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Abstract: Dry granulation using roll compaction is a typical unit operation for producing solid 

dosage forms in the pharmaceutical industry. Dry granulation is commonly used if the powder 

mixture is sensitive to heat and moisture and has poor flow properties. The output of roll com-

paction is compacted ribbons that exhibit different properties based on the adjusted process 

parameters. These ribbons are then milled into granules and finally compressed into tablets. The 

properties of the ribbons directly affect the granule size distribution (GSD) and the quality of 

final products; thus, it is imperative to study the effect of roll compaction process parameters on 

GSD. The understanding of how the roll compactor process parameters and material properties 

interact with each other will allow accurate control of the process, leading to the implementation 

of quality by design practices. Computational intelligence (CI) methods have a great potential 

for being used within the scope of quality by design approach. The main objective of this study 

was to show how the computational intelligence techniques can be useful to predict the GSD by 

using different process conditions of roll compaction and material properties. Different techniques 

such as multiple linear regression, artificial neural networks, random forest, Cubist and k-nearest 

neighbors algorithm assisted by sevenfold cross-validation were used to present generalized mod-

els for the prediction of GSD based on roll compaction process setting and material properties. 

The normalized root-mean-squared error and the coefficient of determination (R2) were used for 

model assessment. The best fit was obtained by Cubist model (normalized root-mean-squared 

error =3.22%, R2=0.95). Based on the results, it was confirmed that the material properties (true 

density) followed by compaction force have the most significant effect on GSD.

Keywords: computational intelligence, milling, roll compaction, dry granulation, neural 

network, Cubist

Introduction
Roll compaction is one of the most common dry granulation unit operations used 

to convert powder mixture into ribbons. Dry granulation is commonly used in the 

pharmaceutical industry if the powder mixture is sensitive to heat and moisture and 

has poor flow properties. Dry granulation generally consists of roll compaction stage 

in which the powder mixture flows through two counter-rotating rolls, usually with 

the assistance of one or two feed screws, to be compacted and form densified ribbons 

that will afterward pass through a milling step to produce granules with specific size 

distribution. The ribbon properties are the result of multivariate interactions between 

various process parameters, configuration and conditions of roll compaction process 
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that can influence different properties of intermediate and 

final products.1–3 Furthermore, as the milling stage is located 

right after the roll compaction process, the granule properties 

are strong functions of the ribbon properties. The granule 

size distribution (GSD) is known as an important character-

istic that has significant effect on the properties of the final 

product, such as dissolution profile and compact strength.4 

To find out the multifactorial dependency between formula-

tion, process and quality attributes, the use of multivariate 

approaches, such as design of experiment (DoE), sensitivity 

analysis, response surface method and multivariate data anal-

ysis, is unavoidable. To find out these complex dependencies, 

the US Food and Drug Administration (FDA) introduced the 

quality by design (QbD) approach.4,5 Pharmaceutical QbD 

is a systematic approach toward formulation development 

that starts with predefined objectives and emphasizes product 

and process understanding.6 In general, QbD approach has 

expressed the need for deeper understanding of different 

pharmaceutical processes and how input parameters, such 

as material properties or process settings, influence granule 

quality and process performance with respect to the variation 

in critical quality attributes (CQAs) of the final product.7 

Several studies have been performed by using traditional 

DoE technique to investigate how the roll compaction set-

tings influence the properties of granules. Most of them 

used the DoE technique which involved response surface 

methodology (RSM) combined with multiple linear regres-

sion (MLR).5 However, the behavior of most processes in 

the pharmaceutical industry is complex and nonlinear, which 

makes it difficult to model these systems precisely by using 

linear regression.8 Emerging computational intelligence (CI) 

techniques that can be easily coupled with DoE can overcome 

the limitation of these methods. One of the most important 

benefits of CI methods is that the model can be developed 

easily without prior knowledge about the process. Several CI 

techniques, such as decision trees, artificial neural networks 

(ANNs), genetic programming and support vector machines, 

have been used to model pharmaceutical processes.7,9–11

Rambali et al12 studied the effect of roll compactor 

variables such as compaction force, roll surface type, gap 

width and screen size on mean granule size (d
50

). To perform 

experiments, they used full-factorial design approach. Based 

on their analysis, the compaction force and roll surface type 

are the most meaningful factors. For a fixed gap width and 

sieve size, increasing compaction force and using smooth 

roll surface led to a decrease in mean granule size.

