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Abstract: Oncolytic virotherapy is the use of replication-competent viruses to treat malignan-

cies. The potential of oncolytic virotherapy as an approach to cancer therapy is based on histori-

cal evidence that certain viral infections can cause spontaneous remission of both hematologic 

and solid tumor malignancies. Oncolytic virotherapy may eliminate cancer cells through either 

direct oncolysis of infected tumor cells or indirect immune-mediated oncolysis of uninfected 

tumor cells. Recent advances in oncolytic virotherapy include the development of a wide variety 

of genetically attenuated RNA viruses with precise cellular tropism and the identification of 

cell-surface receptors that facilitate viral transfer to the tissue of interest. Current research is 

also focused on targeting metastatic disease by sustaining the release of progeny viruses from 

infected tumor cells and understanding indirect tumor cell killing through immune-mediated 

mechanisms of virotherapy. The purpose of this review is to critically evaluate recent evidence 

on the clinical development of tissue-specific viruses capable of targeting tumor cells and elicit-

ing secondary immune responses in lung cancers and mesothelioma.
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Introduction
The potential of oncolytic virotherapy as an approach to cancer therapy is based on 

historical evidence of the miraculous remission of advanced malignancies after viral 

syndromes.1 Spontaneous remission of leukemia and lymphoma has been reported 

after chicken pox, measles, or hepatitis infections.2 These observations led to the first 

preclinical investigation to explore viruses as a treatment for cancer. One historic study 

published in the 1940s explored the use of murine viruses against murine tumors.3 The 

virus delivered intravenously at high doses proved to be antineoplastic but at the same 

time caused a higher level of toxicity. These findings led to initial human trials using 

wild-type viruses from unpurified sera and delivered as intravenous, intratumoral, or 

intramuscular injections; these human trials, like the mouse study, resulted in some 

efficacy but in significant toxicities.2 Administered viruses were neutralized by host 

immune responses most of the time; however, in immunocompromised individuals, 

tumor regression was observed, although most of the patients developed generalized 

viral syndrome and died subsequently.4 In one encouraging study from Osaka University 

in the 1970s, a dramatic antitumor response was reported in 37 of 90 terminal cancer 

patients treated with nonattenuated mumps virus.5 These initial studies established the 

potential viability of oncolytic virotherapy as an approach to cancer therapy. Here, we 

review recent evidence on the clinical development of tissue-specific viruses capable 
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of targeting tumor cells and eliciting secondary immune 

responses in lung cancers and mesothelioma. Numerous 

clinical trials are currently under way or beginning (Table 1), 

and these studies will be highlighted.

Viral targeting of tumor cells
The differential tropism of viruses to infect the specific tissue 

determines the unique pathological disease process in human 

beings. For instance, hepatitis B virus infects hepatocytes, 

mumps virus preferentially involves parotid glands and can 

also cause orchitis and oophoritis, human immunodeficiency 

virus (HIV) targets helper T-lymphocytes, and influenza virus 

tends to infect airway epithilium.4 The ability of oncolytic 

viruses to preferentially infect tumor cells is an essential 

element of oncolytic virotherapy. Many, if not all, wild-type 

viruses have the capability to infect tumor cells in general. 

The parvoviruses, reovirus, mumps virus, Newcastle disease 

virus (NDV), and Moloney leukemia virus have a natural ten-

dency to preferentially infect cancer cells, while measles virus 

(MV), adenovirus, vaccinia, and herpes simplex virus can be 

genetically attenuated to infect cancer cells instead of human 

cells.4 The most common technique used to engineer viruses 

to selectively target cancer cells is to exploit surface markers 

expressed by different types of cancer cells. The epidermal 

growth factor receptor (EGFR), folate receptor, Her2-neu, 

prostate-specific antigen, CD20, COX-2, and osteoclastin are 

examples of surface marker selectively expressed by cancer 

cells; these tumor-specific surface markers can be used as a 

portal of entry for viruses6,7

Development of attenuated viruses
To deal with undesirable toxicity of wild-type viruses, some 

