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Abstract: Tumors are one of the most serious human diseases and cause numerous global 

deaths per year. In spite of many strategies applied in tumor therapy, such as radiation therapy, 

chemotherapy, surgery, and a combination of these treatments, tumors are still the foremost 

killer worldwide among human diseases, due to their specific limitations, such as multidrug 

resistance and side effects. Therefore, it is urgent and necessary to develop new strategies for 

tumor therapy. Recently, the fast development of nanoscience has paved the way for designing 

new strategies to treat tumors. Nanomaterials have shown great potential in tumor therapy, due 

to their unique properties, including passive targeting, hyperthermia effects, and tumor-specific 

inhibition. This review summarizes the recent progress using the innate antitumor properties of 

metallic and nonmetallic nanomaterials to treat tumors, and related challenges and prospects 

are discussed.
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Introduction
The development of tumors occurs at the molecular level1 when multiple subgroups 

of genes undergo genetic alterations. Either tumor-suppressor genes are inactivated 

or oncogenes are activated, which leads to malignant proliferation of tumor cells, 

tissue infiltration, and organ dysfunction.2 Many methods have been developed for 

tumor therapy, such as immunotherapy,3,4 gene therapy,5,6 and radiofrequency ablation 

(RFA).7–9 Nevertheless, traditional radiotherapy,10,11 surgery,12–14 and especially 

chemotherapy15,16 are still the major strategies utilized in clinical tumor treatments. 

However, chemotherapy has a number of problems, including nonspecific distribution 

of the drug and the lack of tumor-specific treatments.17 In the continuous fight against 

tumors, patients have to be administered drugs that increase in dose over time, which 

is associated with considerable adverse effects, such as multidrug resistance and 

accumulative systemic toxicity. Chemotherapy also causes side effects in healthy 

tissues, which have negative impacts on the quality of life of the patients.18,19 In addi-

tion, chemotherapy may concomitantly damage adjacent organs or tissues, and these 

adverse effects are difficult to avoid.20,21

In recent decades, the development of nanotechnology has provided an opportunity 

to overcome the aforementioned side effects. The integration of various nanomaterials 

(NMs) with spectroscopic, biochemical, and optical methods has allowed the 

development of advanced methods for tumor therapy, which may revolutionize the 

treatment of tumors. An emerging approach is to utilize nanotechnology and NMs 

to minimize toxicity to healthy tissues. Various NMs have performed attractively in 

various aspects of antitumor treatment and garnered intense research interest, and 
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they have presented great potential for antitumor treatment 

by enhancing the effectiveness of treatments and reducing 

systemic side effects.

The term “nano-” is derived from the Greek noun nanos,22 

and a nanometer (nm) is equivalent to 10-9 m.23 The specific 

physical and/or chemical properties of NMs make them 

very attractive in biomedical applications.24,25 Over the past 

few decades, the explosion of studies involving NMs can be 

ascribed to their special optical, thermodynamic, magnetic, 

and mechanical properties.26–28 Potential medical applications 

of NMs have been recognized to have good biocompatibility.29 

Nanoparticles (NPs) with suitable diameter range have been 

reported to be able to enter blood circulation and undergo 

endocytosis into cells.30 Furthermore, scientific research 

shows that NM-based therapeutics have great potential in the 

treatment of tumors, diabetes, infection, neurodegenerative 

disease, and inflammation.31–33 The integration of tumor ther-

apy with NMs is expected to bring about new breakthroughs 

for nanotechnology in the field of medicine.

The physical and chemical properties of NMs impact on 

biodistribution, cellular processes, and cytotoxic effects.27,34,35 

For example, the size of the NM affects cellular tropism by 

facilitating or inhibiting actin polymerization.36 In addition 

to size, the shape of NMs influences organ and cellular 

tropism.37 Spherical NMs promote phagocytosis of mac-

rophages, but disk-shaped structures do not. By tailoring 

these aspects, specific properties of NMs can be used to 

design new biomedical applications, which include various 

clinical and research activities and modulation of processes 

in target cells.38 With the development of nanotechnology, 

the integration of NMs into tumor therapeutics is one of the 

rapidly advancing fields, and more new NMs will be increas-

ingly used in the field of tumor treatment.