Weyenberg et al13 employed experimental factorial 

design to study the effect of roll compaction (Fitzpatrick® 

IR220) settings on the preparation of bioadhesive granules. 

The formulation consisted of drum-dried waxy maize starch, 

Carbopol® 974P and ciprofloxacin in the ratio of 90.5:5:3 

(w/w/w). The roll speed, the horizontal screw speed and the 

compaction force were varied, while the vertical screw speed 

was kept constant. Afterward, the ribbons were milled to 

obtain granules within the specific size ranges. They found 

that compaction force and the roll speed have the most sig-

nificant influence on the granule characteristics, followed by 

the horizontal screw speed.

In other work, Souihi et al6 estimated the design space 

of the roll compaction process by using statistical DoE and 

multivariate modeling. For this purpose, a reduced central 

composite face-centered (CCF) design was used to assess the 

effect of roll compaction process variables (roll force, roll 

speed, gap width and screen size) on the different intermediate 

and final products. They showed that roll force and screen size 

were the most critical parameters in roll compaction process.

In brief, most of the studies in the past have been per-

formed by using DoE combined with linear regression and 

less works were conducted on CI methods. The goal of this 

study was to demonstrate the usefulness of CI techniques 

as potential tools to reveal the influence of roll compaction 

process on the particle size distribution. In particular, our 

objective was to demonstrate how to build a complete model 

for GSD integrating various types of information, namely 

quantitative and qualitative composition, physicochemical 

characteristics of the materials and technological parameters. 

Despite purely empirical nature of our approach, focusing on 

CI tree-based systems, we also attempted to elucidate some 

quantitative relationships governing GSD in the design space 

of the available data set.

Materials and methods
Microcrystalline cellulose (MCC, Avicel® PH101; FMC 

BioPolymer, Philadelphia, PA, USA), and mannitol 

(Pearlitol® 200SD; Roquette, Lestrem, France), which are 

widely used excipients in the pharmaceutical industry, were 

used as model powders. The true density of the pure powders 

was determined using a helium pycnometer (Accupyc 1330; 

Micromeritics Instrument Corp., Norcross, GA, USA). More-

over, the influence of mixture composition, their mechanical 

properties on the roll compaction process and the quality 

of granules were studied. Therefore, five binary mixtures 

composed of mannitol and MCC (15%, 30%, 50%, 70%, and 

85% MCC) were produced. To calculate the true density of 

the mixture, the following equation was used:14

	

1 1

1

2

2
ρ ρ ρ

m

= +
n n

�

(1)
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where ρ
1
, ρ

2 
and ρ

m
 are

 
the true density of powder 1, powder 2 

and their mixture, respectively. n
1
 and n

2
 are the weight frac-

tions of the constituent powders. The detailed explanation of 

the preparation of binary mixture can be found in the study 

by Pérez Gago and Kleinebudde.1

Roll compaction and granulation
The feed powder and their binary mixture were compacted 

by Gerteis roll compactor 3-W-Polygran® 250/50/3 (Gerteis 

Maschinen + Processengineering AG, Rapperswil-Jona, 

Switzerland). The powder was fed to the system by the 

hopper and transported to the compaction zone by feeding 

auger (FA) and tamping auger (TA). The compaction system 

consisted of two counter-rotating rolls of 250 mm in diameter 

and 50 mm in width with knurled surfaces and cheek plates 

sealing system. Different combinations of roll compaction 

setting (Table 1) were used to produce ribbons with differ-

ent properties.

For the milling stage, around 300 g of ribbons collected 

was milled in a Frewitt sieving machine (GLA ORV 0215; 

Frewitt, Fribourg, Switzerland) under standard conditions. 

This mill was equipped with a 1 mm mesh sieve, and the 

speed and oscillating angle were kept constant at 154 rpm 

and 90°, respectively. To minimize noise in the output, 

the sieve machine was cleaned between each batch with a 

vacuum cleaner. The samples were kept in a climate room 

under 21°C and 45% relative humidity for at least 24 h before 

performing any characterization.

