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Abstract: α-Catenin is an important molecule involved in the maintenance of cell–cell 

adhesion and a prognostic marker in cancer since its expression is essential for preventing cancer 

metastasis. However, the mechanism that leads to the downregulation of α-catenin in cancer 

progression remains unclear. The present study revealed that lipopolysaccharide (LPS)-induced 

NF-κB signaling activation suppressed α-catenin expression and motility in SW620 colorectal 

cancer (CRC) cells, using real-time polymerase chain reaction, Western blotting, and transwell 

migration assays. LPS treatment reduced both the mRNA and protein expression of α-catenin and 

thereby enhanced cell motility. Conversely, incubating cells with an NF-κB inhibitor disrupted 

these effects. Furthermore, the ectopic expression of p65 alone mimicked the effects of LPS 

stimulation. In CRC tissues, the presence of enteric bacterial LPS-related neutrophil-enriched 

foci was correlated with α-catenin downregulation. Collectively, these findings suggest that 

LPS-induced NF-κB signaling is related to α-catenin suppression and enhanced cell motility 

in CRC. Therefore, NF-κB is a novel potential therapeutic target for CRC metastasis.
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Introduction
Colorectal cancer (CRC) is one of the most commonly diagnosed malignancies, and 

metastasis critically reduces patient prognosis. The median survival of patients with 

metastatic CRC is ,1 year.1 However, tumor metastasis is a complex multistep pro-

cess, of which only very limited details are understood. Thus, further investigations 

are essential to increase our understanding of its molecular mechanisms and develop 

novel therapies.

In addition to E-cadherin, α-catenin is an indispensable component of the cadherin–

catenin protein complex. It functions as an interface between the cadherin–catenin pro-

tein complex and the actin cytoskeleton, where it maintains the integrity of intercellular 

adherens junctions by directly binding to actin filaments.2 Therefore, loss of α-catenin, 

which has been reported in several malignancies, can weaken cell–cell adhesion and 

promote abnormal cellular polarity, epithelial–mesenchymal transition (EMT), and 

ultimately tumor metastasis.2–5 In addition, α-catenin is an inhibitor of multiple signaling 

pathways involved in carcinogenesis and development, including the Wnt/β-catenin, 

Hippo-YAP, hedgehog, and NF-κB pathways.6–10 Although α-catenin is closely related 

to cancer progression, little is known about its regulation in cancer cells.
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The NF-κB pathway, which can be activated by the 

binding of lipopolysaccharide (LPS) to its receptor TLR4, 

promotes multiple cancer behaviors such as proliferation, 

survival, angiogenesis, and metastasis.11 The EMT may serve 

as a key linkage between NF-κB activation and cancer metas-

tasis. Several studies demonstrated that the EMT depends 

on the ability of the Snail-related zinc-finger transcription 

factors Snail and Slug, ZEB family members ZEB1/2, and 

the basic helix–loop–helix (bHLH) transcription factor 

Twist to suppress the expression of E-cadherin.12–14 All of 

these factors can be regulated either directly or indirectly by 

NF-κB.14–17 The present study demonstrated that α-catenin is 

another potential target through which NF-κB can promote 

the EMT and disturb the adhesion and morphologic stability 

of CRC cells.

Materials and methods
Reagents and antibodies
Monoclonal primary antibodies against human α-catenin 

(Cat#2028-1), β-catenin (Cat#1247-1), and E-cadherin 

(Cat#1702-1) were purchased from Epitomics (Burlingame, 

CA, USA). The primary monoclonal antibodies against the 

HA tag (Cat#ab9134) and human β-actin (Cat#sc-130300) 

were purchased from Abcam (Cambridge, UK) and Santa 

Cruz Biotechnology (Santa Cruz, CA, USA), respectively. 

The pcDNA3.1-HA-p65 and pcDNA3.1 vectors were kindly 

provided by Dr Jun Cui (Zhongshan School of Medicine, Sun 

Yat-sen University). The NF-κB inhibitor Bay 11-7082 was 

obtained from Sigma-Aldrich (St Louis, MO, USA).