Based on nanotechnology, various NMs have been devel-

oped, such as iron oxide NPs, gold NPs (AuNPs), cerium oxide 

NPs, carbon-based materials, polymeric NPs, and quantum 

dots (QDs).39–44 NMs have shown great potential in tumor 

prevention, detection, diagnosis, imaging, and treatment. Due 

to their specific physical, chemical, and biological properties 

and unique structure, NMs are able to work at the molecular 

level. Therefore, NMs themselves are antigenic or medici-

nally active, and can stimulate a strong immune response 

in the body.45 Some NMs can kill or inhibit pathogenic cell 

types by exploiting their autoimmunity or cellular toxicity 

(selective block by toxicity).46–48 Various NMs themselves are 

used as potential antitumor drugs, and are being developed 

as photothermal therapy (PTT) agents.49,50 Therefore, this 

review discusses some specific metallic NMs (MNMs) and 

nonmetallic NMs that act as a medicine or drug additive in 

tumor therapy (Figure 1).

Metallic NMs
MNMs are metal or metal oxide nanocrystals. MNMs are 

readily prepared, have surfaces relatively easy to modify, 

and in general have low toxicity.51,52 Because of their unique 

properties, the advantage of using MNMs lies primarily in 

Figure 1 Metallic and nonmetallic nanomaterials that act as active medicine or drug additive in tumor therapy through their innate antitumor properties.
Abbreviations: NMs, nanomaterials; NPs, nanoparticles.
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their ability to interact directly with cell membranes and 

intracellular structures.41,42 As discussed earlier, these special 

properties make MNMs useful for numerous diagnostic and 

therapeutic applications.53 Most MNMs for tumor therapy 

consist of iron oxide, gold NPs, and cerium oxide NPs 

(Figure 2).54–57

Iron oxide
Iron oxide is a type of magnetic material that is used in tumor 

PTT and targeted therapy. PTT is based on using optical heat-

ing to facilitate direct and specific destruction of tumor cells.58 

PTT is a highly promising approach to tumor therapy. Photo-

therapy employs near-infrared light (NIR)-absorbing agents 

with high absorption in the NIR region, which then release 

vibrational energy (heat) to kill the targeted tumor cells.

Fe
3
O

4
-based magnetic NPs are recognized as promis-

ing hyperthermia-specific agents. To treat metastatic bone 

tumors, Matsumine et al59 used novel Fe
3
O

4
 powder for 

hyperthermia-induced apoptosis in several patients. One 

week later, after incorporating Fe
3
O

4
 in the adhesive that 

repaired the bone, patients were subjected to a localized 

electromagnetic field at a temperature estimated to be 

40°C–45°C, in order to improve the lesion. This treatment 

stopped further metastatic progression, and demonstrated the 

benefit of using iron oxide in bone-tumor treatments.

In addition to PTT, potential medical applications of 

magnetic NPs have also been approved, due to their good 

biocompatibility.26 According to a recent report, magnetic 

NPs with diameters ranging between several (~9 nm) and 

hundreds (~200 nm) of nanometers can circulate in blood 

Figure 2 Transmission electron microscope images of (A) iron oxide nanoparticles; (B) gold nanoparticles; (C) gold nanocages; (D) cerium oxide nanoparticles. 
Notes: Figure A adapted with permission from Bronstein LM, Huang XL, Retrum J, et al. Influence of iron oleate complex structure on iron oxide nanoparticle formation. Chem 
Mater. 2007;19(15):3624–3632. Copyright © 2007, American Chemical Society.54 Figure B adapted with permission from Schulz-Dobrick M, Sarathy Kv, Jansen M. Surfactant-
free synthesis and functionalization of gold nanoparticles. J Am Chem Soc. 2005;127(37):12816–12817. Copyright © 2007, American Chemical Society.55 Figure C adapted with 
permission from Chen JY, wang DL, Xi JF, et al. Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells. Nano Lett. 
2007;7(5):1318–1322. Copyright © 2007, American Chemical Society.56 The method reported in Lee et al57 was used when creating the nanoparticles shown in Figure D.
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vessels and undergo endocytosis into cells.60 The authors 

also found that dimercaptosuccinic acid-coated iron oxide 

NPs have excellent potential for applications that target 

breast-tumor cells.

