Orthokeratology: clinical utility and patient perspectives

Abstract: Orthokeratology (ortho-k) is a special rigid contact lens worn at night to achieve myopic reduction and control. This review provides an overview on prescribing ortho-k, including clinical consideration on patient aspect and lens design; its clinical outcomes; and clinical efficacy and safety. Patient satisfaction was summarized. In order to achieve long-term healthy ortho-k treatment, it requires both patient and practitioners’ care and rapport to maintain good ocular health and lens conditions.

Keywords: orthokeratology, efficacy, patient satisfaction, myopic reduction, myopic control

Introduction

There is an increasing clinical interest in myopic progression in children. In addition, scientific interest in various myopic control methods has also been strong. In recent years, orthokeratology (ortho-k) treatment has become a clinically acceptable and effective method. The treatment involves a special curved lens fitted to mold the corneal contour in order to achieve myopic reduction and has also resulted in myopic retardation. Clinicians are required to refine the technique and remain up to date in this field.

This review provides an overview of ortho-k, clinical considerations, and outcomes for different forms of ametropia, as well as clinical efficacy and safety. Ortho-k treatment is long term and requires patient care and rapport to monitor ocular health and lens conditions.

Overview of ortho-k

An initial study on corneal reshaping, or ortho-k, was reported in the 1950s, but the clinical term “ortho-k” was not introduced until 1962. Kerns carried out the first large-scale clinical studies to investigate the safety and efficacy of ortho-k. However, he admitted that the change in refractive errors was unpredictable. Initially, ortho-k was a corneal molding procedure that involved wearing a rigid gas permeable lens. The myopic reduction was about 1.00 D, but the progress of myopic reduction was slow, and the procedures involved a series of lenses with different back optic zone radii (BOZR). A breakthrough in ortho-k was achieved when high gas permeable materials and computerized corneal topographers were introduced. The lens was modified for “accelerated ortho-k,” which achieved faster responses and up to 5.00 D in myopic reduction. This meant that the reduction effect can be achieved within the first month of lens wear.
A conventional rigid gas permeable lens is a bicurved lens that has a BOZR and a peripheral curve. A basic standard ortho-k lens, or reverse geometry lens, has three curves, from center to periphery: a BOZR, a reverse curve, and a peripheral curve. The reverse curve assists the corneal molding effect. In order to improve lens centration, the lens is further modified to multicurve design. An alignment curve is introduced and incorporated between the reverse curve and the peripheral curve. This alignment curve may also be divided into two curves (AC1 and AC2) to form a five-zone lens.

This combination of different curves controls the lens sag height to create a molding effect. Adjusting the BOZR alone does not affect the lens fitting. Induced corneal changes are dependent on the combination of the BOZR and the used reverse curve, that is, overall lens sag.

In closed eye condition, the tear layer under the lens sag creates both a positive force and a negative force on the cornea to change the efficacy of treatment. The positive force is exerted to flatten the central cornea, and the negative force is extracted against the mid-peripheral cornea. With these two forces, the epithelial cells are driven from center to mid-peripheral cornea, resulting in a negative epithelial lenticule to reduce the myopia. The zone of the reverse curves is a relief area for tissue redistribution.12

The lens centration is determined by using the alignment curve where the lens is landed on the peripheral cornea. The tear exchange is maintained by adequate edge lift under the peripheral curve.12

In contact lens assessment with the application of fluorescein, an ortho-k lens shows bearing at the corneal apex because the thickness of tear layer is ~5 μm.19 Bearing is also found at the alignment curve because no tears exist when the alignment curve aligns the peripheral cornea. The thickness of tear layer is maximal at the BOZR/reverse curve junction. Any tear layer thickness >20 μm is visible in green when fluorescein is applied.18

Clinical considerations
Ortho-k was originally prescribed for adults to reduce myopia. As a myopic control effect was found in many studies, it is now mainly prescribed for children. In order to enhance the efficacy and safety of ortho-k, practitioners should consider the following factors before prescribing the lens.

1. Basic patient criteria
 Many studies have been conducted with children at the age of 7 years,16,19–26 and some schools/colleges of optometry have reported age recommendations for myopia treatment with ortho-k in children as young as 5–6 years.27 However, ortho-k treatment depends more on the maturity level of the patient rather than on age. In addition to patient maturity level, practitioners should also consider the level of parent participation.27

 Parents should help their children in monitoring lens insertion and removal, as well as lens usage and care.28 Incomplete instructions or deviation from the procedures will lead to lens contamination. Moreover, parental support applies also to aftercare visits, in which practitioners will evaluate ocular health and refractive change.29 Both the parties will discuss and agree on a solution if any abnormality is found.