GSD
To obtain a uniform sample for analysis, the granules were 

sampled using a rotary sample divider (PT, Retsch Tech-

nology GmbH, Haan, Germany). To measure the GSD, a 

dynamic image analyzer (Camsizer® XT; Retsch Technology 

GmbH) with the X-jet module was used. The dispersion 

pressure used in this study was 30 kPa and ~9 g of granules 

were measured for each sample. Analysis of each batch was 

run in triplicates.

Data set
According to DoE, 161 data records were generated by vary-

ing roll compaction process setting. The data set consisted 

of information about the mixture’s true density (g/cm3), 

compaction force (kN/cm), gap width (mm), roll speed (rpm), 

TA speed (rpm), FA speed (rpm) and size class. The size 

class is a nonphysical parameter denominating the differ-

ence between various classes of volume distribution q3(x). 

By choosing different values (1, 10, 31, 45, 64, 90, 125, 180, 

250, 325, 500, 710, 1,000, 1,400 and 2,000) of a size class, 

the model can predict, q3(x), the whole GSD curve.

Model assessment
Model goodness of fit was expressed as root-mean-squared 

error (RMSE, Equation 1) and normalized root-mean-squared 

error (NRMSE; Equation 2):

	
RMSE

pred obs
=

−
=∑ i

n

i i

n
1

2( )

�
(2)

where obs and pred are the observed and predicted values, 

respectively; i is the data record number and n is the total 

number of records.

	

NRMSE =
−

⋅
RMSE

X X
max min

100

�

(3)

where RMSE is the error calculated for model, X
max

 is the 

maximum value of the observed results and X
min

 is the 

minimum value of the observed results.

Linear scaling was employed based on Equation 4 for 

ANNs in the output range of 0.1–0.9 to meet the criteria of 

nonlinear transfer functions:

	
ω

ω ω
ω ωn

= ×
−

−

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 +0 8 0 1.
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( ) ( )
.
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max min �
(4)

where ω and ω
n
 are the standard and normalized values of 

input data, respectively.

Furthermore, to assess the generalization ability of the 

models, sevenfold cross-validation (CV) scheme was applied. 

Since the data set was represented by seven mixtures, each 

fold was composed of data points for six mixtures for train-

ing and the seventh for testing the model. Figure 1 shows a 

simple schematic diagram of sevenfold CV. The best models 

were chosen according to the lowest average NRMSE and 

the highest R2 values.

Table 1 Input parameter ranges of produced ribbons

Mixture’s true density (g/cm3) Compaction force (kN/cm) Roll speed (rpm) Gap width (mm) FA (rpm) TA (rpm)

1.47–1.59 2–10 2–4 1.5–3 2–37 8–124

Abbreviations: FA, feeding auger; TA, tamping auger.
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Computational methods
MLR
To verify whether a linear relationship exists between input 

and output parameters, the MLR model approach was uti-

lized. MLR model was implemented by using lm() function 

in the R environment.15

ANN model
The ANN is a powerful tool for solving highly nonlinear 

problems without prior knowledge by finding the relation-

ship between input and output parameters. Generally, ANN 

is an information processing unit which is bioinspired by 

the human brain. The main processing component of ANN 

is artificial neuron. ANN models have three different layers 

including input, hidden and output layers, where each layer 

is composed of interconnected neurons.4 The structure of an 

ANN model can be defined by the number of layers with 

respective number of neurons in each layer and the type 

of the transfer function. Optimizing the structure of the 

neural network is still one of the challenging steps in ANN 

modeling. There is no rule to finding the best structure; 

therefore, the trial and error method has been widely used by 

many researchers. There are several types of ANN models 

such as feed-forward, radial basis function (RBF), recurrent 

neural network and modular neural networks which have 

been used to model different engineering problems.4,16,17 

Among different types of feed-forward network, multilayer 

perceptrons (MLPs) have been used extensively. In this 

article, a feed-forward ANN based on back propagation 

(BP) algorithm was implemented. In feed-forward neural 

network, the signal flows toward the output layer through 

one or more hidden layers occupied with interconnected 

neurons. Different types of transfer function such as hyper-

bolic tangent sigmoid (tansig), logarithm sigmoid (logsig) 

