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Abstract: Systemic inflammation and localized macrophage infiltration have been 

implicated in cardiovascular pathologies, including coronary artery disease, carotid 

atherosclerosis, heart failure, obesity-associated heart dysfunction, and cardiac fibrosis. 

Inflammation induces macrophage infiltration and activation and release of cytokines 

and chemokines, causing tissue dysfunction by instigating a positive feedback loop that 

further propagates inflammation. Cytosolic adaptor caspase recruitment domain family, 

member 9 (CARD9) is a protein expressed primarily by dendritic cells, neutrophils, and 

macrophages, in which it mediates cytokine secretion. The purpose of this review is to 

highlight the role of CARD9 as a potential target in inflammation-related cardiovascular 

pathologies.
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Introduction
Despite a modest, but encouraging, reduction in cardiovascular disease (CVD) in the 

past decade, CVD persists as a topmost cause of mortality in the US (~30%). Novel 

multifaceted interventions are necessary, as a number of risk factors for CVD are 

common in the population. Approximately 80 million Americans have hypertension. 

Predictably, the percentage of deaths attributable to CVD mirrors the prevalence of 

hypertension, which is a leading cause for myocardial hypertrophy that may progress 

to heart failure and death. Hypertension is also a risk factor for stroke and ischemic 

heart disease.1,2 Obesity, metabolic syndrome, hypertension, dyslipidemia, and CVD 

are clearly interrelated comorbidities. Those with multiple comorbidities induce 

elevated risk and those with fewer comorbidities confer less risk. Considering these 

facts, interventions with a broad scope that may underlie multiple comorbidities may 

have the greatest benefit.

Persistent systemic inflammation has been linked to a number of cardiovascular 

complications. Furthermore, macrophages and neutrophils may infiltrate organs 

(including the myocardium) and propagate a paracrine inflammatory response through 

cytokine and chemokine secretion. This action is identified as a putative factor in insu-

lin resistance, mitochondrial dysfunction, fibrosis, elevated reactive oxygen species 

(ROS), and a prolonged local inflammatory response.3–7

An opportunity presents itself in investigating further the action of a dysregulated 

immune cell signaling in CVD. Immune cell function in vital organs is not pathological 

in the healthy state, but with chronic exposure to inflammatory cytokines, the tissue 

cells begin to display abnormal signaling.
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Pattern recognition receptors 
(PRRs)
PRRs of the immune system are reviewed extensively else-

where.8 In brief, PRRs are signaling proteins that recognize 

molecules commonly expressed by pathogens. PRRs may 

recognize pathogen-associated molecular patterns (PAMPs) 

expressed by fungi, bacteria, viruses, and parasites. Some 

PAMPs can penetrate cell walls. Accordingly, some PRRs 

are expressed in the cytosol as opposed to on the cell mem-

brane. Once activated, they initiate a signaling cascade to 

spur the immune system into action to kill and/or remove 

the pathogens. Generally, a PRR signal is propagated 

through the cell via protein–protein interactions and protein 

phosphorylation, the net result of which is the activation of 

transcription factors for protein expression of cytokines and 

other immune system components necessary to respond to 

the infection.

CARD9
Cytosolic adaptor caspase recruitment domain family, 

member 9 (CARD9), a scaffolding protein expressed in 

monocytes, neutrophils, dendritic cells, and macrophages, 

has been identified as a major constituent in innate immunity, 

acting as a transducer in several intracellular pathways and 

coordinating T-cell migration in response to pathogens.

CARDs typically interact with other CARD-domain-

containing proteins to transduce signals in response to 

the extracellular milieu to spur a coordinated intracellular 

response.9 While CARD9 itself does not recognize any 

pathogens, it provides a link between the PRRs on the cell 

membrane and the appropriate intracellular response.

CARD9 mediates innate immune response to numerous 

fungi, including zymosan,10 Candida albicans,11 and Candida 

tropicalis.12 Fungi and mycobacterium11 signaling pathways 

begin with recognition by a receptor on the extracellular 

side of the membrane, with C-type lectin receptors.13 C-type 

lectins (dectin-1, dectin-2, dectin-3 and mincle) are PRRs 

coupled with an intracellular protein spleen tyrosine kinase 

(SyK).14 When a C-type lectin encounters zymosan15 or 

C. albicans16 or another glucan chain, SyK activates protein 

kinase C (PKC), which phosphorylates CARD9, causing it 

to bind to the CARD domain of B-cell lymphoma/leukemia 

10 (BCL10),9 which associates with mucosa-associated 

lymphoid tissue lymphoma translocation protein 1 (MALT1), 

forming the CARD9–BCL10–MALT1 signalosome that 

initiates the chemokine/cytokine response coordinated by 

nuclear factor-κB (NF-κB).10 This includes the accumula-

tion of pro-interleukin (IL)-1β, IL-1β’s precursor, in the 

cytosol.

