charge and van der Waals interactions 

was –694749.662 kj/mol, 77122.511 kj/mol, respectively. 

We also calculated the contribution of each residue for both 

HLA and epitope in the simulation, in terms of RMSF and 

RMSD. As seen in Figure 6A, highest RMSD was observed 

The 100 ns MD simulation of HLA-epitope (HLA-

A*32:15-HKEGAFFLY) complex was carried out using 

AMBER14 force field, following the energy minimization 

protocol. The stability of the HLA-epitope complex by means 

of RMSD was calculated and rendered in Figure 5A. From the 

results, it is revealed that the HLA molecule was stabilized 

after 5 ns simulation and tended to remain in plateau phase 

thereafter for rest of the period. The RMSD value of HLA 

was observed to grow up quickly from 0.48 Å to 2.214 Å 
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Figure 5 Time evolutions of (A) the backbone RMSD and (B) the number of hydrogen bonds formed between the epitope-HLA (HLA-A*32:15) complex in binding position. 
The results are presented with respect to the time (ps) of MD simulation, demonstrating the mechanical stability and flexibility of the complex.
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Figure 4 Molecular interaction analysis of HLA-A*32:15 and epitope HKEGAFFLY 
complex, where the epitope HKEGAFFLY binds in the groove of the HLA-A*32:15, 
generated by Autodock Vina.
Notes: Here, blue color represents the corresponding distances of hydrogen 
bonding, the red stick model defines the epitope.
Abbreviation: HLA, human leukocyte antigen.

for ARG residue at the position of 180 in HLA, while low-

est RMSD observed for CYS100. However, this residue 

was also resulted highest RMSF value of 7.181 Å, while 

the rests of the residues were in lowest fluctuation. In case 

of epitope, the histidine residue at the first position and the 

tyrosine residue in 9th position were seen to be very much 

flexible, as these residues were resulted with highest RMSD 

and RMSF (Figure 6B). In the meanwhile, we calculated the 

number of hydrogen bond formed between the epitope and 

HLA molecule during the simulation. The results represented 

in Figure 5B, showed that hydrogen bond at initial stage was 

236, and the range decreased to 160. During the simulation, 

the number of hydrogen bond was at a range of 160–210, 
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potentiality to express the B-cell response. Furthermore, the 

surface accessibility of the protein was also analyzed using 

the Emini surface accessibility prediction methods, since 

a potent B-cell epitope should be accessible through the 

surface.47 As shown in Figure S4 and Table 5, higher acces-

sibility was found in regions 9–17 and 186–223 amino acid 

residues. Figure S5 represents the β-turns region identified 

by Chou and Fasman β-turn  methods.52 According to the 

result, the region from 200 to 220 (in the region of 200–220 

and 105–150) is regarded as β-turns as well as hydrophilic 

in nature. These are two properties required to be a potent 

B-cell epitope.60 Experimentally, antigenicity is related to 

the protein flexibility.61 That is why we implemented the 

Karplus and Schulz flexibility prediction method, where 

it was evident that the regions of 255–280 and 200–220 

were regarded as the most flexible (Figure S6). Finally, 

based on the Hidden Markov model, the Bepipred linear 

epitope prediction tool was utilized to predict linear B-cell 

epitopes. The predicted result is rendered and tabulated in 

Figure S7 and Table 6. Hence, by comparing the foregoing 

results, the peptide sequences ranging from 186 to 220 are 
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Figure 6 (A) Plot showing the RMSF (black) and RMSD (red) values of C-alpha atoms from of MD simulation of HLA protein. (B)  Plot showing the RMSF (black) and RMSD 
(red) values of C-alpha atoms from of MD simulation of 9-mer epitope. Here, Y axis represented the RMSD and RMSF values in molecular distance unit, ie, Angstrom (A), 
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Abbreviations:  RMSF, root mean square function; RMSD, root mean square deviation; MD, molecular dynamics; HLA, human leukocyte antigen.

which indicates the strong binding of epitope-HLA complex. 

Hence, all analyses lead to the conclusion that HKEGAFFLY 

is one of the most prominent T-cell epitopes for GP based 

designing of vaccine.

B-cell epitope identification
For the identification of potential B-cell epitopes, amino acid 

scale base methods have been used in this study. Consistent 

with this protocol, we used diverse investigation processes 

for the calculation of an incessant B-cell epitope.

