The role of the pharmacist in the management of type 2 diabetes: current insights and future directions

Jeffery David Hughes¹
Yosi Wibowo²
Bruce Sunderland¹
Kreshnik Hoti¹,³

¹School of Pharmacy, Curtin University, Perth, WA, Australia;
²Centre for Medicines Information and Pharmaceutical Care (CMIPIC), Faculty of Pharmacy, Universitas Surabaya, Surabaya, Indonesia;
³Department of Pharmacy, Faculty of Medicine, University of Prishtina, Prishtina, Kosovo

Abstract: Type 2 diabetes is a chronic disease occurring in ever increasing numbers worldwide. It contributes significantly to the cost of health globally; however, its management remains in the most part less than optimal. Patients must be empowered to self-manage their disease, and they do this in partnership with health care professionals. Whilst the traditional role of the pharmacist has been centered around the supply of medicines and patient counseling, there is an evergrowing body of evidence that pharmacists, through a range of extended services, may contribute positively to the clinical and humanistic outcomes of those with diabetes. Further, these services can be delivered cost-effectively. This paper provides a review of the current evidence supporting the role of pharmacists in diabetes care, whilst providing a commentary of the future roles of pharmacists in this area.

Keywords: pharmacy, interventions, outcomes, benefits, glycemic control, cost-effectiveness

Introduction

Diabetes mellitus (“diabetes”) is one of the fastest growing chronic diseases worldwide, and is associated with significant morbidity, mortality, and health care costs. Diabetes is characterized by high levels of glucose in the blood (hyperglycemia). There are three main types of diabetes:

- Type 1 diabetes mellitus (T1DM) in which there is an absolute deficiency in insulin production. This disease can occur at any age, although it mostly occurs in children and young adults.¹
- Type 2 diabetes mellitus (T2DM) which is associated with insulin resistance, with an initial increase in insulin secretion, however over time, beta cell death and insulin insufficiency. Although T2DM mainly occurs in people aged over 40 years old, the disease is also becoming increasingly prevalent in the younger age group.²,³
- Gestational diabetes which occurs during pregnancy. The condition usually disappears once the baby is born; however, a history of gestational diabetes increases a woman’s risk of developing T2DM later in life.¹

The statistics related to diabetes mellitus globally are alarming. The International Diabetes Federation (IDF) Diabetes Atlas, Seventh Edition, 2015, provides the following estimates: one in 11 adults have diabetes (416 million), nearly half (46.5%) of adults with diabetes are undiagnosed, one in seven births are affected by gestational diabetes, 542,000 children have type 1 diabetes, and a person dies from diabetes every 6 seconds.⁴ Further, the IDF estimates that by 2040, one in 10 adults (642 million) will have diabetes.⁴
Of those people with diabetes, three quarters (75%) live in low- and middle-income countries. The Western Pacific region (which includes Australia) has 37% of all adults living with diabetes. This includes 100 million people in the People’s Republic of China (ranked highest in number of people with diabetes), 10 million people in Indonesia (seventh highest), and 7.2 million in Japan (ninth highest). Also included in this region is the country with the highest prevalence of diabetes the Pacific Island nation of Tokelau where 30% of the adult population has diabetes. Globally, Cambodia has the lowest prevalence of diabetes at 3%.4

T2DM is the greatest contributor to the burden of diabetes globally accounting for up to 90% of people with diabetes worldwide. Further, its prevalence is increasing in all countries around the world. This increase has paralleled the global epidemic of obesity. It is estimated that since 1980 worldwide, obesity has nearly doubled. In 2008, it was estimated that there were 1.4 billion adults (35% of those 20 years or older) who were overweight, of which over half a billion (11%) were obese. Importantly, it is reported that being overweight or obese contributes significantly to the burden of diabetes (44%), ischemic heart disease (23%), and certain cancers (range 7%–41%). Yet, obesity is preventable, and strategies to prevent diabetes and cardiovascular disease both include the common goal to optimize peoples’ weight through diet and exercise.

Adults with diabetes have a two- to threefold increased risk of suffering a heart attack or stroke compared to those without diabetes. The microvascular complications of diabetes mellitus make it the leading cause of preventable blindness, renal disease, and amputation in developed countries. These complications have dramatic implications for health care costs, with the total annual cost impact of diabetes in Australia estimated to be at $14.6 billion, whilst globally, it is estimated to account for 12% of the global health expenditure (US$673 billion). By 2040, it is estimated that the proportion of global health expenditure will exceed US$802 billion.