Furthermore, Fe
3
O

4
 NPs can be functionalized using anti-

bodies and achieve active targeted tumor therapy. There is a 

report of using anti-HER2-conjugated polypyrrole-Fe
3
O

4
 NPs 

to target and damage SK-BR-3 breast tumor cells in vitro.61 

In fact, superparamagnetic iron oxide NPs (SPIONs; Fe
3
O

4
 or 

Fe
2
O

3
)62 have been recognized for clinical use in the form of 

ferucarbotran (carboxydextran SPIONs), ferumoxides (dextran 

SPIONs), and ferumoxtran 10 (dextran SPIONs).63 These 

SPIONs are highly biodegradable and biocompatible; the iron 

core is recycled into soluble ferritin iron or hemosiderin.64 

Iron oxide NPs are also intensively used in imaging system 

as contrast agents in pathophysiological studies.65

Gold NMs
In recent years, AuNMs have shown important potential 

in various biomedical and research applications, such as 

catalysis, bioanalysis, and imaging.66,67 The preparation 

technology is simple, and it is easy to control the size and 

shape of AuNMs.68,69 It has been reported that AuNMs can 

selectively and specifically recognize tumor cells.70,71 Studies 

reported in the literature have shown that AuNMs are eas-

ily functionalized, increase the time of circulation, and are 

stable in systemic circulation. In addition, AuNMs have low 

toxicity and protect drugs from potential transformation in 

tissues and organs. Perhaps the most important property of 

AuNMs is their ability to destroy tumor cells.72 Thus, such 

AuNMs as AuNPs73,74 and gold nanocages56 are a promising 

tool for selectively killing tumor cells through photothermal 

(PT) damage.

AuNPs can enhance the apoptotic effect of tumors,7 

which makes it possible to decrease radiation doses, thereby 

reducing side effects on surrounding normal tissues. AuNPs 

can also enhance the effect of radiotherapy, which has been 

verified in vivo and in vitro in animal models of tumors.72 

AuNPs are commonly used as nanobioconjugates.69,70,73 The 

functionalization of NPs (eg, with polyethylene glycol [PEG] 

or antibodies) allows the nanobioconjugates to remain in the 

bloodstream and preferentially accumulate in tumor tissue. 

These nanobioconjugates have the ability to penetrate the cell 

nucleus, increasing the likelihood that the active cytostatic 

substance acts directly on DNA.74 Studies reported in the 

literature have shown that multifunctional AuNPs can be 

used both to image and treat tumors.70

RFA is a novel therapeutic method for the treatment of 

tumors. This method uses imaging guidance to place a needle 

electrode either through the skin or directly (during surgery) 

into the pathological tissue. High-frequency electrical cur-

rents pass through the electrode and create heat that destroys 

tumor cells. AuNPs have been used in this field, making it 

possible to destroy tumor cells noninvasively by RFA.12–14 

The optical properties of nanoshells can be utilized in tumor-

ablation techniques with NIR light or RFA. Laroui et al 

developed nanoshells coated with gold, absorbing specific 

wavelengths of light.75 Fortina et al synthesized nanoshells 

linked to a ligand.76 Citrate-coated gold has been shown to 

have antitumor properties.77,78

Xia et al56 synthesized novel gold nanocages ~45 nm in 

edge length. These gold nanocages have shown potential for 

targeted PT inhibition of tumor cells. The nanocages were 

designed to convert 810 nm NIR light to heat via a large 

absorptive cross section of 3.48×10-14 cm2, and strongly 

absorbed light in the NIR region. PT studies of the nanocages 

showed that the PT cell-damage power-density threshold 

was 1.5 W/cm2, which is lower than that of gold nanoshells 

(35 W/cm2) and gold nanorods (10 W/cm2). By conjugating 

the nanocages with monoclonal antibodies (anti-HER2), 

the nanocages can target epidermal growth factor receptors 

(EGFRs) that are overexpressed on the surface of breast-

tumor cells. These results indicated that shape- and size-

modulated AuNMs could be potential tumor PTT reagents.

Cerium oxide nanoparticles
Cerium oxide NPs include a cerium core surrounded by an 

oxygen lattice.79 In normal cells, these NPs have an antioxidant 

and cytoprotective role under neutral pH. In an acid medium, 

which is one of the characteristics of tumor cells, these NPs 

show prooxidant and cytotoxic effects. Pei et al studied the 

antitumor effects of cerium oxide NPs in in vitro models, 

and the results showed that cerium oxide NPs inhibited 

the growth of tumor cells.80 There has been another report 

indicating that a high concentration (10 μg/mL) of cerium 

oxide NPs can suppress tumor-cell migration and inhibit 

tumor-cell proliferation.81

Quantum dots
Another popular type of NM are QDs.40 QDs are very small 

nanocrystals that emit fluorescence when stimulated by a spe-

cific wavelength of light, and their diameter is approximately 

2–10 nm.44,82,83 Their structure consists of an inorganic core 

and shell, which can be modified with biological molecules, 

such as PEG.84 Their emission and absorption properties can 

be controlled precisely by modulating their size and shape.85 

The benefit of QDs for tumor therapy is attributed to their 

mechanisms of photosensitization and radiosensitization. 
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With electronic energy levels in the 1–5 keV range, QDs 