Cell lines and cell culture
SW620 and SW480 human CRC cells and the HEK293T 

cells were purchased from ATCC (Manassas, VA, USA) 

and maintained in RPMI-1640 medium (Gibco, Grand 

Island, NY, USA) supplemented with 10% heat-inactivated 

fetal bovine serum (FBS; Gibco). The cells were cultured at 

37°C and 5% CO
2
.

Patients and specimens
Forty CRC tissue blocks were collected from the Department 

of Pathology, Zhejiang Cancer Hospital between 2008 and 

2015, and written informed consent was provided by the 

patients from whom the CRC tissue blocks were taken for use 

in this research. The hematoxylin and eosin (H&E)-stained 

slides were reviewed under a microscope to ensure each case 

with obvious neutrophil infiltration but without dramatic 

tissue necrosis. Tumor staging was performed according 

to the criteria of the International Union against Cancer 

tumor node metastasis system. This study was approved 

by the ethics committee of Zhejiang Cancer Hospital (no 

IRB-2016-90).

Real-time polymerase chain 
reaction (PCR)
Total RNA (800  ng) extracted from each sample was 

reverse transcribed into cDNA using reverse transcriptase 

(M-MLV; Promega, Madison, WI, USA). α-Catenin gene 

expression was quantified using SYBR Green PCR master 

mix (Applied Biosystems, Foster City, CA, USA) on the 

StepOnePlus system (Applied Biosystems). The expres-

sion levels of all genes were normalized to that of human 

β-actin. The sequences of the primers were as follows: 

α-catenin (F: 5′-CGCACCATTGCAGACCATTG and 

R: 5′-GCACCACAGCATTCATCAAGT), β-catenin 

(F: 5 ′-GAATGAAGGTGTGGCGACATAT and R: 

5′-CAAGTCCAAGATCAGCAGTCTC), E-cadherin  

(F:  5 ′-GAAGAAGGAGGCGGAGAAGA and R: 

5′-ACACGAGCAGAGAATCATAAGG), ZEB1 (F:  

5′-TGTAGAGGATCAGAATGACTC and R: 5′-CAG 

AATGTAATCGCATGTGT), Snail1 (F: 5 ′-CTGC 

TACAAGGCCATGTC and R:  5 ′-GGACTCTTG 

GTGCTTGTG), Fascin1 (F: 5 ′-TTGTGACCTCCA 

AGAAGAAT and R: 5′-CCCACCGTCCAGTATTTG), 

β-actin (F: 5′-CCTGGCACCCAGCACAAT and R: 5′-GCTG 

ATCCACATCTGCTGGAA), and TLR4 (F: 5′-CGGAGGC 

CATTATGCTATGT and R: 5′-TCCCTTCCTCCTT 

TTCCCTA).

Migration assay
Cell migration was measured as described previously.18 Prior 

to the experiment, SW620 cells were treated with 0.5 µg/mL 

LPS for 24 h in RPMI-1640 medium containing 2% FBS to 

avoid any influence from LPS-stimulated cell proliferation 

during the migration assay.

Wound healing assay
Each 2×106 SW620 cells were seeded into the six-well culture 

plate and 24 h post-LPS or phosphate-buffered saline (PBS) 

treatment, a sterile 10 µL tip was used to scrape a straight 

line across the monolayer. The cells were then maintained 

properly for another 24 h. Wound closure measurements at 

0 h and 24 h posttreatment were performed by microscopy. 

The wound closure percentages were calculated by compar-

ing the wound width of 24 h to that of 0 h of each group. 

Three replications were performed, and the results were 

statistically analyzed.
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Transfection
The pcDNA3.1-HA-p65 and empty pcDNA3.1 vectors were 

purified, and 0.5 µg of either vector was transfected into cells 

using Lipofectamine 2000 (Life Technologies, Grand Island, 

NY, USA) according to the manufacturer’s instructions. 

SW620 cells (2×105) transfected with the HA-p65 construct 

or empty vector were maintained in RPMI-1640 with 10% 

FBS for 48 h.

Western blotting
Forty-eight hours after LPS treatment or transfection, SW620 

cells were lysed in protein lysis buffer (Pierce, Rockford, IL, 

USA) supplemented with protease and phosphatase inhibitor 

cocktails (Pierce) following the manufacturer’s protocol. 