Optimizing therapy in patients with diabetes is a difficult clinical task requiring considerable patient education and motivation. The goal is to improve glycemic control without adverse bodyweight gain or hypoglycemia, and with a positive or neutral effect on lipid levels and blood pressure. Proper drug selection involves identifying the drug that is most likely to improve control and least likely to cause interactions, and adverse effect or adherence problems. Consequently, it has the potential to change patients’ futures and health care systems’ costs.

Pharmacists represent the third largest health profession in the world after doctors and nurses. Most pharmacists work in the community with a smaller proportion in hospital pharmacy, academia, industry, and research. Community pharmacies provide a range of products (in respect to diabetes prescription and nonprescription medication, blood glucose meters and testing strips, needles and swabs, dietary supplements) and services (such as medication review, vaccination, unit dose dispensing, needle exchange, point of care testing, disposal of unwanted medicines, etc). Community pharmacists are considered to be the most accessible health care professionals, as no appointments are required to see them, and to have the highest level of patient contact. As such, they are well placed to play a significant role in the care of patients with T2DM.

This review discusses the health care requirements of T2DM and the current and future roles of pharmacists in its management. For the purposes of the review, papers were identified from English language PubMed and ScienceDirect databases up until October 2016, and by manually reviewing the references for the papers adjudged relevant based on title and abstract, and then full paper review. The keywords used included diabetes, pharmacist, pharmacy, intervention, glycosylated hemoglobin (HbA1c), improvement, benefit, and outcomes. Papers critiqued in this review include original research papers, together with systematic reviews and meta-analyses. The paper aims to provide an overview of the current evidence for the role of pharmacists in diabetes care and insights into what roles pharmacists may fulfill in the future.

Health care for T2DM patients

The management of those with T2DM should be seen as a partnership between the patient and health care professionals, in which the latter support the former in self-managing his or her disease. Management of every patient should commence with a detailed assessment at the initial diagnosis including an appraisal of diabetes complications and risk factors for complications. This provides the basis for continuing care that includes a treatment plan, treatment administration, monitoring, and review (Figure 1 and Table 1).

Pharmaceutical care is defined as “the responsible provision of drug therapy for the purpose of achieving definite outcomes that improve a patient’s quality of life”. It provides a platform for multidisciplinary collaboration, which means that the pharmacist and the doctor (and potentially other care providers) join forces to decide on the optimal treatment of the patient so as to achieve the outcome the patient desires. It requires that a professional relationship...
between the pharmacist and the patient is established and maintained, and records on patient’s medications and other specific information are collected and evaluated. In the case of prescription medicines, a therapy plan currently needs to be developed involving the doctor and the patient; however, pharmacists may also provide input here.

Pharmacy-based services for T2DM patients

T2DM is one of a number of common complex conditions, including asthma, chronic obstructive pulmonary disease and heart failure, which require more time and expertise than one practitioner can reasonably provide to achieve optimal therapeutic outcomes for the patient. With the development of the concept of pharmaceutical care in which pharmacists are engaged more widely in patient care, the opportunity exists for pharmacists to have a greater role in the care of patients with T2DM.

Evidence of the benefits of pharmacists in the care of T2DM patients

Extensive studies worldwide have evaluated the effectiveness of pharmacy-based interventions in supporting people

Figure 1 Model of care for T2DM in primary care.

Note: Data from references 1 and 13–15.

Abbreviation: T2DM, type 2 diabetes mellitus.
Table 1 Processes involved in the care of patients with T2DM