There is evidence to suggest that the innate immune 

response is PRR specific. An NF-κB response can be 

coordinated by CARD9 when dectin-2 is activated, but 

NF-κB upregulation is not dependent on CARD9 when 

the receptor dectin-1 is activated. A parallel non-tradi-

tional CARD9-dependent mechanism was concurrently 

introduced wherein dectin-1 signals phosphorylation of 

a Ras-growth-regulating factor 1 (GRF1)/CARD9/H-Ras 

complex by SyK that activates a tumor necrosis factor-α 

(TNF-α) response through extracellular signal-regulated 

kinase (ERK).11

CARD9 is also involved in PRR signaling for intracellularly 

recognized ligands (muramyl dipeptide [MDP] and RNA). 

Nucleotide-binding oligomerization domain-containing 

protein 2 (NOD2) is an intracellular PRR that recognizes 

MDP, a molecular pattern expressed in bacteria.17 NOD2 

complexes with CARD9 and CARD9 receptor-interacting 

serine–threonine kinase 2 (RICK/RIP2).18 Presence of 

CARD9 in the complex is required for the activation of p38 

mitogen-activated protein kinase (p38 MAPK) and C-jun 

N-terminal kinase (JNK), while RICK/RIP2 must be bound 

for full NF-κB activation in response to MDP.19 Each of the 

three transcription factors enhance secretion of proinflam-

matory cytokines, particularly IL-6 and TNF-α.

Intracellular viral RNA initiates CARD9 signaling in 

a separate pathway. CARD9–BCL10 complex (absent 

MALT1) is recruited by mitochondrial antiviral signaling 

protein (MAVS) after MAVS is activated by a retinoic acid-

inducible gene 1 (RIG-1)-like receptor (RLR). RLRs are 

sensitive to the RNA of viruses. The end result is activation 

of NF-κB and accumulation of pro-IL-1β in the cytosol, 

allowing increased secretion of IL-1β.20,21 There is also 

evidence that RIG-1 can also sense nucleic acids from bac-

teria, making CARD9 doubly important in the response to 

bacterial pathogens.22

Genetic abnormalities in CARD9 have been linked to 

immune deficiency in human beings,21 while overexpression 

may be involved in gastric B-cell lymphoma,22 metastasis,23 

and inflammatory disorders such as Crohn’s disease and 

inflammatory bowel disease (IBD).23–27 Dysregulated CARD9 

signaling has been implicated in autoimmune diseases 

of the eye,28 contact hypersensitivity,29 and aseptic acute 

pancreatitis.30 CARD9 is a strong therapeutic candidate for 

multiple reasons. It is downstream from multiple PRRs, so 

it signals in multiple pathways. It is a non-redundant media-

tor of cytokine secretion and is present ubiquitously in the 

innate immune cells. Pathologies linked to macrophage or 

neutrophil-mediated inflammation – especially in the case 

of cytokine-related dysfunction – should be investigated 
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to determine if intercession in CARD9 signaling could 

be therapeutic.

Paracrine action of macrophages 
and neutrophils in CVD
In a healthy immune system, macrophages and neutrophils 

propagate a necessary immune response. Recognition, 

phagocytosis, and degradation of pathogens and the secre-

tion of cytokines and chemotactic factors are required for a 

healthy immune response. These cytokines and chemotactic 

factors propagate inflammatory signals in nearby tissues and 

the resultant changes in protein transcription, translation, and 

expression as well as the movement of other inflammatory 

cells to the local area. This has the desired effect of breakdown 

and removal of pathogens, infection, and damaged cells. Dys-

functional inflammatory signaling influences the progression 

and outcome of CVDs. A chronic low-grade systemic inflam-

mation is linked to CVD,31,32 but a potent paracrine effect 

exerted by the cytokine mediators of infiltrating immune cells 

has also been identified. Inflammatory changes to myocardial 

injury are described in myocardial ischemic injury, including 

elevation in chemokines,33 macrophages,34 and neutrophils.35,36 

To what degree this response is necessary or deleterious is not 

always clear and may depend on the context of the disease.

Conflicting results in the modulation or augmentation of 

macrophage signaling in disease models exist. For instance, 

Morimoto et al37 reported that monocyte chemoattractant 

protein-1 (MCP-1) (a chemoattractant for immune cells) 

overexpression resulted in augmented macrophage infiltra-

tion and abrogated left ventricular dysfunction and fibrosis in 

infarcted mice. Frangogiannis et al38 investigated the effects 

of ischemia–reperfusion on MCP-1 knockout mice and con-

cluded that MCP-1 likely drives the extent of macrophage 

accumulation. However, alleviating the myocardium of the 

macrophage infiltration resulted in a reduced fibrosis and 

rescued it from cardiomyopathy. The reasons for the discrep-

ancy may be attributable to the model employed. Morimoto 

et al employed a chronic myocardial infarction (MI) model, 

whereas Frangogiannis et al utilized an acute MI with subse-

quent reperfusion. It is possible that macrophage infiltration 

and the requisite signaling are alleviative in the absence of 

reperfusion, but are deleterious in its presence.