can be used as photosensitizers for photodynamic treat-

ments, which have become an approved therapy modality 

for some types of tumors. Because of their high electron 

and atom density, QDs act as radiosensitizers that absorb 

high-energy photons and cause localized or targeted damage 

to tumor cells.86

Nonmetallic NMs
There are several different types of nonmetal NMs (Figure 3), 

and carbon compounds are some of the most extensively 

studied. Several different “pure” carbon-based constructs 

have been studied, such as fullerenes and their derivatives, 

which are composed of carbon atoms arranged in a spherical 

shape called a truncated icosahedron, and carbon nanotubes 

(CNTs), which are most frequently studied in biological 

systems.3,87 Fullerenes and their derivatives are readily acces-

sible to cells, and are conjugated with various therapeutic mol-

ecules because they have a unique nanostructure. In addition, 

the pure carbon composition of fullerenes gives them good 

biocompatibility. Moreover, carbon NMs have been linked 

with biological molecules and polymers, and so can be effec-

tively used for antitumor applications in vivo.40 Therefore, 

functional fullerenes and their derivatives can be linked to 

a wide variety of active molecules to target tumor cells.87,88 

Based on these experiments, fullerenes and their derivatives 

have become a new class of promising candidates for tumor 

treatments. This portion of the review attempts to provide 

insight into the progress of the use of fullerenes and their 

derivatives as tumor-therapy drugs.

C60
C

60
 (or “bucky-ball” C

60
) is a hollow sphere with a diameter 

of 1 nm, and is made up of 60 carbon atoms. C
60

 is effective 

in terms of interactions with the immune system, and has 

dramatic potential as an antitumor drug. Compared with 

conventional antitumor chemicals, fullerenes and their 

derivatives are more efficient at inhibiting the growth of 

tumors. The result is not due to toxic effects on tumor cells, 

but the fullerenes, which have almost no toxicity in vivo or 

in vitro, have a strong ability to enhance immunity and protect 

normal tissues from tumor invasion.89,90

Endohedral metallofullerenes (fullerenes encapsulating 

a metal atom) have shown dramatic potential for biomedi-

cal applications. For example, Hirahara et al91 synthesized 

a multihydroxylated fullerene – Gd@C
82

(OH)
22

. Compared 

with some other clinical antitumor drugs, C
60

(OH)
20

 and 

Gd@C
82

(OH)
22

 NPs are highly effective at suppressing 

tumor growth in mice with negligible side effects. The high 

antitumor activity may be because the water-soluble NMs 

can effectively trigger the host immune system to eliminate 

tumor cells and regulate the angiogenesis and oxidative 

defense system in vivo.92

Carbon nanotubes
CNTs are coaxial graphite layers with cylinders.93 CNTs 

are formed by polymerization of single carbon atoms under 

specific conditions.94 According to their structure, CNTs 

can be divided into two categories: single-walled CNTs 

(SWCNTs) and multiwalled CNTs (MWCNTs). The former 

is a single cylindrical carbon wall, and the latter is an MW 

Figure 3 Structures of nonmetallic nanomaterials for tumor therapy.
Notes: (A) C60; (B) carbon nanotubes; (C) graphene; (D) chitosan-structure units β-(1,4)-2-amino-d-glucose and β-(1,4)-2-acetamido-d-glucose.
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cylinder nested in other cylinders.95 With the development 

of nanotechnology, integration of CNTs into tumor thera-

peutics is a rapidly advancing field.96,97 There are reports that 

CNTs promote the phagocytosis of dendritic cells at tumor 

sites, which produce more antigens to dendritic cells, sig-

nificantly increasing the immunogenicity of proteins in the 

tumor.98 Similarly, inhaled CNTs can inhibit lung-resident 

dendritic cells and promote lung immune suppression.47 

Regarding the direct therapeutic effect, CNTs can induce 

tumor-tissue destruction by PTT, based on strong optical 

absorbance under NIR-light excitation.99,100 Therefore, CNTs 

have attracted interest as efficient PTT agents for tumor 

treatments.101–103 Hyperthermia therapy is another type of 

optional solution for tumor treatment, especially for some 

solid malignant tumors, such as breast and liver tumors. 