<table>
<thead>
<tr>
<th>Stage</th>
<th>Activity</th>
<th>Component</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial assessment</td>
<td>History taking</td>
<td>Specific symptoms of glycosuria/hyperglycemic</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predisposition to diabetes, eg, age, family history, obesity, lifestyle issues (eg, smoking, diet, alcohol, physical activity, occupation)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Risk factors for complications: personal or family history of cardiovascular disease, overweight/obesity, smoking, hypertension, dyslipidemia</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Symptoms of complications, eg, cardiovascular symptoms, neurological symptoms, renal problems, foot and eye problems</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Other medical conditions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Medications (if any)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Education (if any)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Psychosocial status, eg, attitudes about illness, expectations, resources – financial, social, and emotional</td>
</tr>
<tr>
<td>Physical examinations</td>
<td></td>
<td>Weight/waist: BMI, waist circumference</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cardiovascular system, eg, blood pressure measurement</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Eyes, eg, pupil dilation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Feet, eg, skin condition, sensation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Peripheral nerves, eg, sensation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Urinalysis, eg, albumin</td>
</tr>
<tr>
<td>Laboratory evaluation</td>
<td></td>
<td>Glycemia: HbA1c, BGL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lipids: LDL-C, HDL-C, total cholesterol, triglycerides</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Renal function: plasma creatinine (eGFR), albuminuria</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Other tests when necessary</td>
</tr>
<tr>
<td>Treatment plan</td>
<td>Individualized treatment targets</td>
<td>Glycemic control: BGL, HbA1c</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Control of risk factors for complications: lipids, blood pressure, BMI, cigarette consumption</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Urinary albumin excretion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Physical activity</td>
</tr>
<tr>
<td>Development of treatment plans</td>
<td>Antidiabetic medications</td>
<td>Diet</td>
</tr>
<tr>
<td>Patient education</td>
<td></td>
<td>Physical activity</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prevention/treatment of complications</td>
</tr>
<tr>
<td>Treatment administration</td>
<td>Medications prepared</td>
<td>Dispensed in accordance with legal requirements</td>
</tr>
<tr>
<td></td>
<td>Appropriate instructions provided</td>
<td>Prescription labels on directions for use</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ancillary labels (if required)</td>
</tr>
<tr>
<td>Monitoring</td>
<td>Monitor compliance to treatment plans</td>
<td>Medications</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Exercise plan</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Diet plan</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prevention/treatment plans for chronic complications</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Scheduled medical monitoring</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Glycemic control: HbA1c, BGL, SMBG</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Control of risk factors for complications: lipids, blood pressure, BMI, cigarette consumption</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Presence of complications: cardiovascular system, peripheral nerves, renal, eyes, feet</td>
</tr>
<tr>
<td>Review</td>
<td>Monitor adverse effects</td>
<td>Presence of adverse drug effects</td>
</tr>
<tr>
<td></td>
<td>Review of treatment plan based on monitoring results</td>
<td>Consider treatment plan adjustment</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Consider education adjustment</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Referral</td>
</tr>
</tbody>
</table>

Note: Data from references 1 and 13–15.

Abbreviations: BGL, blood glucose level; BMI, body mass index; eGFR, estimated glomerular filtration rate; HbA1c, glycosylated hemoglobin; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; SMBG, self-monitoring of blood glucose; T2DM, type 2 diabetes mellitus.
with T2DM. Most of the studies have been conducted in
developed western countries, particularly the United States of America,19–22 although examples can be found around the
globe including the United Arab Emirates23 and Hong Kong.24
Fewer studies however have been conducted in low- and
middle-income countries such as Nigeria,25 Iran,26 India,27,28
Brazil,29 Thailand,30 Jordan,31 Iraq,32 and Malaysia.33 The
range of interventions evaluated are indicated in Table 2.

The interventions were measured for their effectiveness
using the following:

- clinical outcomes, such as glycemic control,29,34–43 reduc-
tion of risk factors (such as blood pressure, lipids, and body
mass index [BMI]),29,35,42–44 medication adherence,34,38,44–46
screening for complications,43 and drug-related problems
identified/solved;35,37,38,42,45
- humanistic/social outcomes, such as quality of
life,27,35,36,42–47 satisfaction,42,46 belief,45 knowledge,27,37,38,41,42
lifestyle changes,44 and self-care activity;47
- economic outcomes, such as health costs.42,43