Protein concentrations were determined using a Bio-Rad 

protein assay kit and a Model 680 microplate reader (Bio-Rad 

Laboratories, Richmond, CA, USA). Samples were separated 

on sodium dodecyl sulfate–polyacrylamide gels and then 

transferred to polyvinylidene fluoride membranes (Bio-Rad 

Laboratories). After blocking, the membranes were incubated 

with antibodies diluted in Tris-buffered saline containing 

5% skim milk and 0.1% Tween-20 overnight at 4°C. The 

following primary antibodies were used for Western blot-

ting: anti-human α-catenin (1:1,000), β-catenin (1:1,500), 

E-cadherin (1:1,500), HA (1:2,000), and β-actin (1:4,000). 

The bands were quantified using ImageJ software (National 

Institutes of Health, Bethesda, MD, USA).

Cell block preparation and 
immunohistochemistry (IHC) staining 
of α-catenin
Cell cultures were collected and resuspended in PBS in a 

10 mL disposable centrifuge tube and then centrifuged at 

1,500  rpm for 1  min. The cell pellets were then fixed in 

formalin and embedded in paraffin for further analysis using 

H&E staining or IHC. Paraffin sections (4 µm thick) of either 

tissue or cell blocks were deparaffinized and rehydrated in 

xylene and a graded alcohol series. Endogenous peroxidase 

activity was blocked by 0.3% hydrogen peroxide, and the 

sections were blocked with 10% goat serum for 20  min. 

The sections were then incubated with anti-human α-catenin 

(1:100), β-catenin (1:200), and E-cadherin (1:100) primary 

antibodies for 90 min at room temperature. After washing 

in PBS, the slides were incubated with biotinylated second-

ary antibodies (Polymer HRP Goat anti-Mouse & Rabbit 

IgG) for 30  min, and the slides were developed using 

3,3′-diaminobenzidine (DakoCytomation, Carpinteria, CA, 

USA) according to the manufacturer’s instructions and 

counterstained with hematoxylin. Negative control slides 

were incubated with secondary antibody to verify the speci-

ficity of the staining.

Statistical analysis
Each quantitative experiment was carried out three times 

independently, and all data are presented as mean ± standard 

error of the mean. Comparisons between groups were 

performed using two-tailed paired Student’s t-tests. All 

statistical analyses were performed using GraphPad Prism 

(GraphPad Software, San Diego, CA, USA).

Results
LPS treatment enhanced the motility of 
CRC cells in vitro
The LPS-induced inflammatory response is important for 

promoting malignant tumor metastasis.19,20 To evaluate the 

influence of the LPS-induced inflammatory response on CRC 

cell motility, SW620 CRC cells were cultured and subjected 

to real-time PCR to confirm the expression of TLR-4, which 

is an essential LPS receptor (Figure S1). Next, the cells were 

pretreated with 0.5 µg/mL LPS for 24 h, and migration assays 

were performed. Cells treated with LPS exhibited dramati-

cally increased migration through the transwell filter mem-

brane compared with the control group (Figure 1A and B). 

Similar observations were found in wound healing assays 

(Figure 1C and D), confirming that LPS treatment increased 

SW620 cell motility.

LPS disturbs the cadherin/catenin 
apparatus by inhibiting α-catenin 
expression
α-Catenin, which maintains cell adhesion, can be used as a 

prognostic factor in CRC patients, and decreased α-catenin 

expression leads to a morphological transition in CRC cells, 

promoting their motility.18 Therefore, the potential mecha-

nism behind these effects and the ability of α-catenin to medi-

ate the effects of LPS in CRC cells were investigated. The 

expression levels of key molecules in the cadherin/catenin 

apparatus as well as ZEB1, Snail, and Fascin1, which play 

roles in the EMT, were measured. LPS-treated SW620 cells 

were harvested, and RNA and protein samples were prepared. 