CNTs are also used as PT tumor-ablation mediators.100 Due 

to the thermal conductivity and optical properties of CNTs, 

they have become mediators to optically stimulate NTs that 

are placed inside living cells and that kill tumor cells via 

local hyperthermia.

There has been much research to show the feasibility 

of CNTs in the treatment of malignant tumors. SWCNTs 

are promising candidates as a PTT agent, because they also 

have high absorption in the NIR spectrum, which is ideal 

for inducing PT damage to tumor cells or tissues. Continuous 

NIR radiation can lead to cell death, because of excessive 

local heating of SWCNTs. Kam et al104 showed that this 

approach is effective. In a similar work,105 the authors 

showed that HER2-IGFR-SWCNTs were able to destroy all 

targeted tumor cells. MWCNTs also efficiently absorb NIR 

light and efficiently convert the absorbed energy into thermal 

energy. MWCNTs can be stimulated with NIR irradiation 

to damage cervical tumor HeLa cells106 and EAC cells.107 

CNTs make it possible to damage tumor cells noninvasively, 

and the potential applications for CNTs in tumor therapy 

have attracted much clinical interest. Therefore, CNTs can 

be considered another class of tumor PTT system, and are 

highly promising for clinical trials.

Graphene
Graphene is an emerging NM with single-layered carbon 

atoms in a two-dimensional honeycomb structure. Graphene 

has attracted great interest since its tremendous ground-

breaking discovery in 2004.108–110 Graphene and its different 

subtypes, such as graphene oxide (GO) and reduced graphene 

oxide (RGO), have been extensively studied in the realm of 

nanomedicine, due to their exceptional physical, chemical, 

and mechanical properties.111 Graphene-based NMs have a 

well-described role in tumor management.112 Graphene-based 

NMs are used mainly for PTT.

Yang et al113 reported that PEGylated GO (GO-PEG) 

showed highly efficient tumor ablation under NIR-light 

irradiation, and GO-PEG was used for in vivo PTT. These 

authors noticed that GO-PEG had no obvious side effects, 

and was safe during the treatment. In a follow-up study, 

Yang et al114 verified that PEGylated nano-RGO (nRGO-PEG) 

with an ultrasmall average diameter of ~27 nm was a better 

NM than GO for PTT with low-power laser irradiation. The 

in vivo PTT study demonstrated that nRGO-PEG was more 

efficient in tumor ablation and that NIR laser-power density 

was greatly reduced. These results indicated that nRGO-

PEG strongly absorbs light in the NIR region (808 nm), 

with an intensity threshold of 0.15 W/cm2, to induce thermal 

destruction of tumor cells. There have been some studies that 

reported that nanoparticles such as AuNPs,115,116 AgNPs,117 

copper monosulfide NPs,118 and copper(I) oxide NPs119 

attached to the surface of GO synergistically enhanced PTT. 

These results highlight that both the size and surface chem-

istry of GO are critical to the effectiveness of in vivo PTT, 

which indicates that optimized nanographene could be a PTT 

reagent for treating tumors.

Chitosan nanoparticles
Chitosan is a type of cationic oligosaccharide that is the 

major component of the exoskeleton of crustaceans and 

insects.120 Chitosan is a biopolymer containing β-(1,4)-

2-amino-d-glucose and β-(1,4)-2-acetamido-d-glucose 

units.73 Chitosan NPs (ChNPs) are obtained by deacetyla-

tion, which removes an acetate moiety from chitin. ChNPs 

are primarily degraded in the colon by the action of lysozyme 

and bacterial enzymes, and are finally eliminated in the 

feces. Chitosan is a natural polysaccharide that has excellent 

biocompatibility, biosecurity, biodegradability, and nontoxic 

characteristics.121,122 ChNPs are commonly modified with 

epichlorohydrin and PEG dicarboxylic acid.123,124 ChNPs 

also have dramatic potential for tumor therapy.