Table 2 Components of pharmacist interventions evaluated in T2DM

<table>
<thead>
<tr>
<th>Stage</th>
<th>Intervention</th>
<th>Component</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment</td>
<td>Medication review</td>
<td>Medication review22–24,36</td>
</tr>
<tr>
<td>plan/ review</td>
<td>Interventions based on patient</td>
<td>outcomes (pharmacotherapy follow-up)29,37,41</td>
</tr>
<tr>
<td>Patient</td>
<td>Goal setting</td>
<td>Disease process27</td>
</tr>
<tr>
<td>education</td>
<td>Goal setting</td>
<td>Goal setting27</td>
</tr>
<tr>
<td>consultation</td>
<td>Lifestyle: physical activity,</td>
<td>Diet27,34,41</td>
</tr>
<tr>
<td>patient</td>
<td>medication</td>
<td>Medication27,34,35</td>
</tr>
<tr>
<td>education/ consultation</td>
<td>Psychosocial support: patient</td>
<td>health beliefs24–35</td>
</tr>
<tr>
<td>Monitoring</td>
<td>SMBG: blood glucose meters</td>
<td>SMBG: blood glucose meters42</td>
</tr>
<tr>
<td>outcomes</td>
<td>Prevention/treatment</td>
<td>Prevention/treatment</td>
</tr>
<tr>
<td></td>
<td>of complications: foot care,</td>
<td>complications: foot care, smoking</td>
</tr>
<tr>
<td></td>
<td>smoking cessation, hypertension,</td>
<td>hypertension, dyslipidemia44</td>
</tr>
<tr>
<td></td>
<td>SMBG: blood glucose meters</td>
<td>SMBG: blood glucose meters42</td>
</tr>
<tr>
<td></td>
<td>Unspecified24–46/customized</td>
<td>Unspecified24–46/customized content (ie, education program tailored to</td>
</tr>
<tr>
<td></td>
<td>content (ie, education program</td>
<td>patient’s prior knowledge)46</td>
</tr>
<tr>
<td></td>
<td>tailored to patient’s prior</td>
<td>Patient self-management services</td>
</tr>
<tr>
<td></td>
<td>knowledge)46</td>
<td>Review of blood glucose results14–17</td>
</tr>
<tr>
<td></td>
<td>Referral to a specialist nurse</td>
<td>Referral to a specialist nurse46</td>
</tr>
<tr>
<td></td>
<td>Referral for medical advice</td>
<td>Referral for medical advice46</td>
</tr>
</tbody>
</table>

Abbreviations: HbA1c, glycosylated hemoglobin; SMBG, self-monitoring of blood
glucose; T2DM, type 2 diabetes mellitus.

Blenkinsopp and Hassey46 undertook a systematic review
to evaluate the effect of community pharmacy interventions
in diabetes (types 1 and 2). They reviewed seven papers,
three focused on glycemic control, two on adherence, and
one each on patient knowledge and medication problems. Six
of the studies demonstrated positive results (Table 3), with
two being significant. Components of community pharmacy-
based interventions which appeared to contribute to effective-
ness included the following: patient education/consultation
about their diabetes and its treatment, medications, and life-
style changes; and monitoring/reviewing glycemic control.48
Since that review, there have been several others which are
summarized in Table 3. These systematic reviews have cov-
ered the impact of pharmacists in a number of settings from
hospitals, outpatients clinics, primary (community) health
centers, and community pharmacy.19–21,49–51 The results of all
of the systematic reviews demonstrate support for the role
of pharmacist in diabetes care across the various settings.

Collins et al21 reported that HbA1c levels decreased by
an average of 0.76% based upon results of 14 trials involv-
ing 2,073 subjects and fasting blood glucose by an average
1.63 mmol/L based upon results of four trials involving
589 subjects as compared to control subjects. Aguiar et al19
undertook a meta-analysis of 22 studies which examined
the effect of pharmacist interventions on glycemic control
in T2DM patients. This analysis demonstrated a statistically
and clinically significant reduction in HbA1c of −0.85% (95%
confidence interval [CI]: −1.06 to −0.65, P < 0.0001).
When community pharmacy interventions were compared
to other outpatient settings, the effect on HbA1c was similar
(−0.65% vs −0.98%, P = 0.08). Interestingly, overall, the most
significant effect on HbA1c was seen in those studies in which
participants’ baseline HbA1c was >9%. Further, the benefit
derived reduced as the age of the participants increased.19