 Cho et al recommended that informed consent should be obtained from the patient, his/her parents, and practitioners.29 Both the patient and his/her parents should be informed about potential effects, patient alternatives, and the importance of compliance. Practitioners should provide an emergency contact number for any serious issues. The three parties share equal responsibility for good, long-term clinical care under ortho-k treatment. As with any kind of medical treatment, a good rapport is also required.

2. Baseline refraction errors
 Most studies reported patients with mild-to-moderate myopia (−0.75 D to −5.00 D) and low astigmatism (up to 1.50 D) as good candidates for ortho-k treatment. This is because ~90% of myopia and 50% of astigmatism have been corrected under these conditions.16,19–26,30,31 Several studies have reported that toric ortho-k could reduce astigmatism up to −3.00 D;21,32–34 and scattered cases have reported full correction for high myopia (myopia >6.00 D).24 However, these studies included no details on ocular health after lens wear. Clinically, practitioners may use a series of ortho-k lenses to correct high myopia.

3. Corneal profile
 Keratometers can measure only up to 3 mm and cannot reflect the true corneal profile after ortho-k treatment. Therefore, corneal topography is crucial in prescribing ortho-k because it helps in screening out unqualified patients who show a decentered corneal apex, keratoconus, or irregular corneas.35–37 Topography should be accurate and repeatable35,36 and should provide various maps including axial (for corneal power), tangential (for corneal shape), refractive, and curvature maps in different adjustable scales.37 Practitioners must measure the corneal profile in every aftercare visit to monitor any subtle changes in corneal curvature.
During the initial assessment, both the axial and tangential power maps are used to check for any corneal asymmetry or abnormality. Once ortho-k is fitted, the cornea will be molded, and the molding response is always compared with the baseline topography. The subtraction map function is essential to evaluate topographical changes and the lens–corneal relationship. The common ortho-k responses include bull’s eye, central island (central curvature steepens than periphery), frowny face (lens decenters down), and smiley face (lens decenters up). With any undesirable responses, practitioners should amend the lens fitting accordingly.

Apart from screening out unsuitable patients, corneal astigmatism is judged by the corneal profile. Baseline corneal astigmatism was suggested to be <1.50 D in the previous studies until toric ortho-k was introduced to correct up to ~3.00 D astigmatism. Clinically, good centration and a reduction effect are found when the refraction astigmatism is in line with the corneal astigmatism, in terms of diopter and axis, to prevent residual astigmatism. Any against-the-rule or limbus-to-limbus corneal astigmatism may affect lens centration.

4. Horizontal visual iris diameter (HVID) and pupil diameter. HVID is used to determine the lens diameters and can be measured by a ruler, by adjustable slit size on a slit lamp, or based on a corneal topographical map. Some lens manufacturers suggest that the lens size should cover 95% of the HVID at most as lateral decentration may occur in a smaller lens.

Pupil diameter should be measured under both photopic and scotopic environments. If the treatment zone is smaller than the pupil size, then the patients may experience flare and glare, especially in dim light. According to Munnerlyn’s formula, the more the myopic reduction using ortho-k, the smaller the treatment zone size. van der Worp and Ruston suggested that the treatment zone should be 3.5 mm with changes in corneal thickness of 20 μm and myopic reduction of 4.90 D.

5. Eyelid features
Loose eyelids may not exert enough force, whereas tight eyelids may exert too much force on the ortho-k lens in closed eye condition. As this is difficult to measure clinically, an overnight trial is essential to assess topographical responses.

Lens design consideration
A spherical or toric ortho-k lens is prescribed based on corneal profile and refractive errors. A spherical lens can only correct slight astigmatism. When corneal astigmatism is ≥1.50 D, fitting a spherical lens leads to induced astigmatism or lens decentration and results in poor vision. A toric lens is suggested under these conditions. Only the reverse, alignment, and/or peripheral curves are toric to enhance the centration of lens fit.

Practitioners can use computer software to generate a new lens or select an initial lens from a set of trial lenses. Some computer software uses patient information including spectacle prescription, HVID, and corneal sagittal height data to determine the ortho-k lens parameter. Practitioners may be allowed to adjust the lens parameters by using the software to estimate the lens fit. Some manufacturers provide a diagnostic lens set so that practitioners can evaluate fit in-office. The first lens from the diagnostic lens set can be selected according to the flat K, eccentricity, and/or manufacturer’s fitting guide.