researchers envisioned developing attenuated viruses with 

preserved infectious potential but less virulence and patho-

genicity.8 New technologies made it possible to preserve 

certain viral genes required for the antineoplastic effect and 

to knock out genes responsible for viral specific pathogenicity 

and undesirable toxicity. Numerous first-generation oncolytic 

viruses were selected from the breed of attenuated viruses 

developed to serve as vaccines.9 Further research helped 

to isolate the varieties of attenuated viruses with selective 

tropism to infect tumor cells more efficiently than normal 

cells. The potential to use therapeutically engineered viruses 

for cancer treatment led researchers to start human trials in 

the 1990s.2

Oncolytic virotherapy in lung cancer
Lung cancer is one of the most prevalent causes of death 

from cancers worldwide.10 It is a heterogeneous group of 

disorders. Non-small-cell lung cancer (NSCLC) is respon-

sible for ~80% of all reported cases of lung cancer. NSCLC 

is further subdivided into adenocarcinoma, squamous cell 

carcinoma, and large cell carcinoma.11 Although conven-

tional chemotherapy and radiation treatment options are 

available, they rarely provide a cure. In addition, overall 

quality of life and survival of patients with NSCLC have 

not improved markedly in the last decade. Less common 

than NSCLC, small-cell lung cancer (SCLC) is considered 

as a very aggressive and lethal malignancy.12 Unfortunately, 

Table 1 Novel therapies in development

Vector Cancer type Preclinical studies Clinical trials

Adenovirus NSCLC/mesothelioma Anticancer effects of REIC/Dkk-3-encoding 
adenoviral vector for the treatment of 
NSCLC104

Treatment of cancer patients with a serotype 5/3 
chimeric oncolytic adenovirus expressing GMCSF33

Safety and immunogenicity of recombinant DNA 
and adenovirus expressing L523S protein in early 
stage NSCLC (Phase I, recruiting)

Coxsackievirus B3 NSCLC Coxsackievirus B3 is an oncolytic virus with 
immunostimulatory properties that is active 
against lung adenocarcinoma15 

Pembrolizumab + CVA21 in advanced NSCLC 
(Phase I, not yet recruiting)

Measles virus Mesothelioma Oncolytic measles viruses encoding interferon 
β and the thyroidal sodium iodide symporter 
gene for mesothelioma virotherapy63

Intrapleural measles virus therapy in patients with 
malignant pleural mesothelioma (Phase I, recruiting)

Newcastle disease 
virus

Mesothelioma Genetically engineered oncolytic Newcastle 
disease virus effectively induces sustained 
remission of malignant pleural mesothelioma101

No active clinical trial

Seneca Valley virus Small-cell lung cancer Selective tropism of Seneca Valley virus for 
variant subtype small-cell lung cancer105

Seneca Valley virus-001 after chemotherapy in 
treating patients with extensive-stage small-cell lung 
cancer52 (Phase II, active, not recruiting)

Abbreviations: GMCSF, granulocyte-macrophage colony-stimulating factor; NSCLC, non-small-cell lung cancer; CVA21, coxsackievirus A21.
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most of the patients are diagnosed with metastatic disease, 

and the median survival is only 9 months.13 There is an 

urgent need to develop more efficacious and novel treatment 

options to treat SCLC.14

Coxsackievirus B3 (CVB3)
CVB3 was identified as an effective and potent virothera-