Likewise, the reviews in Table 3 have demonstrated sta-

distically significant improvements in other clinical outcomes
such as reduction in risk factors and improved medication
adherence. For example, Santschi et al’s20 meta-analysis
demonstrated significant reductions in both systolic blood
pressure (SBP) (−6.2 mmHg, 95% CI −7.8 to −4.2) and
diastolic blood pressure (DBP) (−4.5 mmHg, 95% CI: −6.2
to −2.8). Six of the 14 studies included in the analysis of
SBP involved community pharmacies, with three showing
significant falls of between −5.6 mmHg and −20.05 mmHg.
Of the two community pharmacy based trials included in
the same meta-analysis which reported DBP changes,
both again demonstrated a positive effect, and one of them
was significant (−3.90 mmHg, 95% CI: −7.18 to −0.62).
<table>
<thead>
<tr>
<th>Study</th>
<th>Study type and search details</th>
<th>Studies reviewed and settings (n)</th>
<th>Interventions</th>
<th>Key outcomes</th>
<th>Humanistic</th>
<th>Economic</th>
<th>Conclusions and recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blenkinsopp and Hassey</td>
<td>Design: systematic review</td>
<td>Studies: RCT; controlled (1), effect of community pharmacy intervention in diabetes (T1DM or T2DM) (6)</td>
<td>Total studies: 7 Total participants: 920</td>
<td>Various: clinical review (assessment, goal setting and monitoring), referrals, HbA1c monitoring and feedback, pharmacist-nurse-led education sessions, adherence service (centered around health beliefs, lifestyle, adverse effects, rationalizing therapy), identification/resolution of DRPs</td>
<td></td>
<td></td>
<td>Evidence that community pharmacy interventions to improve diabetes care show promise, but require further evaluation.</td>
</tr>
<tr>
<td>Wubben and Vivian</td>
<td>Design: systematic review</td>
<td>Studies: RCTs; controlled clinical trial (9) and cohort studies (1), pharmacist interventions in outpatient setting (11)</td>
<td>Total studies: 21 Total participants: 3,981</td>
<td>Various: included: education on lifestyle or diabetes self-care, drug therapy review, case management, monitoring of glycemic control, and adjustment to patients' pharmacotherapy regimen as needed</td>
<td>HbA1c: +0.2% to −2.1% (vs control 18/21 studies)</td>
<td></td>
<td>Results supportive of a role for pharmacist in diabetes care. Evidence required from prospective studies of the efficacy of pharmacists in improving diabetes outcomes through the provision of self-management education and pharmacologic management. These findings required dissemination beyond the pharmacy profession.</td>
</tr>
</tbody>
</table>

Table 3 Summary of systematic reviews of pharmacists' interventions in diabetes care

- **Clinical**: HbA1c 60% vs 40% controlled, −0.3% (2/7 studies)
- **Humanistic**: Patient knowledge: significant improvement in T2DM patients (1/7 studies)
- **Economic**: Cost-effectiveness: potentially cost effective based on labor resources and costs to deliver DSM service (n = 1/21), service cost to produce significant HbA1c reduction (n = 1/21)
Role of the pharmacist in the management of T2DM

<table>
<thead>
<tr>
<th>Study</th>
<th>Design: systematic review</th>
<th>Databases: MEDLINE and Cochrane CENTRAL</th>
<th>Search dates: inception to June 2010</th>
</tr>
</thead>
</table>
| Collins et al | Studies: RCT; pharmacist intervention in a diabetic population.
Settings: clinics (6), hospitals (2), community pharmacy (4), clinic/hospital (1)
Total studies: 14 (12 T2DM only)
Total participants: 2,073
Various: two or more of the following components: diabetes education, instruction on diet and exercise, medication counseling and adherence assessment, and adjustment to patients’ pharmacotherapy regimen as needed | HbA1c: −0.76% (vs control; 14 studies, n = 2,073 subjects)
FBG: −29.32 mg/dL [−1.62 mmol/L] (4 studies, n = 589 subjects) | NR | NR |

Role of the pharmacist in the management of T2DM (Continued)

<table>
<thead>
<tr>
<th>Study</th>
<th>Design: systematic review</th>
<th>Databases: MEDLINE, EMBASE, IPA, CINAHL, and Cochrane Library</th>
<th>Search dates: (start date not provided) through to March 12, 2011</th>
</tr>
</thead>
</table>
| Omran et al | Studies: RCT; controlled (6), pharmacist intervention to improve medication adherence in adults with T2DM (2) Settings: clinics (1), hospitals (2), community pharmacy (3), care center (2)
Total studies: 8 (only T2DM)
Total participants: 3,930
Various: education-based (individual patient education), behavior-based (unit of use packaging, refill reminders, BGM), affective-based (enhanced communication, regular follow-up, feedback on BG measures) and provider-targeted (improved pharmacist-physician communication) strategies | Adherence: significant improvements in adherence rates (n = 5/8 studies) | NR | NR |

Role of the pharmacist in the management of T2DM (Continued)