According to the analysis of Kolaskar and Ton-

gaonkar’s48 antigenicity prediction method, the average 

antigenicity was 1.028, while 1.225 and 0.894 were the 

maximum and minimum, respectively. The Kolaskar and 

Tongaonkar48 antigenicity prediction uses a semiempirical 

method to predict antigenicity on the basis of physico-

chemical properties of the residues in a protein and their 

diversity in experimentally known epitopes, where values 

>1.00 were considered to denote a potential antigen. As 

summarized in Table 4 and Figure S3, 14 epitopes have 

been found to satisfy the threshold value, and also have the 
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of GP of EBOV therefore makes an appropriate antigenic 

target for vaccine development; as a result, several reports 

have been published on this perspective.62–66 However, the 

information representing the population coverage in the 

worldwide are still limited. In such case, computational based 

epitiope screening is very much efficient in context of HLA 

class I molecules,67 and also much safe, high specificity and 

cost effective. Therefore, this study incorporated various 

immunoinformatics and molecular modelling tools to identify 

potential epitopes present in EBOV GPs.

Initially, a set of 46 glycoprotein sequences from the dif-

ferent strains of EBOV has been subjected to perform multiple 

sequence alignment. Previous GP sequences analysis of dif-

ferent strains of each EBOV species revealed a high degree of 

sequence similarity,68,69 and thereby, it is believed that targeting 

GP from old strain could provide strong and cross reactive 

immunity against the new strain and previous outbreaks in 

2014.70 Interestingly, in our molecular analysis, we have found 

~98–99% conservation for the amino acid sequences of dif-

ferent strains within the species, which confers the degree of 

Table 5 Prediction of the Emini surface accessibility of the 
protein under study

Number Start End Peptide Length

1 9 17 LPRDRFKRT 9
2 56 63 KLSSTNQL 8
3 81 87 SATKRWG 7
4 111 117 LEIKKPD 7
5 188 193 QAKKDF 6
6 197 221 HPLREPVNATEDPSSGYYSTTIRYQ 25
7 227 232 TNETEY 6
8 244 249 LESRFT 6
9 263 270 SGKRSNTT 8

Table 6 Identification of the Bepipred linear epitope from the protein sequence

Number Start End Peptide Length

1 14 14 F 1
2 57 59 LSS 3
3 73 106 NGVATDVPSATKRWGFRSGVPPKVVNYEAGEWAE 34
4 114 131 KKPDGSECLPAAPDGIRG 18
5 141 148 VSGTGPCA 8
6 175 176 TF 2
7 191 193 KDF 3
8 198 215 PLREPVNATEDPSSGYYS 18
9 223 229 TGFGTNE 7
10 261 270 YTSGKRSNTT 10
11 279 285 PEIDTTI 7

Table 4 Prediction of antigenic region of the protein by Kolaskar and Tongaonkar antigenicity prediction method

Number Start End Peptide Length

1 4 11 TGILQLPR 8
2 17 56 TSFFLWVIILFQRTFSIPLGVIHNSTLQVSDVDKLVCRDK 40
3 63 69 LRSVGLN 7
4 76 82 ATDVPSA 7
5 89 99 RSGVPPKVVNY 11
6 118 126 GSECLPAAP 9
7 132 154 FPRCRYVHKVSGTGPCAGDFAFH 23
8 156 172 EGAFFLYDRLASTVIYR 17
9 177 189 AEGVVAFLILPQA 13
10 194 202 FSSHPLREP 9
11 211 221 SGYYSTTIRYQ 11
12 233 247 LFEVDNLTYVQLESR 15
13 249 259 TPQFLLQLNET 11
14 274 280 IWKVNPE 7

able to provoke the immune response as B-cell epitope for 

GP-based designing of vaccine.

Discussion
In recent trends, the primary focus of vaccine development 

is very much rely on GPs, as they are involved in cell attach-

ment, fusion and entry as well as assist in invasion; and thus 

plays the role of pathogenesis of disease. The central role 
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similarity and support the previous analysis. From this set of 

GPs, the most antigenic protein sequence was determined 

by Vaxijen server. Based on auto cross covariance (ACC), 

the Vaxijen server transform the protein sequence into uni-

form vectors of physicochemical properties of proteins. With 

91% sensitive, 82% accuracy and 72 specificity, the l00-CV 

(leave one – out cross validation) was used to identify anti-

genicity of protein for viral species.71 The resultant antigenic 

protein (VaxiJen score ≥0.5) was then subjected for various 

immunoinformatics analysis, followed by IEDB web server. 