A similar lack of clarity exists when studying the net effect 

of macrophages in hypertensive animal models. Clodronate-

infused liposomes have been used to suppress macrophage 

presence in hypertensive rat models in order to elucidate the 

role of macrophage signaling. Investigators have consistently 

reported reduced fibrosis. The effect of macrophage deple-

tion on myocardial function was beneficial in one study,39 

but clodronate-exacerbated hypertension induced function 

decrements in another.40 Of course, complete deletion of 

macrophages is not desirable, but the concept of blunting 

the effects of proinflammatory macrophages is supported. 

Reports on the effects of macrophage deletion or signaling 

inhibition have been mixed, lending credence to the idea that 

macrophage signaling is not binary but a multi-faceted arena 

that offers potential and requires precise study.

Cytokines in the myocardium
Cytokine-specific outcomes on myocardial function and 

remodeling are difficult to parse. Absent pharmaceutical 

intervention, they act in concert, making laboratory results 

achieved by manipulating a single cytokine difficult to 

translate into successful therapeutic drug trials. Macrophage 

IL-6 induces TGF-β signaling in fibroblasts and the ensuing 

fibrosis, concentric hypertrophy, collagen accumulation, and 

stiffness in the myocardium.41,42 Concurrently, low-grade 

induction of IL-1β triggers cardiomyocyte hypertrophy 

in vitro, but antagonizes fibroblast expression, perhaps driving 

compensatory hypertrophy in vivo by inhibiting fibrosis.43 

These findings make IL-1β as a troubling potential target. 

As just discussed, a low level of IL-1β in the myocardium 

may be beneficial. However, a higher level of IL-1β may still 

cause dysfunction. IL-1β is a CARD9-related cytokine, so this 

might indicate that any protective effect of targeting CARD9 

that is due in part to its effect on IL-1β is likely to be mediated 

through a blunted or rescued hypertrophic response rather 

than mitigating fibrosis. Alternatively, CARD9 knockout may 

alleviate fibrosis through a different mechanism.

Early findings would lead one to believe that any of the 

aforementioned macrophage-induced cytokines may be 

effectively targeted in CVD. CARD9 has also been linked 

to the cytokine IL-17, as it is requisite for differentiation of 

Th-17 cells.44 IL-17,45 IL-1β,46 TNF-α,47 and IL-642 in rats 

have separately been shown to induce cardiac dysfunction 

or fibrosis via injection or infusion in animals. Interestingly, 

knockout of IL-1β impaired compensatory hypertrophy in 

mice in a pressure-overload model.48 It seems that the effect 

of IL-1β inhibition depends on the degree of inflammation, as 

the degree of IL-1β induced was low. Gene knockout of IL-6 

rescued hypertension and hypertrophy in an angiotensin-II 

treatment for mice.49 In a pressure-overload study, TNF-α 

knockout partially rescued cardiac fibrosis and resulted in 

a normal ejection fraction.50 Despite the success in animal 

models, clinical trials and human studies have been mixed 

when targeting specific cytokines. Trials with IL-1β receptor 

antagonists improved exercise tolerance in heart failure51 and 

better outcomes post-acute MI. While these are encouraging, 
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sample sizes were small (n=14 and n=30, respectively) and 

should be repeated on a larger scale. Treatment in heart 

failure patients with TNF-α inhibitor improved cardiac func-

tion and remodeling in one trial52 but failed to show improved 

outcomes in another at similar doses and had a detrimental 

effect on patients at the higher dose.53 Numerous drugs 

targeting IL-6 or its inhibitor have passed clinical trials or 

are in clinical trials presently. However, none of these drugs 

have been tested directly in CVD. Instead, they are used in 

rheumatoid arthritis and cancer treatments.54

The therapeutic efficacy of single cytokine-specific 

intervention is unproven, likely due to functional redundancy 

with other cytokines. CARD9, on the other hand, appears to 

be necessary for a full innate immune response. A cursory 

glance at the literature will reveal that these pathways are 

rife with interest for scientists investigating inflammatory 

bowel syndrome, Crohn’s disease, autoimmune disorders, 

and cancer. However, relatively little interest has been 

shown by those studying cardiometabolic and cardiovascu-

lar disorders. A few noteworthy exceptions exist, which we 

summarize here.

