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Abstract: To address the limitations of traditional drug delivery, TiO
2
 nanotubes (TNTs) are 

recognized as a promising material for localized drug delivery systems. With regard to the excel-

lent biocompatibility and physicochemical properties, TNTs prepared by a facile electrochemical 

anodizing process have been used to fabricate new drug-releasing implants for localized drug 

delivery. This review discusses the development of TNTs applied in localized drug delivery 

systems, focusing on several approaches to control drug release, including the regulation of the 

dimensions of TNTs, modification of internal chemical characteristics, adjusting pore openings 

by biopolymer coatings, and employing polymeric micelles as drug nanocarriers. Furthermore, 

rational strategies on external conditions-triggered stimuli-responsive drug release for localized 

drug delivery systems are highlighted. Finally, the review concludes with the recent advances 

on TNTs for controlled drug delivery and corresponding prospects in the future.

Keywords: TiO
2
 nanotubes, electrochemical anodization, modification, stimulated drug delivery, 

drug-releasing implant

Introduction
To address the limitations of conventional drug therapies related to restricted drug 

solubility, short circulating time, lack of selectivity, side effects, and unfavorable 

pharmacodynamics, considerable studies have been carried out in past years toward the 

development of more efficient drug delivery systems.1–4 Approximately 90% of drugs 

that are used currently on the market are hydrophobic and poorly water-insoluble, and 

this restricts their pharmacological efficiency and particularly challenges the systemic 

delivery route.5,6 Another inherent limitation of the therapies is that various drugs are 

inactivated or removed by the gastrointestinal system and other body organs includ-

ing kidney and liver, and only ,1% of administered drug molecules reach the site 

of interest, where higher dosages of drugs are required to achieve an optimized local 

concentration.7,8 Therefore, innovative drug delivery approaches are urgently needed 

to address the disadvantages of traditional drug delivery. 

The inherent limitations of conventional therapies could be addressed on the basis 

of developing more efficient and rational drug delivery systems, in which two concepts 

involved in targeting drug delivery and localized drug delivery systems are verified to 

be the most perspective strategies. The utilization of nanotechnology to medicine is an 

emerging field with significant potential for localized drug delivery systems. Nanotech-

nology has boosted the development of various new nanomaterials and drug carriers 

for drug release applications, including polymer micelles, liposomes vesicle, multi-

functional dendritic polymers, nanocapsules, nanospheres, TiO
2
 nanotubes (TNTs), 
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and so on,7,9–12 as shown in Figure 1. For these nanoporous or 

nanotube carriers, a special niche in drug delivery technology 

has been guaranteed to correspond with them because of their 

simple preparation, controlled nanoporous or nanotube for-

mation, mechanical rigidity, chemical resistivity, high load-

ing capability, high surface area, and so on.13–21 TNT arrays 

formed on Ti surface by a facile electrochemical anodizing 

process are recognized as a desirable candidate to promote 

clinical therapeutic effect of medical implants.22–25

This paper aimed at reviewing TNTs used as carriers 

for controlled drug release and compiling the most recent 

advances on TNT-based drug-releasing implants for local-

ized and smart drug delivery applications. Various methods 

designed to control sustained drug release from TNT implants 

are discussed, which include controlling TNT morphologies 

and chemical modification. Additionally, some advanced 

strategies on externally triggered stimuli-responsive drug 

release are discussed, and these sources hold significant 

potential of producing alternative drug release pathways that 

could overcome the limitations of the traditional diffusion 

mechanism. Finally, this review concludes a general over-

view on the future trends, challenges, and the prospective 

outlook for the interesting and promising research field.

Development of TNTs by 
electrochemical anodization
With the development of TNTs constructed by electrochemi-

cal anodizing, more and more attention is paid to achieve 

higher nanotube growth rates, improve controllable dimen-

sions and nanotubes ordering.19–31 In order to improve the 

technology of TNT fabrication, various electrochemical 

protocols were addressed to support it, which involve aque-

ous and organic electrolytes with different chemical compo-

sitions and electrochemical conditions. The electrochemical 

anodization process is carried out usually in electrolytes 

containing some fluoride ions to fabricate TNT layers. In 

electrolytes with acid, salt, or alkali solution, short tube 

lengths were formed (from 400 nm to 2 μm) during anodiza-

tion process, and these TNT arrays lacked organized structure 

and uniformity, which are described as the first generation 

of TNTs.32–35 Then TNTs of longer lengths (5–7 µm) were 

fabricated in a pH-controlled electrolyte containing small 

amounts of fluoride ions, which are considered as the second 

generation of TNTs.36–39 The third generation of TNT arrays 

with further longer length (1,000 μm) was fabricated in non-

aqueous polar organic electrolytes in the presence of fluo-

ride species by electrochemical anodization.40–43 Recently, 

Figure 1 Some basic nanoscale materials and drug carriers for promising drug delivery applications.
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non-fluoride-based synthesis of TNTs has been reported, 