At the beginning five potent 9-mer epitopes have been 

predicted from NetCTL 1.2 server and selected for further 

study. Using the threshold of 0.5, the NetCTL 1.2 server pre-

dicts maximum number of epitopes without compromising 

the specificity or sensitivity levels, covering all 12 MHC class 

I supertypes.23 The five most potent epitopes are represented 

in Table 1, and the scores are the predicted MHC class I 

affinities in the form of –logIC50 and IC50 value. 

For MHC-I binding prediction, peptides with IC50 

values <50 nM are considered high affinity, <500 nM for 

intermediate affinity, and <5000 nM for low affinity. There-

fore, we selected maximum alleles having binding affinity 

<200 nM.72 It is advocated that T-cell epitope binding to 

specific multiple HLA supertypes are termed as promiscuous 

in vaccine design, since they effectively increase the coverage 

of higher proportions of human populations.73,74 According 

to the results, both HKEGAFFLY and LFEVDNLTY bind 

to the highest number of alleles. However, HKEGAFFLY 

represents highest conservancy and was hence considered 

as epitope of choice.

We also validated each epitope by molecular docking 

simulation and MM-GBSA/MM-PBSA studies with HLA-

A*32:15 protein, as it was found common in the results from 

MHC-I binding interaction analysis. Prior of docking simula-

tion, the three dimensional structure of HLA molecule was 

prepared by using the Phyre2, followed by intensive mood. 

As a result, 179 residues (99%) of HLA-A*32:15 modelled 

at >90% accuracy. In these study, 2BCK_Chain A, crystal 

structure of HLA-A*2402 showed the highest similarity 

of 90% (Figure S1). The selected model has been chosen 

from the twenty models generated by Phyre2, on the basis 

of similarity and confidence level. Phyre2 is one of the best 

protein prediction servers that allows remote fold reorganiza-

tion and homology detection. Using hidden Markov model 

(HMM), this server predicts the structure of given protein 

sequence by constructing backbone, loop modelling and 

adding side chains.75 However in intensive mode, additional 

ab initio approach is used for reconstruction of missing 

region, backbone and side chain.75 In docking simulation, 

among the other epitopes, HKEGAFFLY obtained highest 

binding affinity (Table S1, supplementary material). In addi-

tion, MM-PBSA and MM-GBSA techniques are frequently 

to re-rank docking poses from molecular docking study, 

as they achieve a much better performance than docking 

scoring functions.76 Nevertheless, the success rate of the 

absolute binding free energy prediction strongly depends 

on the systems.77 Thence, we used both of these solvation 

models to predict binding energy more accurately, where the 

results from MM-PBSA examine the accuracy and reliability 

of the results from MM-GBSA. Results of binding energy 

calculation are shown in Table S1.  The relative magnitude 

of binding free energy obtained from GB methods is found 

to be consistent with those calculated using PB method, 

despite of the differences in the absolute value of salvation 

energy. As a  corollary, these results also demonstrated the 

consistence with relative stabilities of HLA-epitope com-

plexes. In previous published reports regarding in silico 

epitope identification of EBOV,78–81 the studies are limited 

to sequence-based scoring function techniques and some 

extend to docking simulation. These techniques have cer-

tain limitations, though these are very useful.82 In docking 

simulation of peptide and protein, it faces problem like 

peptide’s flexibility.83,84 Whereas, energy based approach 

like molecular mechanics and interaction energy scoring 

can add valuable information to sequence based results.85,86 

Therefore, we have performed MD simulation study of 

100 ns long to enhance the predictive power of the peptide 

affinity calculations to MHC molecule. In molecular dynam-

ics simulation, both epitope and HLA protein were seen to 

achieve equilibration, while different fluctuations of RMSD 

were seen by the time evolution. Higher RMSD values of 

epitope indicate the flexibility in binding with HLA molecule, 

during the simulation. These results were further confirmed 

by the analysis of per residue contributions in dynamics 

simulation by means of RMSF and RMSD. Low values of 

RMSF indicate the core region of the HLA protein was stable, 

while high values of RMSD demonstrated the motion of the 

protein during the simulation. In like manner, the RMSD and 

RMSF profiles of eptiope confirm the synergic conforma-

tion changes to accommodate the binding pocket of HLA. 

The hydrogen bond occupancy analysis between the HLA-

epitope further confirmed the stability of the complex during 

the simulation. Overall, these results evidently demonstrate 

that both HLA and epitope have remarkable conformation 

changes to facilitate the binding and formed stable complex 

in thermodynamic environment (Figure 7). 
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It is one of important factors in vaccine design that the 

distribution of HLA varies according to the diverse ethnic 

groups and geographic regions around the world. Therefore, 

wide range of population coverage must be considered during 

the designing of an effective design. According to the results 

from population coverage analysis, the epitope HKEGAFFLY 

showed wide range of population coverage in different 

regions of the world (Table 3), where the highest coverage 

was observed Central Africa; one of the most EBOV infected 

areas. This result indicates that it will specifically bind with 

the prevalent HLA molecules in the target population, where 

the vaccine will be employed.