PCR, real-time PCR, and Western blotting demonstrated that 

α-catenin expression was reduced by LPS, whereas there 

was no difference in β-catenin or E-cadherin expression. In 

contrast, real-time PCR did not show any significant change 

in Snail or Fascin1 expression, and ZEB1 was undetectable 

due to its low expression (Figure 2A–D). IHC revealed a 
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Figure 1 LPS treatment enhanced the motility of SW620 cells.
Notes: SW620 cells were treated with either LPS or PBS, the effect of LPS on cell motility was determined by (A) transwell migration assay and (C) wound healing assay. 
Results were quantified and presented in (B) and (D), respectively. *Significant difference (P,0.05, Student’s t-test).
Abbreviations: LPS, lipopolysaccharide; PBS, phosphate-buffered saline.

similar trend in α-catenin expression (Figure 2E). There-

fore, cells treated with LPS exhibited a more independent 

morphology (Figure 2E), which may be caused by disruption 

of the cadherin/catenin apparatus. Our research presented 

that another CRC cell line, the SW480, possess the similar 

character with SW620 (Figure S2).

LPS-induced α-catenin downregulation is 
dependent on the NF-κB pathway
Since LPS is a strong activator of the NF-κB pathway 

and NF-κB activation is an essential event during cancer 

metastasis,11,21 we next investigated the mechanism by which 

LPS promotes CRC migration. SW620 cells that had been 

pretreated with LPS were incubated with the NF-κB inhibitor 

Bay 11-7082 (100 µM). To evaluate the effectiveness of Bay 

11-7082, SW620 cells were harvested 30 min after treatment 

with LPS and Bay 11-7082. Western blotting demonstrated 

that I-κB degradation, which is induced by NF-κB activation, 

was effectively attenuated by Bay 11-7082 compared with 

the control (Figure 3A). Next, cells were harvested 24 h or 

48 h poststimulation, and analyses revealed that inhibiting 

the NF-κB pathway diminished LPS-induced cell motility 

and α-catenin downregulation (Figure 3B and C). We next 

investigated the specificity of NF-κB-induced α-catenin 

downregulation. p65, a key nuclear transcription factor 

involved in LPS-activated NF-κB signaling, was exog-

enously expressed in SW620 cells via transfection of the 

pcDNA3.1-HA-p65 construct. The cells were lysed 48  h 

after transfection and analyzed by Western blotting. As 

shown in Figure 3D, HA-p65 expression was accompanied by 

α-catenin downregulation. Taken together, these data suggest 

that NF-κB activation is a key molecular event involved in 

increased cancer cell motility.

α-Catenin expression is negatively 
correlated with neutrophil infiltration 
in CRC tissues
Billions of bacteria inhabit the colorectal cavity; therefore, 

CRC cells are inevitably exposed to bacterial components 

such as LPS, which leads to the recruitment of immune cells 

including neutrophils.22 Thus, neutrophil infiltration is indi-

rect evidence of bacterial LPS exposure in tissue areas devoid 

of necrosis. To assess the relationship between α-catenin 

downregulation and neutrophil infiltration in vivo, H&E-

stained slides from 40 CRC cases (the clinicopathological 

features of the patients are listed in Table 1) were reviewed 
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Figure 2 LPS treatment specifically downregulated α-catenin expression and disturbed cell–cell adhesion.
Notes: (A and B) Expression of α-catenin and other EMT-related molecules in LPS- or PBS-treated SW620 cells was determined by either PCR or quantitative real-time 
PCR. (C–E) Expression of α-catenin, β-catenin, and E-cadherin in LPS- or PBS-treated SW620 cells were analyzed by Western blotting or IHC staining. The intensity of 
α-catenin expression in Western blotting was quantified by ImageJ software and normalized with LPS-free group (D). LPS-induced disturbance of cell–cell adhesion was 
shown under microscope (E). Magnification in (E) is left lane ×100, right lane ×400. *Statistical significance at P,0.05.
Abbreviations: LPS, lipopolysaccharide; EMT, epithelial–mesenchymal transition; PBS, phosphate-buffered saline; PCR, polymerase chain reaction; IHC, immunohistochemistry.
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Figure 3 LPS-induced downregulation of α-catenin was dependent on NF-κB pathway.
Notes: (A) SW620 cells were harvested 30 min after incubation with LPS+Bay 11-7082, LPS alone, or PBS, degradation of I-κB was analyzed with Western blotting. (B) 
Expression of α-catenin in SW620 cells treated with LPS+Bay 11-7082, LPS alone, or PBS was analyzed by Western blotting. (C) Cell motility of SW620 cells treated 
with LPS+Bay 11-7082, LPS alone, or PBS was detected with transwell migration assay. Magnification is ×100. (D) Expression of α-catenin in SW620 cells transfected with 
pcDNA3.1-HA-p65 plasmid or pcDNA3.1 vector was analyzed with Western blotting.
Abbreviations: LPS, lipopolysaccharide; PBS, phosphate-buffered saline.
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under a microscope to identify the regions with neutrophil 