which are addressed as the fourth generation, showing sig-

nificant improvement in the growth rate and the quality of 

fabricated TNTs.44–46

For TNT arrays formed in fluoride-based electrolyte, an 

appropriate external voltage and low electrolyte acidity are 

needed for yielding TNT layers and growing long tubes. At a 

controlled anodization voltage of 80–120 V, electrochemical 

anodization of Ti results in vertically oriented and hexago-

nally closely packed TNT structures with high growth rate, 

optimal geometry, and stable mechanical characteristics.1,7 

In addition, some other TiO
2
 morphologies were reported, 

such as nanopore branched, bamboo-type nanotubes, inner 

tubes, spongy, nanolace, and multilayer nanotubes were 

fabricated by controlling the voltage during the process of 

nanotube preparation.47–50 Thereby the study of TNT fabrica-

tion is a dynamic and active research area, and the develop-

ment of novel strategies and synthesis methods is expected 

to be extended in the future.

Strategies to control drug delivery  
from TNTs
Drug delivery from nanotubes is dependent on the diffusion 

process when TNTs are implanted into the host body with 

physiological milieu. This diffusion process can be defined 

by Fick’s first law, which is influenced by various factors 

such as molecular size of the drugs, charge, dissolution rate 

and diffusion coefficient, dimensions of nanotubes, charge 

and surface chemistry, and interfacial interaction of drug 

molecules and TNT surface.51–55 Depending on these con-

ditions, different drug release profiles were obtained and 

different strategies have been implemented into TNT-based 

systems in order to provide a controlled drug release for a 

broad range of clinical therapies. It is known that different 

drug release strategies need to be considered for different 

therapies, thus TNT-based drug-releasing systems must be 

designed with flexible drug release capabilities and optimized 

parameters in order to fulfill the requirements of different 

therapies. It is worthwhile stressing that zero-order type 

release is the most satisfactory release strategy for drug-

releasing implants, which results in the drug being released 

at a uniform and constant rate independent of concentration 

and time.56 Considering that, increasing studies are focused 

on exploring different strategies in TNT-based drug-releasing 

implants in order to design and advance their drug-releasing 

performances for specific drugs and therapies. A schematic 

diagram summarizing these strategies aimed at controlling 

the release of drugs from TNTs is presented in Figure 2. 

In this schematic diagram, a single nanotube was subjected to 

various modifications for controlling drug release, including 

A) structural modifications of diameter and length of TNTs, 

B) surface modifications, C) adjusting pore openings of TNTs 

with polymer deposition, D) biodegradable polymer coatings, 

E) polymeric micelles as drug nanocarriers, and F) stimulated 

drug release strategies by external sources.

Dimensions of TNTs and surface functionalization
According to Fick’s law, the diffusion rate of drug mol-