In other aspects, the B-cell epitope stimulates minimal 

immune unity, which is very much strong enough to elicit a 

potent humoral immune response, causing no harmful side 

effects to human body. Thereby, we are also calculated and 

found that the sequences ranging from 186–220 as a B-cell 

epitope, by taking consideration of amino acid property, 

hydrophilicity, accessibility, flexibility, turns, exposed sur-

face, polarity and antigenic propensity. This study could 

provide a solid base for vaccine design.

Conclusion
In recent years, most vaccines have been developed based on 

B-cell immunity; however, the current strategy relies mostly 

on T-cell epitope owing to long-lasting immunity. Both B-cell 

and T-cell epitopes are offered in this study for stimulating 

immunity in several ways. The resulting peptides showed 

B-cell and T-cell selectivity, better conservancy, population 

coverage, and significant interaction with MHC-1 allele with 

good affinity. Above all, the predicted epitopes are anticipated 

to offer long-term and high protective immunity against EBOV.

Disclosure
The authors report no conflicts of interest in this work.

References
 1. Groseth A, Hoenen T, Eickmann M, Becker S. Filoviruses: Ebola, 

Marburg and Disease. New York, NY: John Wiley & Sons Ltd; 2001.
 2. Bastug A, Bodur H. Ebola viral disease: what should be done to combat 

the epidemic in 2014? Turk J Med Sci. 2015;45(1):1–5.
 3. Kilgore PE, Grabenstein JD, Salim AM, Rybak M. Treatment of ebola 

virus disease. Pharmacotherapy. 2015;35(1):43–53.
 4. Dixon MG, Schafer IJ. Ebola viral disease outbreak – West Africa, 2014. 

MMWR Morb Mortal Wkly Rep. 2014;63(25):548–551.
 5. Ikegami T, Calaor AB, Miranda ME, et al. Genome structure of Ebola 

virus subtype Reston: differences among Ebola subtypes. Brief report. 
Arch Virol. 2001;146(10):2021–2027.

 6. Volchkova VA, Dolnik O, Martinez MJ, Reynard O, Volchkov VE. 
Genomic RNA editing and its impact on Ebola virus adaptation during 
serial passages in cell culture and infection of guinea pigs. J Infect Dis. 
2011;204(Suppl 3):S941–S946.

 7. Mehedi M, Hoenen T, Robertson S, et al. Ebola virus RNA editing 
depends on the primary editing site sequence and an upstream second-
ary structure. PLoS Pathog. 2013;9(10):e1003677.

 8. Shabman RS, Jabado OJ, Mire CE, et al. Deep sequencing identifies 
noncanonical editing of Ebola and Marburg virus RNAs in infected 
cells. MBio. 2014;5(6):e02011.

 9. Radoshitzky SR, Warfield KL, Chi X, et al. Ebolavirus delta-peptide 
immunoadhesins inhibit marburgvirus and ebolavirus cell entry. J Virol. 
2011;85(17):8502–8513.

10. de La Vega M-A, Wong G, Kobinger GP, Qiu X. The multiple roles of 
sGP in Ebola pathogenesis. Viral Immunol. 2015;28(1):3–9.

11. Lee JE, Saphire EO. Ebolavirus glycoprotein structure and mechanism 
of entry. Future virol. 2009;4(6):621–635.

12. Lee JE, Fusco ML, Hessell AJ, Oswald WB, Burton DR, Saphire EO. 
Structure of the Ebola virus glycoprotein bound to an antibody from a 
human survivor. Nature. 2008;454(7201):177–182.

13. Wu S, Yu T, Song X, Yi S, Hou L, Chen W. Prediction and identification 
of mouse cytotoxic T lymphocyte epitopes in Ebola virus glycoproteins. 
Virol J. 2012;9(1):1–7.

14. Sharmin R, Islam AB. A highly conserved WDYPKCDRA epitope in 
the RNA directed RNA polymerase of human coronaviruses can be 
used as epitope-based universal vaccine design. BMC Bioinformatics. 
2014;15(161):1471–2105.

15. Purcell AW, McCluskey J, Rossjohn J. More than one reason to rethink 
the use of peptides in vaccine design. Nat Rev Drug Discov. 2007;6(5): 
404–414.