peutic agent against nine NSCLC cell lines in a preclinical 

model. It showed efficacy in in vitro screening and in vivo 

xenograft models in nude mice.15 The CVB3 exhibited 

selective tropism for NSCLC cell lines, which correlated 

with NSCLC expression of coxsackievirus and adenovirus 

receptors (CARs) and decay-accelerating factor (DAF).15 

CAR is selectively overexpressed on a diverse group of 

human lung cancer cells but not on nonmalignant alveolar 

epithelial cells.16 Interestingly, the expression of DAF was 

found equally high in both NSCLC and normal cell lines.15 

The overexpression of DAF by NSCLC cells provides a pro-

tective mechanism to counterbalance complement-mediated 

cytotoxicity but at the same time provides an excellent target 

for CVB3.17 The in vivo results of this preclinical model 

revealed that CVB3 induced caspase-mediated apoptosis 

and subsequent oncolysis in human NSCLC cells.15 The 

unique ability of CVB3 to induce apoptosis in NSCLC cells 

holds great promise.18,19 The animal model clearly elicited 

the regression of subcutaneous xenografts, as well as distant 

metastatic lesions after direct intratumoral CVB3 injec-

tion, in one of the two bilateral subcutaneous xenografts. 

This observation suggests that CVB3 can be used to treat 

metastatic disease because CVB3 replicated in one of the 

subcutaneous xenografts and progeny viruses disseminated 

through the blood or lymphatics to infect distant metastasis.15 

In addition, a competent antitumor immune response trig-

gering immune-mediated apoptotic cell death induced by 

CVB3 was evidenced by immunogenic changes including 

preapoptotic exposure to calreticulin (CRT) and extracellular 

adenosine triphosphate release and postapoptotic transloca-

tion of high-mobility group box protein 1 (HMGB1) from 

nuclei of both A549 and H1299 cells into the cytosol, acti-

vating the innate immune system, promoting inflammation, 

and subsequent apoptotic cell death.15,20,21 Another feature 

of CVB3 that enhances its therapeutic potential is its use in 

advanced NSCLC that is resistant to radiation and molecular-

targeted therapies. A noticeable antitumor effect has been 

reported with intratumoral CVB3 administration against 

A549 adenocarcinoma xenografts, which were resistant to 

conventional radiation treatment and the EGFR tyrosine 

kinase inhibitor gefetinib.22,23

Combination immunotherapy and 
oncolytic virotherapy
The host immune system plays a critical role in cancer 