ecules from nanopores depends on their dimensions as 

these confined nanochannels can be controlled precisely at 

nanoscale.57,58 To investigate the influence of pore size on the 

drug release profiles, studies from several groups confirmed 

that the drug release is considerably related to the dimensions 

of TNTs.59–62 Aw et al studied the relationship between the 

length of the TNTs and anodization time, and their results 

demonstrated that length of TNTs is controlled by anodiza-

tion time and that the drug release time was extended with an 

increase in the nanotube length based on drug loaded in TNT 

implants of different nanotube lengths (25–100 μm) and a 

fixed pore diameter of 110 nm.2 The drug release from TNTs 

can be extended by shrinking their lengths and diameters, 

which results from the fact that drug molecules encapsu-

lated deeper inside TNTs needed a longer time to diffuse 

out of nanotubes because of the capillary force. In addition, 

Hamlekhan et al studied that anodization condition (voltage 

and duration) influences the release profiles of TNT groups 

based on the dimensions of TNTs influenced by anodization 

conditions.59 As demonstrated by various studies, length and 

diameter of TNTs are increased with the increasing anodiza-

tion voltage. Moreover, the amount of drug loaded in TNTs 

increases as the anodization duration is increased based on 

comparing the profiles with the TNT dimensions specified 

in all TNT groups, as presented in Figure 3.59

The next strategy for controlling drug release from 

TNTs was based on the surface functionalization of the 

nanotubes. The aim of this strategy is to dynamically change 

the interaction between drug molecules and inner walls of 

the nanotubes for altering the drug release kinetics. This 

approach was previously demonstrated on porous silica 

particles and was successfully translated into TNTs by 

using polymers and self-assembled monolayers with excel-

lent stability and flexibility for surface modification.63–69 

Organic silanes (ie, 3-aminopropyl triethoxysilane [APTES], 

penta-fluorophenyldimethylchlorosilan [PFPTES]) and 

phosphonic acids (ie, 2-carboxyethyl-phosphonic acid and 

16-phosphono-hexadecanoic acid) were used to modify 
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TNTs, which demonstrate that this approach could change 

drug loading and release characteristics of TNTs for 

hydrophilic and hydrophobic drugs, as shown in Figure 4.2 

It is worthwhile stressing that APTES holds the silane group 

hydrophilic that can impart different properties onto the 

surface of TNTs.70,71 Moreover, APTES protonates can give 

similar properties of drugs in phosphate-buffered saline 

(PBS) with neutral pH.

Based on the results presented above, it is demonstrated that 

drug loading and releasing features are significantly influenced 

by surface charge and chemical and interfacial properties. 

Specific surface modification strategy is useful for rational 

designing implants with splendid properties for optimized 

application, whereas this strategy is still limited to achieve a 

sustained release of drugs from TNTs for a longer duration.

Plasma polymerized biopolymer coating 
modifications
In order to overcome the problem that a long and sustained 

drug release cannot be realized by surface modification of 

TNTs, a new strategy using plasma polymer coatings on the 

top surface of TNTs to reduce the opening of nanopores, 

which confirmed that drugs release from TNTs is possible 

to follow the zero-order release kinetics.72–76 Various drugs 

with different size and properties have been successfully 

performed on TNTs based on this concept, and these drugs 

ν

Figure 2 Strategies for controlling drug release from TNTs.
Notes: (A) Controlling the nanotube diameters and length; (B) surface chemistry (hydrophobic, hydrophilic, charged); (C) tuning nanotube opening by plasma polymerization; 
(D) degradation of dip-coated polymer film closing nanotubes (PLGA or chitosan); (E) using drug nanocarriers (micelles) for multidrug delivery; (F) delayed/sequential drug 
release of drugs/drug carriers. External field triggered drug release using (G) temperature, (H) magnetic field, (I) ultrasound, (J) light, and (K) radiofrequency with gold 
nanoparticles. Only single nanotube structure is shown to present an array of TNTs.
Abbreviations: APTES, 3-aminopropyl triethoxysilane; PLGA, poly (lactic-co-glycolic acid); TNT, TiO2 nanotube; d, diameter; l, length; 2-phos, 2-carboxyethyl-phosphonic 
acid; 16-phos, 16-phosphono-hexadecanoic acid; PFPTES, penta-fluorophenyldimethylchlorosilan; PNIPAAm, poly (N-isopropylacrylamide).
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Figure 3 Concentration of drug released from TNTs anodized at (A) 60 V, (B) 70 V, (C) 90 V, and (D) 120 V.
Notes: The area of less than 30 min corresponds to active release stage. During this stage, most of the loaded drug is released from nanotubes into aqueous environment. 
Some groups of TNTs release the overall amount of the loaded drug in less than 15 min, while the other groups prolong release to about 1 h (marked by vertical dash line). 
Error bars show variance for n=3. Copyright IOP Publishing. Reproduced with permission. All rights reserved. Hamlekhan A, Sinha-Ray S, Takoudis C, et al. Fabrication of 
drug eluting implants: study of drug release mechanism from titanium dioxide nanotubes. J Phys D Appl Phys. 2015;48:275401. Published 10 June 2015.59

Abbreviations: h, hours; min, minutes; d, days; TNT, TiO2 nanotube.