16. Firbas C, Jilma B, Tauber E, et al. Immunogenicity and safety of a novel 
therapeutic hepatitis C virus (HCV) peptide vaccine: a randomized, 
placebo controlled trial for dose optimization in 128 healthy subjects. 
Vaccine. 2006;24(20):4343–4353.

17. Staneková Z, Varečková E. Conserved epitopes of influenza A virus 
inducing protective immunity and their prospects for universal vaccine 
development. Virol J. 2010;7(1):1.

18. He L, Cheng Y, Kong L, et al. Approaching rational epitope vaccine 
design for hepatitis C virus with meta-server and multivalent scaffold-
ing. Sci. Rep. 2015;5.

19. Sominskaya I, Skrastina D, Dislers A, et al. Construction and immuno-
logical evaluation of multivalent hepatitis B virus (HBV) core virus-like 
particles carrying HBV and HCV epitopes. Clin Vaccine Immunol. 
2010;17(6):1027–1033.

Figure 7 Conformational illustration of HLA-epitope complex. Here, cartoon 
structure of green color represents the starting confirmation the complex, while 
red color represents the confirmation of last step in 100 ns long MD simulation.  
Abbreviations:  MD, molecular dynamics; HLA, human leukocyte antigen.

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Advances and Applications in Bioinformatics and Chemistry 2017:10 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

23

In silico-based vaccine design against EBOV GP

20. Apweiler R, Bairoch A, Wu CH, et al. UniProt: the Universal Pro-
tein knowledgebase. Nucleic Acids Res. 2004;32(Database issue): 
D115–D119.

21. Larkin MA, Blackshields G, Brown NP, et al. Clustal W and Clustal X 
version 2.0. Bioinformatics. 2007;23(21):2947–2948.

22. Doytchinova IA, Flower DR. VaxiJen: a server for prediction of protec-
tive antigens, tumour antigens and subunit vaccines. BMC Bioinformat-
ics. 2007;8:4.

23. Larsen MV, Lundegaard C, Lamberth K, Buus S, Lund O, Nielsen M. 
Large-scale validation of methods for cytotoxic T-lymphocyte epitope 
prediction. BMC bioinformatics. 2007;8:424.

24. Bui HH, Sidney J, Li W, Fusseder N, Sette A. Development of an epit-
ope conservancy analysis tool to facilitate the design of epitope-based 
diagnostics and vaccines. BMC Bioinformatics. 2007;8:361.

25. Buus S, Lauemoller SL, Worning P, et al. Sensitive quantitative predic-
tions of peptide-MHC binding by a ‘Query by Committee’ artificial 
neural network approach. Tissue Antigens. 2003;62(5):378–384.

26. Peters B, Sette A. Generating quantitative models describing the 
sequence specificity of biological processes with the stabilized matrix 
method. BMC Bioinformatics. 2005;6:132.

27. Tenzer S, Peters B, Bulik S, et al. Modeling the MHC class I pathway 
by combining predictions of proteasomal cleavage, TAP transport and 
MHC class I binding. Cell Mol Life Sci. 2005;62(9):1025–1037.

28. Muh HC, Tong JC, Tammi MT. AllerHunter: a SVM-pairwise system 
for assessment of allergenicity and allergic cross-reactivity in proteins. 
PLoS One. 2009;4(6):0005861.

29. Liao L, Noble WS. Combining pairwise sequence similarity and support 
vector machines for detecting remote protein evolutionary and structural 
relationships. J Comput Biol. 2003;10(6):857–868.

30. Thevenet P, Shen Y, Maupetit J, Guyon F, Derreumaux P, Tuffery P. PEP-
FOLD: an updated de novo structure prediction server for both linear 
and disulfide bonded cyclic peptides. Nucleic Acids Res. 2012;40(Web 
Server issue):11.

31. Kelley LA, Sternberg MJ. Protein structure prediction on the Web: a 
case study using the Phyre server. Nat Protoc. 2009;4(3):363–371.

32. Heinold A, Bauer M, Opelz G, Scherer S, Schmidt AH, Tran TH. 
Identification and characterization of three novel HLA alleles, HLA-
A*240214, HLA-A*3215 and HLA-DQB1*060302. Tissue Antigens. 
2007;70(6):511–514.

33. Xu D, Zhang Y. Improving the physical realism and structural accuracy 
of protein models by a two-step atomic-level energy minimization. 
Biophys J. 2011;101(10):2525–2534.