virotherapy. Neutralizing antibodies against oncolytic 

viruses may limit viral replication and the spread of viral 

progeny, thus confining the virotherapeutic effect.24 How-

ever, advancements in virotherapy can help to neutralize the 

immune tolerance acquired by cancer cells. In addition, the 

oncolytic effect of genetically engineered viruses to some 

extent is dependent on activation of an immune response 

against cancer cells infected with oncolytic virus.25 In spite 

of a potent antitumor immune response, tumor eradication by 

oncolytic viruses is usually imperfect. New technologies have 

devised ways to augment the immune response via arming 

genetically engineered adenoviruses with immunostimula-

tory molecules. This new concept has provided encouraging 

results in previous studies.26–29

The granulocyte-macrophage colony-stimulating fac-

tor (GMCSF) can augment the antitumor response through 

the recruitment of tumor-specific CD8+ T-lymphocytes and 

natural killer (NK) cells.30,31 The efficacy of systemic admin-

istration of GMCSF is limited by poor penetration into the 

tumor microenvironment, recruitment of harmful myeloid 

suppressor cells, and a high toxicity profile.31,32 Consequently, 

the local production of GMCSF by cancer cells infected with 

oncolytic virus expressing GMCSF could help to minimize 

systemic side effects while providing sufficient levels of 

GMCSF in the tumor microenvironment. Local production 

of GMCSF can be achieved using oncolytic adenoviruses.29,30

A chimeric oncolytic adenovirus armed with human 

GMCSF (Ad5/3-D24-GMCSF) has been tested in a pre-

clinical model in hamsters as well as in 21 patients with 

advanced metastatic solid tumors (including NSCLC and 

mesothelioma) resistant to standard treatment protocols.33 

Both hamsters and patients were treated in the same pattern 

with 4/5 of the Ad5/3-D24-GMCSF doses given directly in 

the tumor and 1/5 injected intravenously. A starting dose of 

8×1010 viral particles was administered in patients based on 

previously published studies.34 Patients tolerated a density 

of 4×1011 viral particles without grade 4 or 5 (Common 

Toxcitiy Criteria for Adverse Events [CTCAE]) adverse 

events, although mild flu-like symptoms and local pain were 

observed. It has been reported in the published literature that 

oral cyclophosphamide is associated with a decrease in the 

number of regulatory T-cells, which leads to a suppression 

of their inhibitory effect on cytotoxic T-cells and NK cells.35 

To reduce tumor-induced immune tolerance and enhance 

oncolytic adenovirus-mediated anticancer  immunotherapy, 

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Oncolytic Virotherapy 2017:6submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