Figure 4 Schemes showing the concept of chemical modification.
Notes: (A) Modification on TNTs by phosphonic acid using 2-carboxyethyl-phosphonic acid (2-phos) and 16-phosphono-hexadecanoic acid (16-phos); (B) drug release 
from 2-phos, 16-phos-modified TNTs and the control sample (unmodified, bare TNTs). Reproduced from Aw MS, Kurian M, Losic D. Non-eroding drug-releasing implants 
with ordered nanoporous and nanotubular structures: concepts for controlling drug release. Biomater Sci. 2014;2:10–34, with permission of The Royal Society of Chemistry, 
http://dx.doi.org/10.1039/C3BM60196J.2

Abbreviations: h, hours; TNT, TiO2 nanotube.
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include anti-inflammatory drugs, anticancer drugs, function-

alized metal oxide nanospheres, bovine serum albumin, and 

bone morphogenetic proteins (BMPs) drug micelles.73,77,78 

It is worthwhile noticing that plasma deposition method 

holds a capability of modifying the top surface of TNT 

layers, and the modified TNTs are imparted to desirable 

properties including antibacterial activity, implant rejection, 

anti-biofouling, and better integration to reduce sensing 

capabilities.72 With the plasma deposition method being 

widely used in medical application, the disadvantages of 

this technology are also presented, such as the calibration 

requirement of plasma conditions, its high cost, and some 

unavailable technical knowledge.

Considering these limitations of the plasma deposition, 

a significantly simpler method with low cost was explored 

based on coating TNT opening.60,79 Poly (lactic-co-glycolic 

acid) (PLGA) and chitosan were selected for dip-coating, 

which result from two polymers with biocompatible and bio-

degradable possibilities and are known to have some benefi-

cial properties including antibacterial and osseo-integration 

and are also used for drug delivery systems. PLGA or 

chitosan was coated on drug-loaded TNTs by dip-coating 

for controlling drug release and improving antibacterial 

and bone integration of TNTs, as schematically shown in 

Figure 5.80

Significant changes in drug release profiles were observed 

because of coating a polymer film on openings of the nano-

tubes as shown in Figure 6.80 From the results, it was demon-

strated that drug release profiles were significantly influenced 

by polymers’ chemical composition and the thickness of 

polymer layer. Meanwhile, the burst release occurred at the 

first 6 hours is presented in release process regardless of a 

polymer film exited or not, which can be explained that the 

initial release is from drug loaded on TNTs’ top surface, and 

the high concentration gradient through nanotubes allows 

drugs’ rapid release at the beginning of release duration. 

In addition, it was also concluded that TNT arrays coated 

with a thin PLGA polymer layer shows an extended release 

duration with a higher level of burst release and that a thin 

chitosan layer coated on TNTs could provide a shorter release 

duration with a lower level of burst release.

Form these results, it was demonstrated that the drug 

release can extend to several months with zero-ordered 

kinetics by controlling the thickness of the biopolymer 

film coated on TNTs. This design of TNT implants is 

focused on its local drug delivery with several weeks 

releasing, which has been performed by a study based on 

post-surgical implant surgeries, and its result indicates that 

systemically delivered gentamicin has fewer side effects 

in promoting bone healing.81 The adhesion and prolifera-

Figure 5 Schematic diagram of TNTs implants loaded with drugs where the nanotubes were covered with ultrathin film of biodegradable polymer (PLGA or chitosan) using 
a simple dip-coating process.
Notes: Reprinted from Acta Biomater, Volume 8, Gulati K, Ramakrishnan S, Aw MS, Atkins GJ, Findlay DM, Losic D. Biocompatible polymer coating of titania nanotube arrays 
for improved drug elution and osteoblast adhesion, pages 449–456, Copyright 2012, with permission from Elsevier.80

Abbreviations: PLGA, poly (lactic-co-glycolic acid); TNT, TiO2 nanotube.
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tion of human osteoblastic cells on TNT implants were 

investigated to confirm polymer-coated TNTs, especially 

chitosan coating could enhance osteoblast integration 

to implants.2 TNTs with dip-coating modification are 

believed to be achievable in a clinical environment because 

of their facile fabrication process and no specific technol-

ogy requirements.

Advanced TNT drug systems with 
multi-drug and stimulated drug 
release
Multi-drug delivery with micelles as drug carriers 
from TNTs
Considering the treatment of some complex diseases that 

require more than one kind of drug, a new concept of using 

polymeric micelles for loading drugs was addressed, espe-

cially multi-drug nanocarriers were integrated into TNTs 

for designing implants with advanced multi-drug releasing. 

This advanced drug release strategy holds the capability of 

delivering several drugs for a pre-programmed time to permit 

a later release, as schematically presented in Figure 7A–D.58 

As the most desired candidates for this concept, hydrophobic 

and hydrophilic properties of drug carriers provide a desired 

structure of polymer layers in TNTs without inter-mixing, 

and a unique successive release pattern from TNTs can 

be achieved based on this multiple-drug delivery system. 