34. Laskowski RA, Rullmannn JA, MacArthur MW, Kaptein R, Thorn-
ton JM. AQUA and PROCHECK-NMR: programs for checking 
the quality of protein structures solved by NMR. J Biomol NMR. 
1996;8(4):477–486.

35. Eisenberg D, Luthy R, Bowie JU. VERIFY3D: assessment of pro-
tein models with three-dimensional profiles. Methods Enzymol. 
1997;277:396–404.

36. Colovos C, Yeates TO. Verification of protein structures: patterns of 
nonbonded atomic interactions. Protein Sci. 1993;2(9):1511–1519.

37. Pontius J, Richelle J, Wodak SJ. Deviations from standard atomic vol-
umes as a quality measure for protein crystal structures. J Mol Biol. 
1996;264(1):121–136.

38.  Benkert P, Tosatto SC, Schomburg D. QMEAN: A comprehensive scoring 
function for model quality assessment. Proteins. 2008;71(1):261–277.

39. Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy 
of docking with a new scoring function, efficient optimization, and 
multithreading. J Comput Chem. 2010;31(2):455–461.

40. Pettersen EF, Goddard TD, Huang CC, et al. UCSF Chimera--a visual-
ization system for exploratory research and analysis. J Comput Chem. 
2004;25(13):1605–1612.

41. Dunbrack RL, Jr. Rotamer libraries in the 21st century. Curr Opin Struct 
Biol. 2002;12(4):431–440.

42. Vanommeslaeghe K, Hatcher E, Acharya C, et al. CHARMM General 
Force Field (CGenFF): A force field for drug-like molecules compatible 
with the CHARMM all-atom additive biological force fields. J Computat 
Chem. 2010;31(4):671–690.

43. Krieger E, Dunbrack RL, Jr., Hooft RW, Krieger B. Assignment of 
protonation states in proteins and ligands: combining pKa prediction 
with hydrogen bonding network optimization. Methods Mol Biol. 
2012;819:405–421.

44. Dickson CJ, Madej BD, Skjevik ÅA, et al. Lipid14: the amber lipid 
force field. J Chem Theory Comput. 2014;10(2):865–879.

45. Krieger E, Nielsen JE, Spronk CA, Vriend G. Fast empirical pKa predic-
tion by Ewald summation. J Mol Graph Model. 2006;25(4):481–486.

46. Krieger E, Vriend G. New ways to boost molecular dynamics simula-
tions. J Comput Chem. 2015;36(13):996–1007.

47. Emini EA, Hughes JV, Perlow DS, Boger J. Induction of hepatitis A 
virus-neutralizing antibody by a virus-specific synthetic peptide. J Virol. 
1985;55(3):836–839.

48. Kolaskar AS, Tongaonkar PC. A semi-empirical method for pre-
diction of antigenic determinants on protein antigens. FEBS Lett. 
1990;276(1–2):172–174.

49. Karplus PA, Schulz GE. Prediction of chain flexibility in proteins. 
Naturwissenschaften. 1985;72(4):212–213.

50. Larsen JE, Lund O, Nielsen M. Improved method for predicting linear 
B-cell epitopes. Immunome Res. 2006;2:2.

51. Rini JM, Schulze-Gahmen U, Wilson IA. Structural evidence for 
induced fit as a mechanism for antibody-antigen recognition. Science. 
1992;255(5047):959–965.

52. Chou PY, Fasman GD. Empirical predictions of protein conformation. 
Annu Rev Biochem. 1978;47:251–276.

53. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: 
molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 
2013;30(12):2725–2729.

54. Veljkovic V, Glisic S, Muller CP, et al. In silico analysis suggests interac-
tion between Ebola virus and the extracellular matrix. Front Microbiol. 
2015;6.

55. Monterrubio-López GP, González-Y-Merchand JA, Ribas-Aparicio RM. 
Identification of novel potential vaccine candidates against tuberculosis 
based on reverse vaccinology. Biomed Res Int. 2015;2015:483150.

56. McKeever TM, Lewis SA, Smith C, Hubbard R. Vaccination and allergic 
disease: a birth cohort study. Am J Public Health. 2004;94(6):985–989.

57. Dash R, Hosen SZ, Sultana T, et al. Computational Analysis and 
Binding Site Identification of Type III Secretion System ATPase from 
Pseudomonas aeruginosa. Interdiscip Sci. 2015:1–9.

58. Bowie JU, Luthy R, Eisenberg D. A method to identify protein 
sequences that fold into a known three-dimensional structure. Science. 
1991;253(5016):164–170.