ChNPs can directly affect the metabolism of tumor cells 

by inducing apoptosis and inhibiting cellular growth. Like-

wise, ChNPs play a role in increasing the immune function 

of the organism by facilitating the contact between the drug 

and the tumor-cell membrane.125,126 Reports show that ChNPs 

have high stimulatory activity on B and T lymphocytes and 

the humoral immune system, which can be activated at the 

same time.127 ChNPs also have a strong immunostimulating 
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effect by increasing the activation and accumulation of 

polymorphonuclear and macrophage cells, and they induce 

cytokine production after intravenous injection.128,129 There 

is another example that indicates that ChNPs have their own 

antitumor effects. ChNPs themselves have a positive charge; 

therefore, they can neutralize the negative charges on the 

surface of tumor cells, which has a tendency to contribute 

to their selective uptake. In this way, ChNPs can effectively 

inhibit proliferation of tumor cells by increasing the con-

centration of cytostatic agents at the tumor sites.130 All these 

attributes and examples show that ChNPs have great potential 

in tumor therapy.

Challenges and future perspectives
Over the last 20 years, NMs have come to play a significant 

role in commercial development. Indeed, we might expect 

to produce many breakthroughs and new prospects for the 

world economy from advances in nanotechnology. With 

the potentially wide application of NMs in the future, NMs 

may be extensively used in various fields, especially tumor 

therapy. NMs can be used for clinical diagnosis and tumor 

therapy, based on their size, biocompatibility, surface 

chemistry, relatively good stability, and adjustable toxicity 

in biological systems. It is highly expected that the applica-

tion of NMs in tumor therapy will greatly improve current 

methods of tumor-cell detection, tumor imaging, and tumor 

therapy, while reducing toxicity compared to traditional 

tumor treatments.

However, there are several challenges in the field, and 

there are still controversies about the potential risk of anti-

tumor therapies. The most pressing problems are potential 

chronic and acute toxic effects; the potential toxicity of NMs 

cannot be ignored in antitumor therapy.131 There have been 

reports on the toxicity of NMs. NMs may be attached to the 

surface of biological membranes by adsorption or electrostatic 

interactions, and they can cause damage to cells by producing 

reactive oxygen species, leading to protein denaturation, lipid 

peroxidation, DNA damage, and ultimately cell death.132–134 

For instance, NPs and CNTs can damage the respiratory and 

cardiovascular systems,135,136 and they can enter the central 

nervous system through the blood–brain barrier, resulting in 

a variety of nervous system diseases.137–139 In vitro studies 

have shown that CNTs can induce cell apoptosis, decrease 

cell viability, and disrupt the cell cycle and inflammatory 

responses.140–142 It has been confirmed that CNTs can damage 

lung tissue143 and that they are toxic to the immune system 

in mice.46 Besides, the blood incompatibility of CNTs also 

limits their use in the clinic. Although many studies have 

shown that the functionalization of CNTs can improve their 

water-solubility, proof of their biocompatibility and safety 

is currently insufficient. For example, Li et al144 reported that 

sugar-functionalized SWCNTs formed stable homogeneous 

aqueous solutions, Barzegar et al145 reported that noncovalent 

functionalized SWCNTs could also improve the water solu-

bility of SWCNTs, and Ali et al146 functionalized SWCNTs 

with the TGAD enzyme to render SWCNTs soluble in a 

plethora of solvents. However, the biocompatibility of func-

tionalized SWCNTs was not evaluated in these studies. When 

QDs are applied in the body, their toxicity cannot be ignored, 

because they may contain heavy metals. It is necessary to 

carry out a detailed toxicity study to ensure safety prior to 

further applications in humans. Further research will not be 

conducive to the clinical application of NMs and industrial 

production unless the toxicity problem is resolved. In addi-

tion, only a few types of materials have been approved by 

the US Food and Drug Administration, and very few NMs 

have been approved as antitumor agents to enter Phase III 

clinical trials or enter the market, which indicates that NMs 

need to be understood more deeply before their potential 

application in tumor therapy.

Therefore, the long-term toxicity of NMs to living 

systems needs to be intensively studied. There is an article 

that analyzes the possible toxicological implications of NMs 

in nanomedicine. The authors believed that it is necessary 

to research the mechanisms of injury in cells due to NMs 

extensively before NMs can be used in tumor treatments.147 

Development of tumor therapies is a multidisciplinary 

field, and with more in-depth research on tumor biology, 

tumor immunology, molecular biology, and NMs, an ideal 

therapy or NM will eventually be produced for the treatment 

of tumors. The conversion of nanotechnology to routine 

clinical practice will require a multidisciplinary approach 

guided by clinical, ethical, and social perceptions. In view of 

the significant research results being dedicated to the field, 

it may be expected that humans will greatly benefit from 

nanotechnology and NMs in the very near future, especially 

in tumor therapy.
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