Current research in CARD9-
mediated vascular disease
In a murine model, CARD9−/− protected against high-fat 

diet (HFD)-associated fibrosis and diminished fractional 

shortening, despite similar cardiac geometry compared to 

the wild type (WT).55 HFD induced myocardial infiltration 

by CD68+ immune cells. It also increased CARD9 protein 

expression and activation of p38 MAPK in the heart tissue and 

isolated macrophages. Activation of p38 MAPK was rescued 

in CARD9−/− mice. In this model, CARD9 may potentiate 

inflammatory effects in part through its binding with NOD2, 

an intracellular PRR normally activated by bacteria patho-

gens. TNF-α and IL-6 in the heart and isolated macrophages 

were elevated in the WT HFD group and restored to normal 

in the CARD9−/− HFD group. A similar pattern emerged for 

IL-1β in macrophages. IL-1β was not affected by diet or 

genotype. This does not preclude its attenuation from being 

in part responsible for protection, however, because IL-1β 

expression was still significantly lower in CARD9−/− mice. 

Furthermore, the cytokine profile was still generally elevated 

by HFD feeding. These findings are supported by the experi-

ments of Ren et al56 who found that CARD9−/− reduced fibrosis 

induced by infusion of angiotensin-II. Our work provides 

evidence that CARD9 plays a critical role in the develop-

ment of cardiac hypertrophy, dysfunction, and fibrosis, all of 

which progress to heart failure. Accordingly, we are currently 

investigating the effect of transverse constriction of thoracic 

aorta (TAC) in CARD9−/− mice.

Investigations in the NOD2 pathway provide indirect 

evidence that CARD9 may be an effective therapeutic target 

in atherosclerosis. For example, NOD2−/− bone marrow trans-

plantation into low-density lipoprotein receptor (LDLr) knock-

out mice reduced the size of the lipid-rich necrotic area in an 

aortic atherosclerotic lesion compared to WT bone marrow 

transplantation.57 However, transplant of RIP2−/− bone marrow 

had no effect. NOD2 also mediated oxidized LDL uptake by 

macrophages when stimulated by MDP. In another study, 

RIP2−/− bone marrow transplantation simultaneously increased 

macrophage lipid uptake and exacerbated atherosclerosis 

in apolipoprotein B (APOB100XLDLr−/−).58 As mentioned 

previously, NOD2 complexes with and signals through both 

RIP2 and CARD9. This finding and another showing CARD9 

can mediate macrophage infiltration in smooth muscle cells59 

suggest that CARD9 and RIP2 could play differential roles for 

NOD2 signaling in atherosclerosis. Interestingly, CARD9 and 

RIP2 operate in parallel downstream of SYK as well, which 

can associate with multiple PRRs, including dectin-114 and 

toll-like receptor 4 (TLR4).60,61

Future research focuses
CARD9 regulates multiple cytokines implicated in CVDs, but 

does not present with an obvious phenotype. It also does not 

require complete ablation of macrophages or neutrophils in 

order to be targeted. For these reasons, it serves as a valuable 

target for pharmacological intervention.

Experiments investigating the related inflammatory 

proteins NOD262 and NLR family, pyrin domain contain-

ing 3 (NLRP3) inflammasome63 signals that implicate them 

as potential targets57,58 are encouraging as CARD9 is the 

downstream effector for both pathways.19,64 Any benefit from 

the targeting of PRRs NOD2, NLRP3, dectin-1, or TLR4 

may be included and compounded by targeting CARD9 

instead. Furthermore, targeting CARD9 in lieu of NOD2 in 

atherosclerosis may leave beneficial RIP2 signaling intact. 

However, more research is necessary. CARD9 is under inves-

tigated in CVD and is thus highlighted for further study.

Future studies should begin by investigating the role of 

CARD9 in hypertensive heart disease using TAC models as 

well as atherosclerotic models, as macrophages and cytokines 

are complicit in plaque formation as well as myocardial 

remodeling.

Once protective effects of knockout are established in 

relevant models, care should be taken to ascertain which 

pathways are actually active in disease (and thus which are 
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affected by treatment) and by what mechanism CARD9 is 

activated in a given disease model. This may help elucidate 

alternative pathways for treatment should serious side effects 

of CARD9 treatment be identified.

Despite the promising preliminary findings of cytokine 

inhibition, consistently effective pharmaceutical intervention 

remains elusive for inflammation-associated CVDs. It makes 

sense, then, to investigate proteins that may mediate more 

than one of these cytokine-mediating pathways simultane-

ously in order to produce a more protective cumulative effect. 

CARD9 is active in several inflammatory signaling pathways 

and non-redundantly so in some. As systemic and paracrine 

inflammations are present in several cardiovascular maladies, 

CARD9 inhibition presents an opportunity and should be 

targeted for research in CVD.
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