In terms of drug release profiles based on TNTs loaded 

with two layers drug carries, Figure 7E shows the sequential 

releasing of regular micelles (d-α-tocopheryl polyethylene 

glycol 1000 succina [TPGS]) encapsulating two hydrophobic 

drugs (indomethacin and itraconazole) loaded at the top, 

followed by the releasing of inverted micelles (PEGylated 

phospholipids [DGP]) encapsulating hydrophilic drugs 

(gentamicin) loaded at the bottom.58

Compared with conventional drug carriers, polymeric 

micelles can enhance drug delivery system because of the 

prolonged therapeutic effects of drugs in targeted organs 

or tissues.82 Considering the candidates of polymers, 

poly(ethylene oxide) (PEO)-poly(propylene oxide) (PPO)-

PEO consisted of hydrophilic polar head (PEO) and copo-

lymers-lipophilic alkyl tail (PPO) was used as drug carriers 

due to its organic chains with different number of tri-block 

monomers.83 TPGS, a vitamin E derivative, can significantly 

improve drug encapsulation efficiency and increase the 

bioavailability of anticancer drugs, thus was selected as a 

drug carrier.84,85 Moreover, the PEGylated phospholipids 

Figure 6 Comparative drug release graphs of anti-inflammatory drug (indomethacin) from polymer-coated TNTs/Ti.
Notes: (A, B) Overall and burst drug release from uncoated TNTs/Ti and TNTs/Ti coated with thin and thick chitosan layers; (C, D) overall and burst drug release from uncoated 
TNTs/Ti and TNTs/Ti coated with thin and thick PLGA layers. Reprinted from Acta Biomater, Volume 8, Gulati K, Ramakrishnan S, Aw MS, Atkins GJ, Findlay DM, Losic D. 
Biocompatible polymer coating of titania nanotube arrays for improved drug elution and osteoblast adhesion, pages 449–456, Copyright 2012, with permission from Elsevier.80

Abbreviations: min, minutes; PLGA, poly (lactic-co-glycolic acid); TNT, TiO2 nanotube.
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(DGP 2000 and 5000) are also used in drug delivery system 

in broad commercial applications.86

The multi-drug delivery system used in various local 

drug therapies presents sequential release of drug carriers by 

varying types of drug-loaded carriers and positions of carries 

in TNTs. Release profiles of this multi-drug delivery system 

can be controlled by adjusting the length and pore diameters 

of TNTs, surface properties of micelles and their loading con-

ditions. Furthermore, this multi-drug delivery system fully 

satisfies complex requirements for bone therapies required 

over long periods to prevent inflammation and improve 

implant integration.

Stimulated drug delivery from TNTs with  
external trigger
Extended drug release for long-term therapies are not 

satisfied in critical situations such as unexpected onset of 

inflammation, sudden viral attack, osteomyelitis, and so 

on, where high concentrations of drug are immediately 

required. To settle these emergency conditions, a concept of 

stimulated drug delivery system with external trigger based 

on TNTs is put forward to achieve therapeutic efficacy.7 

Extensive investigations were explored to increase the treat-

ment effect in the required time period, which sometimes 

needed high dosage with precise schedule or only for a short 

Figure 7 Scheme depicting the concept for controlling multiple drug release from TNTs.
Notes: (A) TNTs loaded with two types of polymer micelles, a regular micelle (TPGS) encapsulated with hydrophobic and an inverted micelle (DGP 2000) encapsulated with 
hydrophilic drug; (B) scheme of sequential drug release with layered drug carriers with details of two-step drug release in (C) and (D); (E) sequential and multiple release 
of drug carriers loaded with three drugs from TNTs. Reproduced from Aw MS, Addai-Mensah J, Losic D. A multi-drug delivery system with sequential release using titania 
nanotube arrays. Chem Commun. 2012;48:3348–3350, with permission of The Royal Society of Chemistry, http://dx.doi.org/10.1039/C2CC17690D.58

Abbreviations: TNT, TiO2 nanotube; TPGS, d-α-tocopheryl polyethylene glycol 1000 succina; DGP, PEGylated phospholipids.
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period to treat urgent diseases.87,88 For satisfying the demand 

of delivering pre-determined amount of drugs required by 

pharmacokinetic parameters, several concepts are reported, 

including magnetic, ultrasound, and voltage.