59. Daydé-Cazals B, Fauvel B, Singer M, et al. Rational design, synthe-
sis, and biological evaluation of 7-Azaindole derivatives as potent 
focused multi-targeted kinase inhibitors. J Med Chem. 2016;59(8): 
3886–3905.

60. Rose GD, Gierasch LM, Smith JA. Turns in peptides and proteins. Adv 
Protein Chem. 1985;37:1–109.

61. Novotny J, Handschumacher M, Haber E, et al. Antigenic determi-
nants in proteins coincide with surface regions accessible to large 
probes (antibody domains). Proc Natl Acad Sci U S A. 1986;83(2): 
226–230.

62. Henao-Restrepo AM, Longini IM, Egger M, et al. Efficacy and 
effectiveness of an rVSV-vectored vaccine expressing Ebola surface 
glycoprotein: interim results from the Guinea ring vaccination cluster-
randomised trial. The Lancet. 2015;386(9996):857–866.

63. Wu S, Kroeker A, Wong G, et al. An adenovirus vaccine expressing 
Ebola virus variant makona glycoprotein is efficacious in Guinea Pigs 
and nonhuman primates. J Infect Dis. Aug 4 2016.

64. Zhang Q, Gui M, Niu X, et al. Potent neutralizing monoclonal antibodies 
against Ebola virus infection. Sci Rep. 2016;6:25856.

65. Davidson E, Bryan C, Fong RH, et al. Mechanism of binding to Ebola 
virus glycoprotein by the ZMapp, ZMAb, and MB-003 cocktail antibod-
ies. J virol. 2015;89(21):10982–10992.

66. Milligan ID, Gibani MM, Sewell R, et al. Safety and immunoge-
nicity of novel adenovirus type 26- and modified vaccinia ankara-
vectored Ebola vaccines: a randomized clinical trial. Jama. Apr 19 
2016;315(15):1610–1623.

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Advances and Applications in Bioinformatics and Chemistry 2017:10submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

24

Dash et al

67. Sundar K, Boesen A, Coico R. Computational prediction and identi-
fication of HLA-A2. 1-specific Ebola virus CTL epitopes. Virology. 
2007;360(2):257–263.

68. Ponomarenko J, Vaughan K, Sette A, Maurer-Stroh S. Conservancy 
of mAb epitopes in Ebolavirus glycoproteins of previous and 2014 
outbreaks. PLoS Curr. 2014;6:1–13.

69. Sanchez A, Ksiazek TG, Rollin PE, et al. Detection and molecular char-
acterization of Ebola viruses causing disease in human and nonhuman 
primates. J Infect Dis. 1999;179(Suppl 1):S164–S169.

70. Sridhar S. Clinical development of Ebola vaccines. Ther Adv Vaccines. 
2015;3(5–6):125–138.

71. Verma SK, Yadav S, Kumar A. In silico prediction of B- and T- cell 
epitope on Lassa virus proteins for peptide based subunit vaccine design. 
Adv Biomed Res. 2015;4:201.

72. Mostafa SM, Islam AB. An in silico approach predicted potential 
therapeutics that can confer protection from maximum pathogenic 
Hantaviruses. Future Virology. 2016;11(6):411–428.

73. Wilson CC, McKinney D, Anders M, et al. Development of a DNA 
vaccine designed to induce cytotoxic T lymphocyte responses to 
multiple conserved epitopes in HIV-1. J Immunol. 2003;171(10): 
5611–5623.

74. Vani J, Shaila M, Chandra N, Nayak R. A combined immuno-informatics 
and structure-based modeling approach for prediction of T cell epitopes 
of secretory proteins of Mycobacterium tuberculosis. Microbes Infect. 
2006;8(3):738–746.

75. Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJE. The Phyre2 
web portal for protein modeling, prediction and analysis. Nat Protocols. 
2015;10(6):845–858.

 76. Genheden S, Ryde U. The MM/PBSA and MM/GBSA methods to esti-
mate ligand-binding affinities. Expert Opin Drug Discov. 2015;10(5): 
449–461.

 77. Deng Y, Roux B. Computations of Standard Binding Free Energies with 
Molecular Dynamics Simulations. J Phys Chem B. 2009;113(8):2234–2246.

78. Oany AR, Sharmin T, Chowdhury AS, Jyoti TP, Hasan MA. Highly 
conserved regions in Ebola virus RNA dependent RNA polymerase 
may be act as a universal novel peptide vaccine target: a computational 
approach. In Silico Pharmacol. 2015;3:7.