When practitioners receive the diagnostic lenses, both static and dynamic assessments of contact lens fitting are suggested to eliminate major size discrepancies. However, fluorescence can only be seen with the naked eye if the tear layer is >20 μm, and therefore, it is difficult to assess lens performance in-office. Overnight topographical response is the most valid procedure for evaluating lens fit. It determines the centration of the lens and the physiological response to the treatment while also monitoring changes, assisting with problem-solving, and refining the lens fit.

Ortho-k effect on different forms of ametropia
Myopia
A myopic ortho-k effect results from a central corneal flattening and a paracentral corneal steepening. Studies have indicated that ~80% reduction would be resulted if the baseline myopia is <5.00 D. The most significant reduction occurs after the first overnight wear (~60%) and keeps down steady for the next week. The reduction rate levels off after 1 month of lens wear.

Hyperopia
A hyperopic ortho-k effect results from a central corneal steepening and a paracentral corneal flattening. Several short-term pilot studies have shown hyperopic reduction after 1 h and an increased effect with longer lens wear. According to Gifford et al., “A good (hyperopic) lens fit must exhibit central clearance over the optical zone and progress to mid-peripheral touch while maintaining adequate edge lift.” However, there are limited studies on the corneal effect and clinical assessment on hyperopic ortho-k.
Astigmatism correction has been reported at 50% of with-the-rule astigmatism when the corneal cylinder is <1.50 D. However, additional case studies have shown more promising results by using toric ortho-k to correct astigmatism.21,32-34,38 Chen et al reported 80% reduction on astigmatism in 6 months by using toric ortho-k.21 In their study, the astigmatism was decreased from −1.86±0.64 D to −0.37±0.39 D in 6 months. The reduction was maintained throughout a 2-year study.

Corneal thickness changes
In myopia reduction, previous studies have shown a change in corneal thickness at the epithelium (thinning at the central epithelium, but thickening at the mid-peripheral epithelium).46-48 In hyperopic ortho-k, the central epithelium remains the same, whereas the mid-peripheral epithelium was thinned by 15% after 8 h of lens wear. However, more detailed studies are required to investigate the progress of refractive changes and corneal thickness changes in the hyperopic ortho-k effect.45,49

Daytime regression in myopic ortho-k effect
Mountford found that the regression of refractive errors was −0.50–0.75 D after 8 h of lens removal in Caucasians,30 but he did not find a correlation between refractive change and regression. Gardiner et al further traced the refractive errors changed after lens removal.51 The subjects in their study wore ortho-k for 6 h. They traced the refractive changes in every 5 h. The regressions were 0.39 D and 0.60 D after 6 h and 15 h of lens removal, respectively. They suggested a correlation between baseline myopia and the total regression. Chan et al reported that the daytime regression in refractive errors was insignificant in Chinese, and they did not find the correlation.16 They commented that the regression was unpredictable, which may not be reflected by objective refractive and topographic responses.

Clinical efficacy of ortho-k
Myopia increases with the elongation of axial length. Hence, a correlation between the axial elongation and visual feedback is suggested. A normal cornea is steepened centrally and gradually flattens to the periphery. Light will be focused at the macula, and it is behind the retina at the periphery (peripheral hyperopia). Studies found that the relative periphery hyperopia is greater in myopes than in emmetropes or hyperopes.52-56 It was proposed that the peripheral hyperopic defocus may promote axial myopia.52-56 The corneal shape was changed after ortho-k treatment. The central cornea flattening and mid-periphery steepening reduce the relative peripheral hyperopia in myopic eyes. This is considered a potent myopia-inhibiting indicator.57-60 Recent randomized myopic control studies have indicated that ortho-k retards myopic progression in low myopes, high myopes, and astigmatic patients (Figure 1). The retardation rate was comparable to those using atropine, but it was higher than in those wearing special soft contact lenses and progressive/bifocal glasses.21-25,43,61-75

Ortho-k on high myopes
Most commercially available ortho-k lenses and those used in published reports are limited to moderate myopes (≤5.00 D) only. Several reports were suggested that visual acuities were good on high myopes after ortho-k treatment,76 and they did not present details on ocular health condition after lens wear.

Clinically, when the lens target is increased to ≥5.00 D, significant corneal staining and lens decentration are found.31,77 A cautious ortho-k treatment on high myopes was introduced.22 A certain amount of myopia was reduced by using ortho-k (partial reduction [PR]), and the remaining refractive errors were corrected by spectacles. In a high myopia study,22 the high myopes (myopia of ≥5.75) were randomly enrolled in study (PR with ortho-k and spectacles) and control (correction with spectacles only) groups. In the study group, ortho-k lens was fitted to reduce 4.00 D myopia, whereas a pair of single-vision spectacles was prescribed to control any remaining refractive errors. In the control group, only a pair of single-vision spectacles was prescribed. The myopic progression and axial lengths were monitored for 2 years. The axial lengths were 0.19±0.21 mm and 0.51±0.32 mm in the study and control groups, respectively. The results suggest that myopic reduction and control would also be achieved for high myopes by using ortho-k and spectacles.