4

Ahmad and Kratzke

low-dose oral metronomic cyclophosphamide at a dose of 

50 mg/day was offered to patients without contraindications.35 

The use of cyclophosphamide enhanced the antitumor effect 

of Ad5/3-D24-GMCSF as compared to cyclophosphamide 

treatment alone. Although a previous study with oncolytic 

vaccinia virus coding GMCSF reported elevated serum lev-

els of GMCSF and white blood cells,36 preclinical testing of 

Ad5/3-D24-GMCSF revealed undetectable systemic GMCSF 

and white blood cells, which was indicative of restricted 

GMCSF release only at the site of viral infection and replica-

tion.33 Treatment with Ad5/3-D24-GMCSF revealed stable or 

better disease control in 67% of patients based on radiological 

assessment. Moreover, several patients were found to have 

resolution of pleural effusion and ascites, and two patients 

had reduced tumor marker levels; however, the utility of 

tumor markers is limited in the setting of oncolytic therapy 

as the levels can be elevated secondary to viral replication 

and tumor cell lysis.37 A positive viral titer was detected in 

the serum of 12 out of 15 patients from days 3 to 7 and even 

on day 58, and an increase in viral titer was noticed in eight 

patients as compared to day 1.33 This pattern of elevated viral 

titer is consistent with viral replication in prior studies as 

well.38–41 All patients tested exhibited an increase in neutral-

izing antibodies within 1–2 weeks, although there was no 

direct relationship between neutralizing antibody titer with 

viral dose, virion release in the blood, oncolytic activity, or 

toxicity. This observation is consistent with the results of 

previous clinical trials.39,40,42 In terms of its efficacy (ie, 67% 

radiological clinical benefit), this study concurs with other 

preclinical studies suggesting that the Ad5/3 chimeric virus 

might be more favorable than the Ad5 virus.43–51 In general, 

the results of preclinical and early clinical testing of Ad5/3-

D24-GMCSF are encouraging and suggest that it may have 

potential effectiveness in patients with advanced solid tumor 

cancers.33 A Phase I and II clinical trial with multiple injec-

tions of Ad5/3-D24-GMCSF in combination with low-dose 

metronomic cyclophosphamide is ongoing.33

Seneca Valley virus (SVV-001) has been tested in a 

Phase I clinical trial of cancers with neuroendocrine dif-

ferentiation.52 SSV-001 is an oncolytic picornavirus initially 

discovered as a contaminant in adenovirus preserved in a 

laboratory.53,54 The replicative potential of the SSV-001 was 

tested and found to be highest in those cancer cell lines that 

harbor neuroendocrine characteristics, which include 13 of 

23 cell lines of SCLC.53,55 In this Phase I trial, 30 patients, 

including six patients with SCLC, were treated with the 

lowest intravenous dose of SVV-001. Surprisingly, SVV-

001 was well tolerated without significant dose-limiting 

toxicities. The most promising feature of this trial was the 

 immunohistochemical data demonstrating that viral replica-

tion was selective for tumor tissue as evidenced by negative 

staining in organs without cancer and positive staining in 

organs with metastatic lesions. Immunostaining of liver 

lesions clearly demonstrated intracellular staining of viral 

particles in cancer cells with no evidence of SSV-001 in nor-

mal liver tissue. This observation was further supported by the 

persistent production of SVV-001 viral titers selectively con-

fined to those patients with metastatic SCLC. Although none 

of the patients demonstrated objective partial or complete 

antitumor response by response evaluation criteria in solid 

tumors (RECIST) criteria,56 one patient with chemorefractory 

SCLC with progressive disease experienced progression-

free survival for 10 months and remained alive over 3 years 

after receiving SVV-001.52 On the basis of these promising 

findings, a Phase II trial has been initiated to further test the 

safety profile, antitumor activity, and selective intratumoral 

viral replication of SVV-001 in SCLC.52

Oncolytic virotherapy in malignant 
pleural mesothelioma
Malignant pleural mesothelioma develops in the mesothelium, 

which encases the entire lung and helps to diminish the kinetic 

friction between the lungs and chest wall during the breathing 

cycle.57 It has been observed that even asbestos exposure of 

2 months can adversely affect normal mesothelium cells and 

lead to malignant mesothelioma after many years.58 Malignant 

mesothelioma is a lethal disease with a very high fatality rate, 

and incidence is increasing worldwide.59 Unfortunately, the 

prognosis of malignant pleural mesothelioma is bleak with 

current treatment options including surgery, chemotherapy, 

and radiation treatment.59,60 Malignant mesothelioma leads 

to death within 8–14 months of diagnosis.57

MV
MV is another effective and safe oncolytic virus.61 There 

is historic evidence of spontaneous tumor regression with 

measles infection.62 The Edmonston strain of MV has shown 

selective anticancer activity through syncytia formation in 

several cancer cell lines without infecting normal cells.61 

Various preclinical studies have used oncolytic MV in a 

large variety of human cancers including malignant pleural 

mesothelioma and found enhanced cell death and improved 

survival.63–65 None of these preclinical models discussed the 

effect of neutralizing antimeasles antibodies secondary to 

prior infection or vaccination while using MV as oncolytic 

treatment.66
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The Schwarz MV is a live genetically attenuated MV and 

has been shown to preferentially infect and kill mesothelioma 

cells in vitro.67 This study found that MV induced cytore-

duction through syncytial formation (multinuclear cellular 

complexes).67 It was also observed that MV vaccine caused 

noticeable destruction of malignant mesothelial cells with-

out significant lytic effect on nontransformed Met5A cells. 

Furthermore, the MV Edmonston strain vaccine was found 

to infect cancer cells through a human membrane cofactor 

protein, CD46.68 CD46 is a member of the regulators of 

complement activation gene, which is located on chromo-

some 1 at q3.2.69 CD46 has cofactor activity that helps CD46 

to bind with membrane-bound C3b and C4b and facilitates 

C3b and C4b to be degraded by plasma serine protease (fac-

tor I).70 In this way, CD46 provides a protective mechanism 

to cells and prevents complement-mediated autologous cell 

damage.71 CD46 is often expressed abundantly by tumor cells 

as compared to normal human cells.72 Thus, the phenomenon 

of expressing more CD46 in tumor cells as compared to their 

normal tissue counterparts represents a mechanism develop-

mentally acquired by cancer cells via mutations to prevent 

complement-mediated lytic activity by the normal host 

immune system but at the same time make cancer cells more 

susceptible to infection by MV vaccine strains.67,73 Similar 

overexpression of CD46 by malignant pleural mesothelioma 

cells as compared to nontransformed mesothelial cells was 

also reported in this study.67 One of the most exciting findings 

was that malignant pleural mesothelioma cells infected with 

MV appeared to trigger an autologous anticancer immune 

response. This concept of cancer immunotherapy was further 

evidenced by induction of apoptosis in mesothelioma cells 

infected with the MV Schwarz strain, which were eventually 

phagocytosed by dendritic cells. Furthermore, spontaneous 

maturation of dendritic cells was also observed after loading 

dendritic cells with MV-infected malignant pleural mesothe-

lioma cells. This finding is consistent with the observation 

of enhanced proliferation of CD8 T-cells after priming of 

autologous T-cells with dendritic cells pretreated with MV-

infected malignant mesothelioma cells.67

Type I interferons
Type I interferons (IFNs) have been used to trigger anticancer 