infiltration but no dramatic tumor necrosis. IHC was per-

formed to analyze α-catenin expression. For each of the tissue 

slides, 200 CRC cells in either neutrophil-enriched area or 

that with few neutrophils were observed under a microscope. 

The ratio of cells that strongly express α-catenin (with moder-

ate or stronger membrane staining that shows clear and entire 

border of the cells) was calculated using a 20× objective 
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with poor differentiation, a higher metastatic potential, and 

unfavorable prognosis.2,18,23–25 In breast cancer, reduced 

α-catenin expression is often observed in advanced-stage 

tumors.26 It is possible that decreased α-catenin expression 

directly impairs cell–cell adhesion, thereby releasing the 

cancer cells. This hypothesis is supported by the current data 

(Figure 2E). Despite its critical role in cancer progression, 

the mechanism behind α-catenin downregulation is unclear. 

Some reports have suggested that DNA methylation, genetic 

alterations, and hypoxia in the cancer microenvironment 

play a role.4,23,27,28 Here, we provided novel insights into the 

regulation of α-catenin in CRC by focusing on the innate 

immune component NF-κB signaling.

Abnormal NF-κB activity in some cancer cells could be 

related to poor prognosis.29 Although the NF-κB pathway 

includes various intrinsic negative regulators, recent studies 

in basal-like breast cancer cells have suggested that NF-κB 

activity is inhibited by the direct binding of α-catenin to 

I-κB. This protects I-κB from lysine 48-linked ubiquitination 

and degradation, thereby keeping I-κB kinases (IKKs) in an 

inactive state. The depletion of α-catenin promotes cancer 

cell growth both in vitro and in vivo, whereas the knockdown 

of RelA directly inhibits this effect.10 Moreover, α-catenin 

knockout mice developed epidermal squamous cell carcinoma 

and showed upregulated NF-κB expression according to tis-

sue microarrays.30 Although these results provide evidence 

that α-catenin is a negative regulator of tumor-promoting 

NF-κB activation, additional studies are needed to inves-

tigate whether α-catenin itself is regulated by NF-κB in a 

feedback loop. Our current study elucidated a novel relation-

ship between NF-κB and α-catenin and demonstrated that 

LPS-induced NF-κB signaling promotes CRC cell motility 

by negatively regulating α-catenin expression. Conversely, 

treatment with an NF-κB inhibitor reversed these effects.

It was reported that postoperative Gram-negative bacte-

rial infection and inflammation may lead to CRC recurrence 

and progression.16,17 To explore the potential mechanism 

behind these observations, we first mimicked the Gram-

negative bacterium-induced immune response by exposing 

SW620 cells to LPS. Consistent with previous reports, 

in vitro cancer cell motility was increased in both transwell 

migration and wound healing assays. Both real-time PCR 

and Western blotting demonstrated a dramatic downregula-

tion of α-catenin, whereas only mild changes in β-catenin 

and E-cadherin expression were observed. Although the 

expression of important metastasis-dependent molecules such 

as Snail and Fascin1 was increased, the changes were not 

statistically significant. The decreased α-catenin expression 

Table 1 Clinicopathological features of CRC patients

Characteristics Number

Gender
Male 24
Female 16

Age (years), median (range)
Male 58 (33–76)
Female 52 (25–79)