Magnetic-sensitive drug delivery
A concept of drug encapsulated in nanomagnetic structures 

was proposed, which focused on designing triggered drug 

delivery systems because the nanomagnetic structures pos-

sess exciting possibilities for magnetic field triggered drug 

release. Regarding this concept, Shrestha et al reported on 

using TNTs filled with magnetic nanoparticles (MNPs) in 

order to achieve magnetic- and photocatalytic-guided release 

of drugs.89 In this study, a model drug was attached to mag-

netic TNTs by using a silane coupling agent as a cross-linker, 

then ultraviolet (UV) irradiation was provided for inducing 

chain scission of this agent monolayer attached to TNTs, 

thus the release of the fluorescent molecule takes place at 

the anchoring siloxane groups as schematically outlined in 

Figure 8A. It was demonstrated by the phenomenon that the 

release of the fluorescent marker into the electrolyte was 

clearly visible after few seconds of UV irradiation imparted 

to dye-functionalized TNTs, as presented in Figure 8B 

and C.89 From these results, it is shown that the approach 

reported here can realize a temporally and spatially pho-

toinduced drug release based on magnetic-sensitive drug 

delivery system.

In addition, a new concept was addressed, aiming to 

design drug-releasing implants being assisted by MNPs 

loaded inside TNTs.90 In this study, iron oxide MNPs (DOPA-

Fe
3
O

4
) with dopamine modification was used for improving 

the biocompatibility of the MNPs and their loading inside the 

TNTs. Considering drug carriers, three types of amphiphilic 

micelles including Pluronic F127, TPGS, and PEO-PPO-PEO 

were explored to study the concept of magnetic-sensitive 

drug delivery system. For the drug-release profiles, it is 

confirmed that cumulative release of the three drug carriers  

reaches ~100% within 1–1.5 hours under the application 

of the magnetic field.90 Although this strategy also presents 

some limitations of uncontrolled release triggered by external 

magnetic fields from the environment, it is still particularly 

valuable for drug-releasing implants in orthopedics and 

bone surgery where on-demand release is required under 

emergency situation.

ν

Figure 8 Schematic representation of the model drug release from TNTs.
Notes: (A) The release principle of active molecules (model drug) from the functionalized magnetic TNTs upon irradiation with UV light. The release of the fluorescent 
dye into the surrounding system by the dye-functionalized magnetic TNTs with UV light was “off” (B) and “on” (C). The movement of the tube layers in water was guided 
by a permanent magnet underneath the petri dish. Reproduced from Shrestha NK, Macak JM, Schmidt-Stein F, et al. Magnetically guided titania nanotubes for site-selective 
photocatalysis and drug release. Angew Chem Int Edit. 2009;48:969–972. Copyright © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.89

Abbreviations: TNT, TiO2 nanotube; UV, ultraviolet.
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Ultrasound-sensitive drug delivery
In order to overcome the drawbacks of magnetic field-

stimulated release, the drug-releasing system based on 

ultrasound-mediated drug and nanocarrier release from TNTs 

was explored. Aw et al reported the application of local ultra-

sonic external field for triggering drug release from TNTs.91 

It is the first time that ultrasound-mediated drug micelles 

are selected for local drug delivery system, and Figure 9A 

shows this concept of using ultrasonic waves (USW) as a 

trigger combined with TNT implants. For controlling drug-

micelles release from TNTs, several USW parameters were 

explored, including pulse length, amplitude, pulsation time, 

and power intensity. The USW power intensity controlled by 

various distance between probe and sample has a significant 

effect on the profile of drug release from TNTs as shown in 

Figure 9B. In this work, drug release profiles varies as the dis-

tance between the probe and sample is changed, for example, 

when the distance is set as 2.0, 1.5, 1.0, and 0.5 cm, it corre-

sponds to the power of 25, 50, 75, and 100 W, as presented in 

Figure 9C. It is indicated that the distance between the probe 

and sample is shorter, the USW power intensity is greater, 

and the force of the impact becomes stronger. These effects 

may result from the fact the wave energy could propagate 

directly without much hindrance in the medium.

With regard to the mechanism of drug-micelles release 

from TNTs by USW, it is likely involved that a combination 

of thermal and cavitation processes caused by mechanical 

vibration result from forces produced by the ultrasound waves 

in interaction with buffer and TNT implants. The application 

of this strategy can be involved in bone therapies and local 

delivery systems including stents or brain drug delivery. 

However, more ex vivo or in vivo studies based on various 

drugs loaded inside drug-released TNT implants are required 

to demonstrate the feasibility of this concept.