or linear (purelin) can be used for each layer. The transfer 

function is essential to transfer the weighted sum of all the 

signals connected with a neuron. In this study, to implement 

the feed-forward neural network, “monmlp” package in the 

R environment was used.15,18 The monmlp is the generalized 

feed-forward MLP neural networks which work in a mono-

tone fashion. All studied networks consisted of two hidden 

layers with 2–20 neurons per layer. The transfer function 

for hidden layer and output layer was chosen as tansig and 

purelin, respectively. The ensemble system consisted of 

10 or 20 neural networks for each model. To avoid local 

minima, the trial parameter was set to 5. Furthermore, 10, 

50, 80, 100, 200, 400, 500, 800 and 1,000 iterations were 

applied. As mentioned earlier, the trial and error method 

was utilized to find out the best structure and parameters 

of the network.19

Cubist
Cubist is an implementation of model tree approach in R, 

which was first introduced by Quinlan.20 The Cubist model 

is very similar to binary decision tree except there are linear 

regression functions at each node starting from the root to 

the last node. The whole model can be expressed as a set of 

rules, where each rule has an associated linear regression 

model created at terminal node. If a situation satisfies a 

rule’s conditions, the associated model is applied to predict 

the output. The model construction consists of two stages. 

In stage one, splitting criteria are applied to create a decision 

tree and afterward in stage two a pruning approach will be 

used to prune back an overgrown tree.21 The algorithm uses 

standard deviation reduction (SDR) criteria to find out the 

best splitting set. After considering all the possible splits, the 

algorithm chooses the one that maximizes the SDR criteria. 

This splitting procedure often creates a large tree structure 

which causes overfitting with testing dataset. To solve this 

problem, the pruning procedure is implemented to replace a 

sub-tree with a linear regression function.20,22

For the modeling purpose, “Cubist” package in the R 

environment was used.15,23 The maximum number of rules 

and the number of committees were set at 100 and from 

1 to 100, respectively. The extrapolation parameter, which 

controls the extrapolation ability of created models, was 

set at 100. The sample parameter, which is a percentage 

Figure 1 Schematic diagram of sevenfold cross-validation.
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of the randomly selected data set for model building, was 

considered at zero.

Random forest (RF)
RFs are tree-based models which are using the combination of 

hundreds of unpruned decision trees to produce more accurate 

predictions and overcome the overfitting problem. RF is a 

nonparametric statistical method that was first introduced by 

Breiman.24 RF model construction has different steps. The first 

step is random selection of subsamples, where approximately 

two-thirds of the initial sample will be chosen as bootstrap 

sample (called the in-bag samples) and the remaining sample 

will be left out (called the out-of-bag [OOB] samples).25 The 

second step involves the selection of the number of variables 

randomly sampled as candidates at each node (m
try

). To reduce 

the chance of overfitting, the m
try 

value should be minimized. 

The third step includes the construction of a tree, based on 

the in-bag and the m
try

 variables. The number of constructed 

trees in the forest can be defined by n
tree

 parameter. The tree 

construction algorithm uses recursive partitioning approach 

to split the larger space into two smaller pieces. The selec-

tion of split point is an optimization problem based on the 

squared error loss.25,26 “randomForest” package in an R 

environment was used to develop RF models.15,27 The fol-

lowing parameters were used during the modeling process: 

from 1 to 7, the variables were randomly selected at each 

split (m
try

); the maximum number of nodes was set at 1,000 

(max
nodes

) and the number of trees was set from 10 to 1,000 

(n
tree

). max
nodes

 is the minimum size of terminal nodes, if the 

number is larger the smaller trees are grown.

k-Nearest Neighbors algorithm (k-NN)
k-NN belongs to intuitive methods frequently used for regres-

sion and classification problems. It is a simple method that 

stores all available cases and predicts the new cases based 

on a similarity measure. In a simple way, k-NN works by 

selecting the k-closest samples to the considered point and 

predicting the output based on the weighted mean of the 

outputs of k-NN.28 Generally, the neighbors can be selected 

by different similarity metrics such as Euclidean, Manhattan 

and Canberra distance. The upper limit for k-value is a total 

number of observations in the training data set. There is more 

chance of decreasing computation complexity and increasing 

model accuracy by choosing a proper k-value. The optimal 

k-value is often determined by CV approach.29,30 k-NNreg 

function of Caret package in an R environment was used 

to develop k-NN models.15,31 The number of neighbors was 

established iteratively.