activity via an immune-mediated mechanism.74–76 Interferons 

mediate their effect through an immunoregulatory mecha-

nism on antibody production, macrophage function, NK 

and T-cell activation, and angiogenesis inhibition.77–79 Type 

I interferons have a short half-life of ~60 minutes secondary 

to their nonselective binding to other tissues in addition to 

cancer cells, which limits their effectiveness when admin-

istered in the form of proteins.63 To enhance the efficacy of 

type I IFNs, gene transfer techniques have been used in the 

form of plasmids or viral vectors (eg, adenovirus) and stud-

ied in various tumor models including lung cancer, prostate 

cancer, and glioma.80–83 The adenovirus-IFNb vector has been 

used to treat mesothelioma in a mouse model, and a Phase I 

clinical trial has provided promising results in terms of 

safety and responsiveness in malignant pleural mesothelioma 

patients.84 When administered via viral vectors, type I IFN 

may induce an immune response against the vector itself in 

addition to potent antitumor effect.63

Sodium ion symporter (NIS)
Modern advancements in genetic engineering of MV have 

made it possible to insert therapeutic and diagnostic trans-

genes to generate recombinant MV, which allows noninvasive 

monitoring of viral spread and replication.85–88 The NIS gene 

has been used in vivo to track viral replication noninvasively 

in various tumor models.86–89 The human thyroidal NIS has 

shown the potential for noninvasive monitoring of MV-mIFN-

NIS propagation in vivo via radioiodine imaging.63 Numerous 

preclinical studies have described the ablative prospects of 

radioactive iodine (131I) in tumor xenografts.64,86,90,91 The 

unique ability of NIS to concentrate radioactive iodine sug-

gests the possibility of using a viral vector to deliver the NIS 

gene in human tumors with the goal of targeted radiotherapy 

of tumors in near future.90

The attenuated MV of Edmonston lineage with the mouse 

IFNb gene alone (MV-mIFNb) and with the thyroidal NIS gene 

(MV-mIFNb-NIS) has been successfully tested both in vitro 

and in vivo. The objective was to evaluate the influence of 

mIFNb on virotherapy and determine whether it enhanced the 

potency of MV coding for mIFNb and NIS.63 Both MV-mIFNb 

and MV-mIFNb-NIS successfully infected human mesothe-

lioma cell lines, which suggested that mIFNb expression did 

not alter the oncolytic ability of MV to infect mesothelioma 

cells in vitro. The selective ability of MV-mIFNb-NIS to con-

centrate radioiodine (125I) in contrast to MV-mIFNb provided 

proof that MV-mIFNb-NIS induced NIS protein expression in 

targeted plasma membrane. MV-mIFNb expression enhanced 

the infiltration of CD68-positive immune cells two to four 

times greater than MV-GFP 7 days after subcutaneous MV 

injection into the flank of tumor-bearing nude mice.63 The 

anti-CD31 antibody was utilized to stain vascular endothelial 

cells of tumor vasculature. The vascular densities and number 

of CD31-positive endothelial cells were found to be decreased 

7 days after intratumoral injection of MV-mIFNb or MV-
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mIFNb-NIS but not after treatment with MV-GFP or phosphate 