Voltage-sensitive drug delivery
Among various stimuli-responsive drug delivery system 

approaches, the voltage-sensitive release is another attractive 

strategy for its beneficial properties. Impartation of voltage 

could induce the chain scission based on TNTs grafted with 

Figure 9 Ultrasound-stimulated drug release from TNTs.
Notes: (A) Drug delivery based on TNTs arrays as drug–drug carrier releasing platform and polymeric micelles as drug carriers; (B) effects of the distance between the 
probe and sample in buffer (2.0, 1.5, 1.0, and 0.5 cm) which corresponds to power measurement of 25, 50, 75, and 100 W, respectively: drug release profile; (C) release 
duration (min) as a function of Sonotrode distance from the sample. Reprinted from International Journal of Pharmaceutics, Volume 443, Aw MS, Losic D. Ultrasound 
enhanced release of therapeutics from drug-releasing implants based on titania nanotube arrays, pages 154–162, Copyright 2013, with permission from Elsevier.91

Abbreviations: TNT, TiO2 nanotube; min, minutes; PBS, phosphate-buffered saline; TPGS, d-α-tocopheryl polyethylene glycol 1000 succina.
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anti-inflammatory drug (dexamethasone); their loading by 

electrodeposition inside MWCNTs grown on TNTs was con-

sidered as the further advancement of voltage-sensitive drug 

delivery.95,96 Although the development of this strategy is in 

its primary stage, it has an enormous potential for advanced 

developments in drug-released TNT implants.

Ex vivo and in vivo studies of drug 
release characteristics
Most of the aforementioned studies on drug release therapies 

of TNTs were performed through in vitro experiments using 

PBS as eluting medium. This situation is significantly dif-

ferent from real clinical circumstances that possess the real 

bone tissues and real biological environment, thereby many 

challenges are presented for in vivo applications, especially 

for how to accurately monitor the distribution of drug mol-

ecules from TNTs to the bone tissue.7 For this challenge, 

implantable TNT-Ti wires were selected to be inserted into 

the bone for providing extended drug release as reported by 

Aw et al.97 In this study, a TNT-Ti wire was inserted into a 

hole drilled through each bone core, fitting tightly into the 

bone core’s center, as shown in Figure 11A, and trabecular 

bone core with TNT-Ti wire inside the bone chamber was 

connected to perfusion pump that provides culture media 

to keep bone cells alive as shown in Figure 11B.97 Biolu-

minescence images were captured at different times for the 

5-day experiment on drug-release studies as presented in 

Figure 11C–F.97 From these results, it is demonstrated that the 

model drug’s concentration in 3D bone matrix is increasing 

and changes in the concentration exist across all directions 

from TNT-Ti implants.97 In brief, the TNT-Ti wire can be 

considered as a safe drug-releasing implant used in the local 

drug delivery system for bone therapies such as bone infec-

tion, bone inflammation, and even bone cancer.

A suitable in vivo performance must be provided before 

any biomaterial is used in a real clinical application, thus 

TNTs have to integrate within the bone tissue and sur-

vive the stresses experienced during surgical insertion inside 

the animal model. As described in the previous section, 

von Wilmowsky et al used pigs for studying the in vivo 

performance of TNT-Ti implants.98 In this study, inves-

tigations on peri-implant bone formation, bone–implant 

contact, and immunohistochemistry were performed for 

evaluating the effects of these implants, demonstrating that 

TNT coatings can enhance osteoblast functions, suppress 

shearing forces caused by implant insertion, and promote 

bone formation when compared to commercially available 

pure Ti implants. Another study reported by Park et al 

demonstrated that bone–implant contact results showed the 

Figure 10 Radical mechanism.
Notes: (A) Fluorescence testing of radical formation by reaction of terephthalic 
acid with anatase TNTs before voltage application and after 1.5 V and 5 V; 
(B) reaction scheme for voltage-induced OH⋅radical formation and payload release. 
Reproduced from Song YY, Roy P, Paramasivam I, Schmuki P. Voltage-induced 
payload release and wettability control on TiO2 and TiO2 nanotubes. Angew Chem Int 
Edit. 2010;49:351–354, Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, 
Weinheim.92

Abbreviations: TNT, TiO2 nanotube; ocp, open circuit potential.

octadecylphosphonic acid for wettability or attached to an 

enzyme of horseradish peroxidase, as reported by Song 

et al.92 In this study, a reaction of OH with terephthalic acid 

(TA) to form 2-hydroxyterephthalic acid (TAOH) results in 

a blue fluorescence at different voltages for identical dura-

tion as shown in Figure 10A.92 The results indicate that the 

strong blue fluorescence is visible when TNTs are held at 

5 V, whereas virtually no fluorescence can be seen at 1.5 V 

or no voltage. For these reasons, it is possible that generated 

valence-band holes can react with their environment in a 

similar manner as photogenerated holes in TNTs at a potential 

of 5 V. Figure 10B schematically shows voltage-induced 

OH⋅radical formation and payload release, which demon-

strates voltage-induced pseudo photocatalytic processes, and 

in particular the valence band ionization mechanism may 

result in the chain scission reactions from TNTs.