Results and discussion
More than 10,000 models with different architectures 

were trained and tested over important tuning parameters 

of mentioned CI methods. To find out the generalization 

ability of developed models, sevenfold CV approach was 

implemented. The developed model was not intended to be 

used with different excipients and/or active pharmaceutical 

ingredients (APIs) except the binary mixture of MCC and 

mannitol; therefore, all the results and conclusions reflect 

only the case involving both excipients. Introduction of the 

third excipient or API may completely change the behavior 

of the powder and as a consequence the results.

Model performance
The performance results of sevenfold CV of the best obtained 

models are shown in Table 2. The MLR model was used to 

indirectly point out the high nonlinearity in the data set. The 

statistical characteristics of the developed MLR model are 

shown in Table 3. The importance of each parameter relies 

on P-value; hence, those parameters with P-values ,0.05 

were chosen as the most important ones among others. Based 

on this statement, size class, compaction force, true density, 

gap width and intercept were the most important parameters. 

The relationship between the actual values and predicted ones 

for the MLR model is shown in Figure 2.

From Figure 2, it can be concluded that severe nonlinearity 

(R2=0.33) exists between input and output parameters, sug-

gesting the use of other efficient methods to address this 

problem. Therefore, to develop more precise model, ANN, 

RF, Cubist and k-NN were used. According to Table 2, by 

considering sevenfold CV NRMSE, ANN, and Cubist models 

have indicated higher prediction performance and generaliza-

tion ability compared to RF and k-NN. Figure 3 shows the 

observed versus predicted values for Cubist (Figure 3A) and 

ANN (Figure 3B) models based on the sevenfold CV data set. 

The linear regression fit applied to the plotted data shows the 

Table 2 Comparison between performances of different models

MLR ANN RF Cubist k-NN

7CV NRMSE% 14.20 3.19 4.61 3.22 4.84
7CV R2 0.33 0.95 0.89 0.95 0.89
All data NRMSE% 12.16 2.01 1.10 1.71 0.11
All data R2 0.33 0.98 0.99 0.98 0.99
Cohen’s d 0.025 0.009 0.039 0.017 0.014

Notes: 7CV NRMSE%, sevenfold CV NRMSE; 7CV R2, sevenfold CV coefficient of 
determination; all data NRMSE%, NRMSE for training over all data points; all data R2, 
coefficient of determination for training over all data points; Cohen’s d, Cohen’s d 
values for actual versus predicted value.
Abbreviations: ANN, artificial neural network; CV, cross-validation; k-NN, 
k-nearest neighbors algorithm; MLR, multiple linear regression; NRMSE, normalized 
root-mean-squared error; RF, random forest.
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correlation coefficients of 0.95 for both models, and NRMSE 

values of 3.22% and 3.19%, respectively. In comparison, the 

prediction of both models was in the same range; however, 

Figure 3B shows that some points, especially those which are 

close to zero, were predicted as negative values indicating 

inefficiency of the ANN to predict values near the border of 

the designed space. The inaccuracy of the ANN model to 

predict q3(x) is also depicted in Figure 4. Other methods such 

as Cubist, RF, and k-NN were precise in terms of following 

the distribution profile, except the ANN which predicted the 

q3(0) as negative value.

Although the inaccuracy of the ANN model can be 

addressed by using absolute values of predicted data points, 

yet ANNs are generally black box models. Therefore, the 

developed ANN model cannot be analyzed further to see how 

the parameters are interacting with each other to predict the 

size distribution. Moreover, ANN models are very unstable 

compared to Cubist models, which means that retraining 

may produce models with different generalization errors. 

Using modified data set during retraining and training is 

identified as the major sources of instability.

On the contrary, Cubist is stable and fast and offers 

white box behavior and interpretability of the developed 

models. Cubist shows a good prediction performance of 

NRMSE =3.22% for sevenfold CV data set. The benefit of 

Cubist method is that the results are transparent; thus, they 

can be expressed in the form of rules and equations.

The example given below shows a sample of obtained 

Cubist model tree:

if

	 X1 . 1.486832

	 X2 . 2

	 X7 . 710

	 X7 ,= 1,000

then

	 outcome = -0.0050119 - 0.012 X3 + 0.07 X1

if

	 X1 . 1.504054

	 X2 ,= 2
	 X7 . 90

	 X7 ,= 180

then

	 outcome = �4.6290477 - 0.002045 X7 - 2.68 X1 

+ 0.019 X3

where X1, X2, X3 and X7 are the true density, compaction 

force, gap width and class label, respectively. The outcome 

is density distribution q3(x).