buffered saline (PBS). These observations suggest that using 

MV-IFNb for virotherapy alters the tumor microenvironment 

by increasing immune cell infiltration and angiogenesis inhibi-

tion. Moreover, this study also revealed that human thyroidal 

NIS could be an effective tool in noninvasive monitoring of 

MV-mIFNb-NIS propagation via radioiodine imaging. A 

median survival of 45 days was reported in mice treated with 

MV-GFP and MV-GFP-NIS (P<0.001), and a median survival 

of just 20 days was reported in control animals treated with 

PBS only. In contrast, MV-mIFNb and MV-mIFN-NIS sig-

nificantly reduced tumor burden and increased survival time 

in mice tumor xenografts, with the median survival being 65 

and 60 days, respectively (P<0.001).63

NDV
NDV is another emerging member of the oncolytic viral fam-

ily. NDV was first noted to have potential oncolytic activity in 

the 1950s.92 Recent clinical trials have described its oncolytic 

efficacy and safety.93–95 The antineoplastic effect of NDV is 

complex and involves various cellular mechanisms. Apoptotic 

death of cancer cells is a direct oncolytic effect of NDV.96,97 

In addition, there are indirect immune-mediated mechanisms 

by which it may kill tumor cells. NDV infection induces the 

host to secrete certain cytokines including interferons and 

TNF, which are responsible for the migration of NK cells, 

monocytes, macrophages, and sensitized T-cells to tumor 

microenvironment, resulting in subsequent oncolysis.98,99 The 

oncolytic potential and ability of NDV to induce a tumor-

directed immune response has been described in other clinical 

trials.100 The advantages of using NDV as an oncolytic virus 

are that humans do not harbor preexisting immunity against 

this avian virus and, as an RNA virus, the viral replication is 

confined to the cytosol, thus limiting the possibility of genetic 

integration with human DNA.98

NDV (F3aa) has been successfully tested both in vitro 

and in vivo in a preclinical study with malignant pleural 

mesothelioma in an orthotropic mouse model.101 It was clearly 

demonstrated during in vitro testing that NDV infects meso-

thelioma cell lines and causes significant oncolysis even at 

lower multiplicity of infections. To verify these encouraging 

results, fire fly luciferase-transduced MSTO-211H cells were 

administered to an orthotropic pleural mesothelioma model 

and locally treated with NDV (F3aa)-GFP. Bioluminescence 

imaging was adapted as a tool to monitor tumor progression 

or regression in the pleural cavity. A decrease in tumor signal 

was noticed 1–3 days after viral injection, which was more 

profound at day 10 after the treatment. The group of animals 

who received multiple intrapleural treatments with NDV (four 

viral injections every other day at a dose of 1e7 plaque forming 

units (PFU) suspended in 100 mL of PBS starting at days 1 and 

10 after tumor implantation) revealed noticeable and higher 

reduction in tumor signals during the first 10 days after the 

initiation of treatment (days 1 and 10, P<0.01) in comparison to 

the treatment group receiving a single intrapleural treatment.101 

A significant survival benefit was reported in the multi-dose 

treatment group in comparison to the single-dose treatment 

group receiving NDV (F3aa)-GFP (P=0.005). There was no 

significant difference in survival in both the treatment groups 

based on the start time of treatment (days 1 vs 10, P=0.84). 

Moreover, NDV treatments produced no significant toxicities 

in experimental animals. Prior studies with avian paramyxovi-

rus, NDV for human neuroblastoma, and melanoma cell lines 

have shown comparable results.102,103 This preclinical model 

indicates that NDV could be an effective virotherapeutic agent 

for the treatment of malignant pleural mesothelioma in pleural 

mesothelioma and the need for further investigation of NDV 

as an oncolytic agent for this lethal cancer.101

Conclusion
Oncolytic virotherapies are under active investigation in 

lung cancer and mesothelioma both in vitro and in vivo. 

Replication-competent viruses show great promise for 

treatment in thoracic cancers in the coming decade. Criti-

cal hurdles nonetheless remain, including eluding the host 

immune system. The final use of these novel therapies will 

become clearer in the very near future with the completion 

of ongoing clinical studies.
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