<table>
<thead>
<tr>
<th>Study</th>
<th>Design: systematic review and meta-analysis</th>
<th>Databases: MEDLINE via PubMed (1950 to March 2012), EMBASE (1980 to March 2012), CINAHL (1937 to March 2012), and Cochrane Central Register of Controlled Trials (up to March 2012)</th>
<th>Search dates: start date not provided; end dates as given above</th>
</tr>
</thead>
</table>
| Santschi et al | Studies: RCTs; impact of pharmacist care on major CVD risk factors among outpatients with diabetes.
Settings: Outpatient clinics (11) and community pharmacy (4)
Total studies: 15 (12 T2DM only)
Total participants: 9,111
Various: 1) medication management (monitoring of drug therapy such as adjustment and change of medications, medication review from patient interviews, or assessment of medication compliance); 2) educational interventions to patients (medications, lifestyle, and physical activity or about compliance); 3) feedback to health care professional (DRPs identification, recommendation and discussion with physician regarding | SBP: WMD −6.2 mmHg ([−7.8 to −4.6], P < 0.001) (n = 12/15 studies, 7/12 significant)
Studies conducted in community pharmacy greater reduction in SBP (−10.0 mmHg vs -5.5 mmHg)
DBP: WMD −4.5 mmHg (−6.2 to −2.8), P < 0.001 (n = 9/15, 3/9 significant)
TC: WMD −15.2 mg/dL (−24.7 to −5.7) [−0.39 mmol/L (−0.64 to −0.15)], P = 0.002 (n = 8/15, 2/8 significant)
LDL: WMD −11.7 mg/dL (−15.8 to −7.6), [−0.30 mmol/L (−0.41 to −0.20)] P < 0.001 (n = 9/15, 5/9 significant) | NR | NR |

Evidence to support pharmacist interventions improve management of major CVD risk factors among outpatients with diabetes. Further research needed to assess which pharmacist interventions are most effective, implementable, and least time-consuming and to demonstrate cost-effectiveness of pharmacist interventions.
Table 3 (Continued)

<table>
<thead>
<tr>
<th>Pousinho et al<sup>a</sup></th>
<th>Design: systematic review</th>
<th>Databases: PubMed, Cochrane Central Register of Controlled Trials, and Web of Science</th>
<th>Search dates: Inception to January 2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studies: RCTs; pharmacist interventions vs usual care in T2DM</td>
<td>Settings: community pharmacy (8), primary care clinics (8), hospital clinics (16), and hospitals (4)</td>
<td>Total studies: 36</td>
<td>Total participants: 5,761</td>
</tr>
</tbody>
</table>

Interventions

Various: One or more of the following: counseling, education on diabetes, medication, lifestyle modification, and self-monitoring; reinforcement of medication adherence or complications screening; provision of materials such as educational leaflets and pill boxes; medication review; identification and resolution of drug-related problems; discussions with the primary care provider regarding pharmacotherapy; adjustment of pharmacotherapy; and referrals to other health care professionals

Key outcomes

- **Clinical**
 - HbA1c: −0.18% to −2.1% (vs control 24/26 studies)
 - SBP: −3.3 to −23.05 mmHg (n = 17/18)
 - DBP: −0.21 to −9.1 mmHg (n = 14/15)
 - TC: +18.95 to −32.48 mg/dL [0.49 to −0.84 mmol/L] (n = 10/13)
 - LDL: +7.35 to −30 mg/dL [±0.19 to −0.78 mmol/L] (n = 12/15)
 - HDL: −5.8 to +1.1 mg/dL [−0.15 to +0.28 mmol/L] (n = 9/12)
 - TG: +12 to −62 mg/dL [0.14 to 0.70 mmol/L] (n = 9/12)
 - BMI: Reduced (n = 12/14)

- **Humanistic**
 - Adherence: Improved (n = 11/13)

- **Economic**
 - HRQoL: Improved (n = 11 studies)
 - Cost effective (n = 3/26 studies)

Conclusions and recommendations

Need for future studies to look at which elements of pharmacists’ interventions contribute to the observed benefits. Interventions in this setting.
Role of the pharmacist in the management of T2DM

Aguiar et al. Design: systematic review and meta-analysis

Databases: PubMed/ MEDLINE, Scopus, and Lilacs

Search dates: (start date not provided) up to July 2015

Studies: RCTs; effect of pharmacist interventions on glycemic control

Settings: hospital outpatient clinics (15), community pharmacy (8), community based clinics (4) and research center (1)