In addition, Sirivisoot et al reported an approach that was 

used to trigger drug release by an electrical field. In their 

study, drugs were encapsulated into multi-walled carbon 

nanotubes (MWCNTs) grown out of TNTs, where drugs 

release from TNTs under the control of electrical field.93,94 

Their research achievement could be applied on treating bone 

repair and other more serious bone diseases. Furthermore, 

Sirivisoot et al carried out an experiment by doping polypyr-

role with antibiotics (penicillin and streptomycin) and an 
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Figure 11 Ex vivo study of transport of drug in bone released from TNTs wire implant.
Notes: (A) Photo of trabecular bone with embedded TNTs/Ti wire implant loaded with drug at the center of the bone core (side view). (B) Trabecular bone core with 
TNTs/Ti wire inside the bone chamber connected to perfusion pump that provides culture media to keep bone cells alive. Bioluminescence images of bone with inserted 
drug-releasing implant (based on a Ti wire with TNTs on the surface) for local drug delivery: distribution of released model drug (rhodamine B) taken at (C) 1, (D) 4, 
(E) 24, and (F) 120 h using the Xenogen IVIS® 100 (Caliper Life Sciences, Inc, Hopkinton, MA) in vivo imaging system. Adapted with permission of Dove Medical Press, from 
Characterization of drug-release kinetics in trabecular bone from titania nanotube implants, Aw MS, Khalid KA, Gulati K, et al. 2012;7:4883–4892; permission conveyed 
through Copyright Clearance Center, Inc.97

Abbreviations: h, hours; TNT, TiO2 nanotube.

capability of improving osseointegration for protein-loaded 

TNT implants based on loading fibroblast growth factor and 

human fibronectin fragment (hFNIII9–10) fusion protein 

inside TNTs on Ti implants which were inserted in rabbit 

tibia, followed up for 3 months.99 It is worthwhile stress-

ing that these experiments were carried out over a period 

of 2–3 months, and more studies should be carried out to 

investigate longer healing periods of TNTs implants for 

clinical therapies.

Apparently, these studies help establishing future data-

bases consisting of detailed information on the degree of 

toxicity on the nanoscale, which would help to clarify the 

division of toxic effects of nanoscale materials, including 

TNTs. Furthermore, extensive studies on the interaction 

between cells/tissues from different organs and parts of the 

body with TNTs are also required.100

Conclusion and future perspectives
Recent advances of drug-releasing TNT implants are 

reviewed in this work, and it is indicated that the applica-

tion of TNTs is a promising alternative to develop various 

localized drug delivery systems that possess the capability 

to overcome limitations of systemic drug therapies. TNTs 

present beneficial properties for drug delivery application, 

including controllable nanotube dimensions, tunable geom-

etries and surface chemistry, high surface area, high and 

versatile drug-loading capacity for several drugs, ability to 

modulate drug release kinetics, and so forth. 

In this review, it is confirmed that TNT implants have a 

significant potential in clinical therapeutics, and capabilities 

of this implant can be realized by tuning their drug-releasing 

characteristics and providing multi-drug release of different 

drugs in different fashions. These approaches aim to optimize 

drug dosage, release rate, and time needed for a broad range of 

specific therapies, which have been presented in detail in this 

review. For these purposes, several strategies including mag-

netic, electromagnetic, and ultrasonic were used as triggers to 

release drugs from TNTs, which present outstanding features 

offering great perspectives and opportunities for TNT appli-

cations. Although still at initial stage, these external stimulus 

strategies are considered as promising applications in drug-

releasing implants for developing smart clinical therapies. 

Regarding the excellent biocompatibility of TNTs, 

numerous studies based on cells, ex vivo or in vivo animal 

models have been performed to prove their excellent bio-

compatibility. It is indicated that long-term toxicity assay and 

tolerability studies are needed to be performed on animals 

to evaluate the safety of blank TNTs and drug-loaded TNTs 

before proceeding with human clinical trials, thereby more 

in vivo studies are urgently required before these localized 

drug delivery systems can be applied in clinical trials.
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