79. Dikhit MR, Kumar S, Vijaymahantesh, et al. Computational elucidation 
of potential antigenic CTL epitopes in Ebola virus. Infect Genet Evol. 
2015;36:369–375.

80. Khan MA, Hossain MU, Rakib-Uz-Zaman SM, Morshed MN. 
Epitope-based peptide vaccine design and target site depiction against 
Ebola viruses: an immunoinformatics study. Scand J Immunol. 
2015;82(1):25–34.

81. Ali MT, Islam MO. A highly conserved GEQYQQLR epitope has 
been identified in the nucleoprotein of Ebola virus by using an in silico 
approach. Adv Bioinformatics. 2015;2015:278197.

82. Stavrakoudis A. Conformational flexibility in designing peptides for 
immunology: the molecular dynamics approach. Curr Comput Aided 
Drug Des. 2010;6(3):207–222.

83. Chandrika B-R, Subramanian J, Sharma SD. Managing protein flex-
ibility in docking and its applications. Drug Discov Today. 2009;14(7): 
394–400.

84. Legge F, Budi A, Treutlein H, Yarovsky I. Protein flexibility: Multiple 
molecular dynamics simulations of insulin chain B. Biophys Chem. 
2006;119(2):146–157.

85. Wan S, Flower DR, Coveney PV. Toward an atomistic understanding 
of the immune synapse: Large-scale molecular dynamics simulation 
of a membrane-embedded TCR–pMHC–CD4 complex. Mol Immunol. 
2008;45(5):1221–1230.

86. Petrone PM, Garcia AE. MHC–peptide binding is assisted by bound 
water molecules. J Mol Biol. 2004;338(2):419–435.

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Advances and Applications in Bioinformatics and Chemistry 2017:10 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

25

In silico-based vaccine design against EBOV GP

Predicted secondary structure

Template predicted secondary
structure

Template known secondary structure

Query sequence
Template sequence

Predicted secondary structure

Template predicted secondary
structure

Template known secondary structure

Query sequence
Template sequence

Predicted secondary structure

Template predicted secondary
structure

Template known secondary structure

Query sequence
Template sequence

Figure S1 Multiple sequence alignment and secondary structure predictions of query sequence (HLA*A15:02) and template sequence (PDB: 2BCK).
Notes: Green color represents alpha helix, whereas beta sheet is represented by blue color.
Abbreviations: HLA, human leukocyte antigen; PDB, Protein  Data Bank.

A B

C D

Figure S2 Visualization of the best docked HLA–epitope complexes obtained from molecular docking analysis. The complexes are representing the interaction of HLA 
(HLA*A15:02) with (A) ATEDPSSGY, (B) TEDPSSGYY, (C) LFEVDNLTY, and (D) LLQLNETIY epitope.
Abbreviation: HLA, human leukocyte antigen.
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Figure S3 Kolaskar and Tongaonkar antigenicity prediction of the most antigenic protein.
Notes: Here, the x-axis and y-axis represent sequence position and antigenic propensity, respectively. The threshold value is 1.000. The regions above the threshold are 
antigenic, shown in yellow while, green color reflects the polypeptide regions that could not satisfy the threshold margin.

Figure S4 Emini surface accessibility prediction of the most antigenic protein.
Notes: Here, the x-axis and y-axis represent sequence position and antigenic propensity, respectively. The threshold value is 1.000. The regions above the threshold are 
antigenic, shown in yellow while, green color reflects the polypeptide regions that could not satisfy the threshold margin.
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Figure S5 Chou and Fasman β-turn prediction of the most antigenic protein.
Notes: Here, the x-axis and y-axis represent sequence position and antigenic propensity, respectively. The threshold value is 1.000. The regions above the threshold are 
antigenic, shown in yellow while, green color reflects the polypeptide regions that could not satisfy the threshold margin.

Figure S6 Karplus and Schulz flexibility prediction.
Notes: Here, x-axis and y-axis represent position and score, respectively. The threshold is 1.00. The flexible regions are shown in yellow while, green color reflects the 
polypeptide regions that could not satisfy the threshold margin.
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Figure S7 Bepipred linear epitope prediction of the most antigenic protein.
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Table S1 Results of binding affinity and binding energy calculations of the selected epitopes

Epitope Binding affinity (kcal/mol) (DG) MM–PBSA (DG) MM–GBSA

ATEDPSSGY −6.8 −21.89 −44.86
TEDPSSGYY −6.5 −20.98 −57.63
LFEVDNLTY −6.3 −33.58 −55.96
HKEGAFFLY −7.6 −38.48 −63.89
LLQLNETIY −7.0 −37.25 −48.63
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