Total studies: systematic review 30, meta-analysis 22

Total participants: systematic review 4,051, meta-analysis 2,715

Variable: Most involved medication review (n = 25/30). Multifaceted actions to address identified DRPs, including educating patients (concerning diabetes, lifestyle, and self-monitoring) or providing medication counseling (100.0%); sending suggestions or recommendations to the physician regarding changes in medication (46.7%); adjusting pharmacotherapy on the basis of protocols previously established in collaboration with the healthcare team (23.3%); and referring patients to other health professional (eg, dentist) (16.7%)

HbA1c: mean difference −0.85% (95% CI: −1.06, −0.65; P < 0.0001)

Subgroup analysis: no significant difference in the reduction in HbA1c levels according to the country where the study was conducted, type of contact with the patient, whether a medication review was performed; autonomy of the pharmacist to change drug therapy, provision of support resources, frequency of intervention, and adequate random allocation

Outpatient clinic vs community pharmacy: HbA1c effect more pronounced, but not significant (−0.98% vs −0.65%; P = 0.08)

HbA1c benefit: Greater in those with baseline HbA1c > 9.0% (−1.18% vs −0.63%; P = 0.007)

Notes: *The values shown within square brackets [] are calculated values in SI units based on the published results. The values shown within parentheses () represent the number of studies reviewed which addressed the outcome (denominator) and the number which showed positive results (numerator).

Abbreviations: RCT, randomized controlled trial; T1DM, type 1 diabetes mellitus; T2DM, type 2 diabetes mellitus; DRP, drug related problem; BG, blood glucose; NR, not reported; DSM, disease state management; SBP, systolic blood pressure; DBP, diastolic blood pressure; TC, total cholesterol; LDL, low-density lipoprotein; HDL, high-density lipoprotein; TG, triglyceride; FBG, fasting blood glucose; BGM, blood glucose monitoring; CVD, cardiovascular disease; WMD, weighted mean difference; BMI, body mass index; HRQoL, health-related quality of life; CI, confidence interval; CINAHL, Cumulative Index to Nursing and Allied Health Literature; IPA, International Pharmaceutical Abstracts.

Pharmacist interventions improve glycemic control in patients with type 2 diabetes, benefits appear greater in younger patients or those with higher baseline HbA1c levels.
Significant reductions were also reported for total cholesterol, low-density lipoprotein cholesterol, and BMI.

Despite significant variations in the methods by which adherence was measured, pharmacist interventions were generally shown to have a positive effect, although it was unclear in many instances what impact the improvement had on clinical outcomes.30 Patients' knowledge of their disease and its complications, its treatment (pharmacological and non-pharmacological), and self-monitoring has also been shown to be increased through pharmacist-delivered educational interventions.51

The ability to demonstrate improvements in the quality of life of people with diabetes is often hampered by the short duration of the studies, and the tools chosen. Despite these factors, pharmacist-managed interventions again showed positive benefits. Limited studies have investigated the economic benefits of pharmacist interventions in diabetes care. A recent meta-analysis by Wang et al,22 which included 25 studies, reported that “pharmacist-managed services had a positive return in terms of economic viability”. Ten of the 25 studies were completed in community pharmacy. Benefits demonstrated included that the average cost of a 1% reduction in HbA1c was US$174 per person; such a reduction translates into a 21% reduction in macrovascular complications. Further, whilst pharmacist interventions often increased medication costs, these costs were offset by a reduction in medical costs associated with emergency department attendances and hospitalization.22 In fact, compared to usual care, pharmacist-led services produced cost savings in the range of US$8 to US$85,000 per year, whilst costing between US$62,803 and US$114,576 to prevent one diabetes-related macrovascular and microvascular event. Of the six studies that included cost–benefit analysis (cost-to-benefit ratio range 1:1–8.5:1), the three that were community pharmacy based were either cost neutral (1:1)52 or cost effective (6.1:153 and 8.5:154). Hendrie et al55 evaluated the economic benefit of reduced glycemic events (hypoglycemia) in a group of patients who enrolled into a 6-month Diabetes Management Education Program (DMEP). They found that the intervention resulted in significantly greater reductions in the number of hyper- and hypoglycemic events relative to the control group (odds ratio [OR] 0.34, 95% CI 0.22–0.52, \(P = 0.001\) vs OR 0.54, 95% CI 0.34–0.86, \(P = 0.009\)). This reduction translated into a net reduction of 1.86 days with glycemic episodes per patient per month. In terms of cost-effectiveness, the DMEP costs AU$43 (US$39) per day of glycemic symptoms avoided relative to standard care.