Pathogenic site
Rectum 25
Colon 15

Differentiation
Well 2
Moderate 29
Poor 9

Invasion depth
T1 2
T2 6
T3 17
T4 15

Lymph node metastasis
N0 30
N1 6
N2 4

Distant metastasis
M0 (NM group) 37
M1 (M group) 3

Abbreviations: CRC, colorectal cancer; NM, no metastatic; M, metastatic.

lens. Generally, compromised α-catenin expression was 

more frequently observed in CRC tissue areas with enriched 

neutrophil infiltration (Figure 4A). Interestingly, CRC cells 

in these regions tended to form more irregular, cribriform 

glands, which may be morphologically related to poor cell–

cell attachment. The result of statistical analysis indicated 

that a significantly higher proportion of CRC cells expressed 

high α-catenin levels in regions with few neutrophil infiltra-

tion within the cases (P,0.001, Figure 4B). These results 

suggested that neutrophil infiltration correlated with reduced 

α-catenin expression, which provides in vivo evidence that 

LPS exposure inhibits α-catenin expression.

Discussion
A detailed understanding of the mechanism of cancer metas-

tasis will improve the prognosis of patients with CRC. One 

hypothesis is that disruption of the cadherin–catenin protein 

complex results in loss of cell–cell adhesion and promotes 

tissue reorganization in cancer.5

Although its role in restraining metastasis has been 

less investigated compared with those of E-cadherin and 

β-catenin, α-catenin is downregulated in multiple cancers, 

including CRC, and its expression is significantly correlated 
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was accompanied by SW620 cell morphological alterations, 

in which the cells were more independent of each other with a 

scattered distribution compared with the control group, which 

exhibited more intact cell–cell connections. IHC staining of 

β-catenin and E-cadherin also displayed fine adhesion appa-

ratus (Figure 2E), suggesting that LPS treatment disrupted 

the cadherin–catenin complex.

LPS may activate other signaling transduction pathways.31 

Therefore, we evaluated the specificity of LPS-induced 

α-catenin downregulation. Bay 11-7082 is a chemical com-

pound that specifically inhibits NF-κB signaling by targeting 

IKKs.32 SW620 cells were coincubated with LPS alone or in 

combination with Bay 11-7082, and migration assays were 

performed. Cells that received the combination treatment 

did not exhibit additional motility compared with the LPS 

group. Conversely, activating NF-κB by ectopic expression 

of p65 downregulated α-catenin expression. Together, these 

data identified α-catenin as a target gene specifically regu-

lated by NF-κB signaling. Meanwhile, IHC staining of CRC 

tissue sections demonstrated weaker α-catenin expression in 

regions where tumorous components were infiltrated with 

prominent neutrophils, which can be recruited by bacterial 

LPS. These in vitro and in vivo data support the hypothesis 

that α-catenin expression in CRC cells is specifically regu-

lated by NF-κB activity.

Conclusion
These results provided in vitro and in vivo evidence sug-

gesting that LPS-induced innate immune activity regulates 

the expression of α-catenin via NF-κB signal transduction. 

This can dramatically influence the biological behavior of 

CRC cells, such as motility. These findings combined with 

observations that α-catenin is downregulated in several 

advanced malignancies will help develop novel strategies 

for preventing CRC progression and metastasis.
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Lipopolysaccharide and colorectal cancer cell motility

Supplementary materials

Figure S1 The expression of TLR4 in CRC cell lines.
Notes: The mRNA of SW620 and SW480 cells were collected and the expression of Toll-like receptor 4 (TLR4) were analyzed by real-time PCR. The 293T cells were 
served as the negative control.
Abbreviations: CRC, colorectal cancer; PCR, polymerase chain reaction.

Figure S2 LPS stimulation decreased a-catenin expression and enhanced cell motility of SW480 cells.
Notes: SW480 cells were treated with 0.5 µg/mL LPS for 24 hours for further Western blotting assay (A) and migration assay (C). The intensity of α-catenin expression in 
Western blotting was quantified by ImageJ software and normalized with LPS-free group (B). The migrated cells were quantified and presented in (D). An asterisk denotes 
statistical significance at P0.05. The results of migration assay were presented under microscope with the magnification of ×100 and ×400, respectively.
Abbreviation: LPS, lipopolysaccharide.
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