Safety
Liu et al investigated the safety of ortho-k by reviewing 170 publications.78 It was concluded that corneal staining was the most typical complication. Chan et al reported that the incidence and severity of corneal staining increased with ortho-k wear.16 When lens binding occurred, central corneal staining was the result. Chan et al suggested to use fenestrated lenses or to ask the patients to instill artificial tears before lens removal in order to minimize the severity of the lens binding.16,79 It has been suggested that central corneal staining is common, and practitioners should monitor the patients carefully.
Some microbial keratitis (MK) cases have been reported with ortho-k treatment.80–82 Underlying risk factors include inadequate training of practitioners and wearers, poor lens handling, poor patient compliance, and inadequate follow-up. A recent review indicated a drop in ortho-k-related MK.83 Bullimore et al estimated the incidence of MK in children at the rate of 13.9 in 10,000 patients, which is similar to the risk with overnight contact lens wear.84 Hence, practitioners should provide clear instructions and regular follow-up to make sure good lens care and compliance in ortho-k treatment to minimize complications. It is also important to provide up-to-date training courses by schools/colleges of optometry worldwide.27

Pigmented iron deposits85–87 and fibrillary lines88,89 have been reported in long-term ortho-k wear. Intensity increased with the continuance of ortho-k wear, but both will disappear after the termination of the treatment.

Patient perspectives
Ortho-k reshapes the corneal profile and changes the optical quality of the cornea. The higher-order aberrations were increased significantly after ortho-k treatment.90–92 Although most studies showed comparable visual acuity in high contrast between pre- and post-ortho-k treatment, contrast sensitivity was reduced.93 Common complaints were halos and glare perceived in dim light. Undesired visual anomalies are expected to disappear after the first weeks of treatment,94 and it has been hypothesized that the increase in light distortion is a short-term condition that improves when the subject adapts.95

Cho et al77 and Chan et al16 conducted interviews with 61 and 94 ortho-k patients, respectively. More than 70%77 and 90%16 of the subjects ranked “good” or “very good” unaided distance vision after lens wear. Those with high baseline myopia reported worsened distance vision toward the end of the day. Hiraoka et al confirmed that patients with higher baseline myopia were likely to report lower levels of satisfaction and that post-ortho-k unaided visual acuity was associated with patient satisfaction.96 When the patients did not wear ortho-k every night, the vision quality varied. Patients who wore the lens every night reported higher satisfaction than those who reported skipping at least one night of lens wear.97

Santodomingo et al delivered questionnaires to evaluate the satisfactions between ortho-k-wearing and spectacle-wearing groups.99 Children wearing ortho-k lenses were more satisfied than those wearing spectacles in terms of overall vision, appearance, academic performance, and peer perception. The guardians of children under ortho-k group preferred that they continue wearing ortho-k.

Conclusion
The ultimate clinical goals were full myopic reduction, good myopic control, and good ocular health. Sufficient evidence
was found that ortho-k is a clinically safe option for myopic reduction and myopic control. However, center lens fitting (centered topographical response) is only a starting point. Long-term healthy treatment requires combined efforts from practitioners, parents, and children.

Disclosure

The author reports no conflicts of interest in this work.