Variable importance by Cubist
The Cubist algorithm has the feature that shows the per-

centage of times where each variable was used in either the 

rule condition or the linear model. Therefore, using linear 

combination of the variable usage in the rule conditions and 

the model, the variable importance can be obtained. This fea-

ture can be very useful to make the model less complex and 

more accurate by discarding the input variables which are not 

contributing truly toward the outcome (q3(x)). In this work, 

“varImp” function from Caret package in the R environment 

was used to extract the variable importance.31 Figure 5 shows 

the obtained variable importance. As can be seen in the figure, 

the most significant parameter is the size class label followed 

Table 3 Statistical parameters of MLR model

Intercept True density  
(g/cm3)

Compaction  
force (kN/cm)

Gap width  
(mm)

Roll speed  
(rpm)

FA  
(rpm)

TA  
(pm)

Size class  
label

Coefficient -0.2679 0.2971 -0.0070 0.0151 0.0068 -0.0003 -0.0002 -1.120e-04
Standard error 0.122 0.0717 9.284e-04 0.006 0.004 0.0001 5.140e-04 3.420e-06
t-value -2.196 4.143 -7.608 2.405 1.430 -0.210 -0.524 -32.745
P-value 0.0282 3.54e-05 3.98e-14 0.0163 0.1527 0.8336 0.6004 ,2e-16

Abbreviations: FA, feeding auger; MLR, multiple linear regression; TA, tamping auger.

Figure 2 Predicted versus actual granule size (q3[x]) obtained by MLR models.
Abbreviation: MLR, multiple linear regression.
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by the true density and compaction force. There is almost 

30% reduction in the variable importance between compac-

tion force and the remaining parameters, suggesting less 

contribution of those parameters on q3(x) within the design 

space. These results are also consistent with the obtained 

results from the MLR model. Based on the obtained results, 

different input vectors were chosen to develop new Cubist 

models with less inputs. Models developed without the infor-

mation of roll width, roll speed, FA and TA speed predicted 

q3(x) accurately (Table 4, experiments with three and four 

inputs). Comparison between different input vectors suggests 

redundancies in the original data set. Therefore, removing 

them did not influence the accuracy of the model. Moreover, 

the model with four inputs had better generalization ability 

when compared to the Cubist model with three inputs; thus, 

this model was considered for further analysis.

Effect of parameters on the mean granule 
size (d50)
As d

50
 is the most important granule characteristic of gran-

ules within the pharmaceutical industry, further analysis 

was performed to study the effect of each parameter on 

d
50

. Figure  6 shows the generalization of Cubist model 

using four inputs by plotting predicted d
50

 of granules as a 

function of different input variables. For the construction 

of these figures, each of the three process parameters was 

Figure 3 Predicted versus actual granule size (q3[x]) obtained by Cubist (A) and ANN (B) models.
Abbreviation: ANN, artificial neural network.

Figure 4 Deficiency of ANN model in the prediction of entire GSD.
Abbreviations: ANN, artificial neural network; GSD, granule size distribution; k-NN, k-nearest neighbors algorithm.
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Table 4 Performance of Cubist models based on different inputs

Data set and input numbers 7CV NRMSE% 7CV R2

All inputs 3.22 0.95
Four inputs 3.053 0.95
Three inputs 3.209 0.95

Notes: 7CV NRMSE%, sevenfold CV NRMSE; 7CV R2, sevenfold CV coefficient of 
determination.
Abbreviations: CV, cross-validation; NRMSE, normalized root-mean-squared error.

Figure 5 Variable importance based on Cubist model.
Abbreviations: FA, feeding auger; TA, tamping auger.

simultaneously varied, while the remaining parameters 

were fixed at their midrange values. Figure 6A illustrates 

the effect of mixture density on d
50

. As can be seen by 

varying mixture’s true density, d
50

 decreases until reaching 

1.554 g/cm3 point then increases again by increasing the 

true density. This phenomenon can be described by using 

percolation theory that describes the connectivity of a sys-

tem, such as the interaction between two or more powders 

or the conductivity of electricity through a material.32 By 

using percolation theory, sudden change in the connectivity 

of the system can be described as a percolation threshold. 