In summary, to date, pharmacist interventions to improve the care of patients with diabetes, and in particular those with T2DM, have been shown to deliver positive clinical, humanistic, and economic benefits. However, the interventions, which are often multifaceted, have varied across studies, although often education- and clinical review-based, making it difficult to determine which elements deliver the greatest benefits.

Future roles for pharmacists in T2DM management

To date, evidence supports pharmacists extending their role in diabetes care from medication supply to cognitive services which aim to assist those with diabetes achieve the best possible clinical outcomes through supporting their self-management. Realistically, pharmacists potentially have a role to play in all facets of the care of T2DM patients as depicted in Figure 1. However, widespread implementation of such services in the future will depend on legislative change, adequate funding (government and nongovernment), professional commitment, interprofessional collaboration, and consumer (patient) acceptance.

The importance of the latter should not be underestimated, with recent work again illustrating that consumers do not perceive community pharmacies as a place to go to get assistance with their diabetes care. Consumers are happy to accept that pharmacists can provide them with medications and counseling; however, they have consistent concerns about the knowledge and competency of pharmacists to provide additional services, and that community pharmacies are a suitable environment to deliver them.56 The findings of Dhippayom and Krass57 support this, with participants in their study highlighting the main role of pharmacists is medication provision, with some enhancements in supporting adherence and continuity of supply. Therefore, for community pharmacy-based services to succeed, these perceptions must be changed; this will require action from within the pharmacy profession through further training, establishment of private consulting areas, changes to workflows, and proactively promoting pharmacists’ capability to deliver enhanced diabetes care.

Delivery of such services within other settings such as hospitals, outpatient clinics, and community-based clinics is likely to be better received by patients, with pharmacists being seen more as a care provider than a supplier of medicines. Evidence supports pharmacists working in these settings, either directing care or collaborating in care.20

Targeting of services to those at greatest need would seem appropriate, such as patients with newly diagnosed diabetes58 who are often overwhelmed by the diagnosis and have a poor understanding of its management. For example, general practitioners often fail to provide adequate education...
for patients starting oral hypoglycemics, and community pharmacists are well placed to fulfill this role. Further, the evidence suggests that patients with poorly managed diabetes, that is, those with HbA1c > 9 mmol/L, gain the greatest benefit from pharmacist interventions, suggesting targeting such patients would be appropriate. This could be facilitated through referrals from medical practitioners or pharmacists ordering of HbA1c levels or point-of-care testing.

Funding to deliver pharmacy-based cognitive services is a contentious issue, and whilst they can be funded through a user-pays model, government-funded or third-party payer models are likely to be needed for widespread implementation of such services. For example, depending on the level of remuneration, one would envisage that a limited number of community pharmacies specializing in diabetes would offer extended services. Legislative change to allow pharmacists to manage patients’ diabetes therapy either in consultation with their primary health provider or independently, which has occurred in some jurisdictions, will allow pharmacists delivering such services to have greater impact.

Diabetes screening is another area of significant need which pharmacists should engage in as many people living with the disease are undiagnosed. A large-scale trial is about to commence in Australia to evaluate community pharmacists’ role in diabetes screening. This study builds upon the work of Krass et al., which demonstrated that a sequential screening program, that is, tick test followed by capillary blood glucose testing, was an effective means to detect prediabetic and diabetic patients.

Conclusion
There is significant evidence to support the role of pharmacists in providing a range of extended diabetes care services, from the screening to ongoing disease state management. However, despite this, the provision of such services generally remains limited and inconsistent. However, this is set to change, as the number of people with T2DM grows, and the capacity of traditional care providers to cope with these people diminishes. Governments, third-party payers, and consumers will all be looking for cost-effective ways to manage diabetes. Pharmacists are ideally placed to assist patients with their diabetes management within a range of clinical settings as demonstrated by current evidence. Needed now are models of practice which are evidence based, consistent, and scalable, such that they deliver the outcomes desired by all stakeholders.

Disclosure
The authors report no conflicts of interest in this work.

References
For personal use only.