References

51. Gardiner HK, Leong MA, Gundel RE. Quantifying regression with
50. Mountford J. An analysis of the changes in corneal shape and refrac-
tive error induced by accelerated orthokeratology. JICL. 1997;24(4):
128–144.
51. Gardiner HK, Leong MA, Gundel RE. Quantifying regression with
orthokeratology. Contact Lens Spec. 2005;20:40–43. Available from:
52. Cooper J, Schulman E, Jamal N. Current status on the development and
Peripheral refraction in different ethnicities. Invest Ophthalmol Vis Sci.
54. Tabernero J, Ohlundner A, Fischer MD, Bruckmann AR, Schiefer U,
Schaeffel F. Peripheral refraction profiles in subjects with low foveal
55. Mutti DO, Hayes JR, Mitchell GL, et al. Refractive error, axial length,
and relative peripheral refractive error before and after the onset of
56. Mutti DO, Sinnott LT, Mitchell GL, et al. Relative peripheral refractive
error and the risk of onset and progression of myopia in children. Invest
57. Kang P, Swarbrick H. Time course of the effects of orthokeratology on
peripheral refraction and corneal topography. Ophthalmic Physiol Opt.
AR. Peripheral refraction in myopic patients after orthokeratology.
60. Charman WN, Mountford J, Atchison DA, Markwell EL. Periph-
eral refraction in orthokeratology patients. Optom Vis Sci. 2006;83(9):
641–648.
61. Wu PC, Tsai CL, Wu HL, Yang YH, Kuo HK. Outdoor activity during
class recess reduces myopia onset and progression in school children.
lenses on the progression of myopia in Chinese children. Ophthalmic
lenses on myopia progression in Japanese children: a prospective,
2008;49(7):2781–2789.
64. Edwards MH, Li RW, Lam CS, Lew JK, Yu BS. The Hong Kong progres-
sive lens myopia control study: study design and main findings. Invest
65. Correction of Myopia Evaluation Trial 2 Study Group for the Pediatric
Eye Disease Investigator Group. Progressive-addition lenses versus
single-vision lenses for slowing progression of myopia in children with
high accommodative lag and near esophoria. Invest Ophthalmol Vis Sci.
66. Cheng D, Schmid KL, Woo GC, Drobe B. Randomized trial of effect
of bifocal and prismatic bifocal spectacles on myopic progression:
67. Fulk GW, Cyert LA, Parker DE. A randomized trial of the effect of
single-vision vs. bifocal lenses on myopia progression in children with
childhood myopia: safety and efficacy of 0.5%, 0.1%, and 0.01% doses
(atropine for the treatment of myopia 2). Ophthalmology. 2012;
70. Tan DT, Lam DS, Chua WH, Shu-Ping DF, Crockett RS; Asian Piren-
zepine Study Group. One-year multicenter, double-masked, placebo-
controlled, parallel safety and efficacy study of 2% pirenzepine ophthal-
71. Sankardurg P, Donovan L, Varnas S, et al. Spectacle lenses designed to
reduce progression of myopia: 12-month results. Optom Vis Sci. 2010;
87(9):631–641.
progression with a contact lens designed to reduce relative peripheral
9362–9367.
73. Anstice NS, Phillips JR. Effect of dual-focus soft contact lens wear on
1152–1161.
74. Walline JJ, Jones LA, Sinnott LT. Corneal reshaping and myopia pro-
75. Kakita T, Hiraoka T, Oshika T. Influence of overnight orthokeratology
76. Oguri A, Nishimura M. Advanced orthokeratology for Japanese patients
tively presenting orthokeratology patients in a Hong Kong based private
78. Liu YM, Xie P. The safety of orthokeratology—a systematic review. Eye
79. Cheung SW, Cho P. Subjective and objective assessments of the
80. Watt K, Swarbrick HA. Microbial keratitis in overnight orthokeratology:
81. Watt KG, Boneham GC, Swarbrick HA. Microbial keratitis in orthoker-
187; quiz 188–189.
82. Van Meter WS, Musch DC, Jacobs DS, Kaufman SC, Reinhart WJ,
Udell IJ; American Academy of Ophthalmology. Safety of overnight
orthokeratology for myopia: a report by the American Academy of
83. Song X, Xu L, Sun S, Zhao J, Xie L. Pediatric microbial keratitis: a
84. Bullimore MA, Sinnott LT, Jones-Jordan LA. The risk of microbial
keratitis with overnight corneal reshaping lenses. Optom Vis Sci.
2013;90(9):937–944.
85. Gonzalez-Mejome JM, Gonzalez-Perez J, Garcia-Porta N, Diaz-Rey
A, Parafita-Mato MA. Pigmented corneal ring associated with ortho-
548–552.
86. Cho P, Chui WS, Cheung SW. Reversibility of corneal pigmented ring
87. Cheung SW, Cho P, Cheung A. White lesion in the corneal pigmented
88. Lum E, Swarbrick H. Fibrillar lines in overnight orthokeratology. Curr
90. Mao XJ, Lu F, Qu J. [Effects after orthokeratology on corneal topog-
raphy and monochromic wavefront aberration]. Zhonghua Yan Ke Za
91. Hiraoka T, Okamoto C, Ishii Y, Kakita T, Oshika T. Contrast sensitiv-
ity function and ocular higher-order aberrations following overnight
92. Hiraoka T, Okamoto C, Ishii Y, Takahira T, Kakita T, Oshika T. Mesopic
contrast sensitivity and ocular higher-order aberrations after overnight