For example, the percolation threshold for an oil and water 

emulsion would be the concentration at which a phase inver-

sion occurs. In the pharmaceutical industry, this sudden 

change is a function of concentration, density or pressure. 

The percolation threshold can be calculated by plotting the 

line of best fit for two sources of data. If these lines cross 

each other, sudden change may occur in the system as the 

concentration, pressure, density, etc. increases. The percola-

tion threshold for the system was determined according to 

Figure 6A and will occur on 1.554 g/cm3 of true density.1,32 

MCC is a plastic material, and thus it is softer, while man-

nitol is harder due to its brittle attribute. The true density of 

MCC and mannitol are 1.59 and 1.47 g/cm3, respectively; 

thus, mixing these two powders creates a mixture with 

the inherited properties from both of them. The impact of 

compaction force on the granule size (d
50

) is depicted in 

Figure 6B. As expected, increasing the compaction force 

leads to an increase in granule size (d
50

). This is due to the 

fact that increasing compaction forces led to the formation of 

tougher ribbons with lower porosity which would not easily 

break to smaller particles; thus, larger granules were pro-

duced.33 Figure 6C shows the effect of gap width on granule 

size (d
50

). By increasing the gap width, d
50

 will decrease. 

As the gap width increases, the constant force applied by 

the roll has to be transmitted through a thicker layer of 

powder, and thus the ribbon will have a lower strength and 

will likely result in smaller, weaker granules following the 

milling process.34 Figure 7 shows the ability of Cubist model 

to predict the GSD curve using response surface plot. This 

figure illustrates the effect of varying compaction force on 

volume distribution, q3(x). For the construction of this plot, 

compaction force and size class label were simultaneously 

varied, while the remaining parameters were fixed at their 

midrange values. As can be seen in the figure, the first peak 

that mostly indicates the amount of fines gradually decreases 

by increasing the compaction force due to the fact that, as 

mentioned earlier, tougher ribbons are produced.

Estimation of correlation between parameters was per-

formed by using “cor()” command in the R environment.15 

Figure 8 demonstrates the correlation between parameters.

From Figure 8, it can be seen that the most significant 

correlation exists between FA and TA speed. This is due to 

the fact there is a fixed ratio of 1:3.5 between them, and the 

control system alters the speed based on the set gap width. 

Other high correlation exists between d
50

 and compaction 

force, both auger speed (FA and TA) and gap width and both 

auger speed (FA and TA) and roll speed.

Conclusion
In this study, different CI techniques are presented to predict 

the GSD, using roll compaction process parameters and mate-

rial properties. All the models were developed based on 

the experimental data set. Iterative procedure assisted by 

sevenfold CV scheme was implemented to find out the best 

model among thousands. Different parameters such as true 

density, compaction force, roll speed, gap width, FA speed and 

TA speed were considered as inputs for the models. However, 

later it was found that the input vector can be reduced to four 

inputs. The first phase of study by using MLR method showed 
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Figure 6 Effect of different parameters on granule size (d50) (A) as a function of true density, (B) as a function of compaction force, (C) as a function of gap width.
Abbreviation: d50, mean particle size.

Figure 7 Surface plots of predicted volume distribution, q3(x), as a function of 
compaction force.

Figure 8 Correlation between input parameters based on Pearson correlation.
Note: d50, mean particle size.
Abbreviations: FA, feeding auger; TA, tamping auger.
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that severe nonlinearity exists in the data set suggesting the 

use of other complex methods. Based on NRMSE, both Cubist 

and ANN had a better prediction performance compared to the 

other models. From transparency point of view, Cubist was 

simple, reliable and easy to interpret compared to the ANN 

model. The results also revealed that ANN despite having 

an NRMSE close to Cubist had deficiency to predict small 

granule sizes. Based on the variable importance obtained from 

the Cubist model, true density followed by compaction force 

has the most significant effect on d
50

. Correlation analysis 

revealed that the most significant correlation exists between 

FA and TA speed and between compaction force and d
50

. The 

methods used in this study are purely data driven; therefore, 

most of the statements are confined to the local design space 

and cannot be considered as general rules.
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