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Abstract: Almost 47 million people suffer from dementia worldwide, with an estimated 

new case diagnosed every 3.2 seconds. Alzheimer’s disease (AD) accounts for approximately 

60%–80% of all dementia cases. Given this evidence, it is clear dementia represents one of the 

greatest global public health challenges. Currently used drugs alleviate the symptoms of AD 

but do not treat the underlying causes of dementia. Hence, a worldwide quest is under way to 

find new treatments to stop, slow, or even prevent AD. Besides the classic targets of the oldest 

therapies, represented by cholinergic and glutamatergic systems, β-amyloid (Aβ) plaques, and 

tau tangles, new therapeutic approaches have other targets. One of the newest and most prom-

ising strategies is the control of reactive gliosis, a multicellular response to brain injury. This 

phenomenon occurs as a consequence of a persistent glial activation, which leads to cellular 

dysfunctions and neuroinflammation. Reactive gliosis is now considered a key abnormality in 

the AD brain. It has been demonstrated that reactive astrocytes surround both Aβ plaques and 

tau tangles. In this condition, glial cells lose some of their homeostatic functions and acquire a 

proinflammatory phenotype amplifying neuronal damage. So, molecules that are able to restore 

their physiological functions and control the neuroinflammatory process offer new therapeutic 

opportunities for this devastating disease. In this review, we describe the role of neuroinflam-

mation in the AD pathogenesis and progression and then provide an overview of the recent 

research with the aim of developing new therapies to treat this disorder.
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Introduction
Dementia is a chronic condition characterized by a progressive cognitive impairment 

that leads to functional disability.1 In 2015, it was estimated that approximately 47 

million people worldwide were affected by dementia, and this number is expected to 

increase, reaching 131.5 million by 2050.2 As such, it represents a veritable public 

health challenge. Alzheimer’s disease (AD), a pathology first described by Alois 

Alzheimer in 1907,3 is the most frequent cause of dementia in elderly. Knowledge 

about the etiology and pathogenesis of the disease is continuously updated,4 but there 

are still limitations in diagnostic capability5 and in the discovery of pharmacological 

treatments that would be able to stop or better prevent the disease. At present, AD is 

incurable. Despite the huge amount of preclinical and clinical investigation, medica-

tions currently used provide only a modest symptomatic relief to a subset of patients 

and do not treat the underlying causes of this disease. The reasons for this failure 

are probably due to the scant knowledge of the cellular and molecular mechanisms 

implicated in AD pathogenesis and of the approved therapies that coarsely affect both 
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cholinergic and glutamatergic neurotransmission. Conversely, 

many of the new drugs in development aim to modify the 

disease process itself by impacting one or more of the many 

wide-ranging brain changes caused by AD. These changes 

offer potential targets for new drugs to stop or slow down 

the disease progression. It is now well recognized that AD 

is a multifactorial disorder. It is pathologically character-

ized by widespread oxidative stress, mitochondrial damage, 

glutamate excitotoxicity, neuroinflammation, neurofibrillary 

tangle (NFT) formation, and β-amyloid (Aβ) deposition 

creating senile plaques (SPs).6 These latter are constituted 

by Aβ peptide, and their genesis is followed by intracellular 

deposition of NFTs,7 as a consequence of tau protein hyper-

phosphorylation. The results are synaptic and neuronal dys-

function and loss.8 Over the years, it has been demonstrated 

that other factors play an important role in the pathogenesis 

and progression of AD. Among them, the key role of neuro-

inflammation has been affirmed.9

Physiologically, the inflammatory process is aimed at 

controlling injuries through several mechanisms to repair 

tissues.10 However, an increasing amount of literature con-

firms its role in the pathogenesis and exacerbation of AD.11–14 

Inflammation acts to remove both the initial cause of the 

infliction and to eliminate the destroyed tissues and dead 

cells resulting from the original injury.

In fact, inflammation is emerging as the real cause of 

the associated disease, more than a mere contribution to the 

exacerbation of tissue damage. Indeed, some studies have 

revealed that the injection of lipopolysaccharide in transgenic 

mice induces neuroinflammation, triggering intracellular Aβ 

deposit and tau phosphorylation.15,16

The molecular processes are not necessarily the primary 

events. The inflammatory machine could also be triggered 

by traumatic or surgical causes. The microglial priming 

model suggests that the presymptomatic AD pathology, 

characterized by low levels of proinflammatory mediators, 

can act on microglia for long periods of time.17 Furthermore, 

stress, inflammation, and infection can operate as secondary 

triggers, causing changes in these primed cells: they reach 

an activated state establishing an inflammatory response 

contributing to AD pathogenesis.18

From an immunological point of view, the central ner-

vous system was always seen as a highly protected tissue, 

exposed to inflammatory phenomena solely in cases of 

infection or disruption of the blood–brain barrier (BBB). 

Nowadays, we know that there are several cells expressing 

pattern recognition receptors able to induce inflammatory 

signaling pathways.13 These pattern recognition receptors 

can recognize molecular signals of microbial molecules, 

called pathogen-associated molecular patterns, as well 

as endogenous damage-associated molecular patterns 

(DAMPs), that typically accumulate in infected tissues. 

DAMPS are present in diseased brains as misfolded proteins 

(eg, SPs and NFTs), aggregated peptides, or nucleic acids.19 

It is clear that DAMPs can trigger neuroinflammation by 

deflecting proinflammatory reactions from their helpful 

purpose, and this is the reason why our way of viewing 

neurodegenerative diseases has changed over the years.

The role of the neuroinflammatory process is not exclu-

sively attributable to innate immunity (which in the brain 

is constituted by microglia), but it is also caused by other 

brain resident cells that constitute, in one word, macroglia 

(ie, astrocytes, NG2-positive cells, and oligodendrocytes), 

as well as endothelial cells and neurons.20–23

Hence, it is clear that there are many characters involved 

in this inflammatory process. Thus, a better knowledge of 

the mechanisms underlying the role of neuroinflammation 

in AD can be an excellent starting point for the development 

of molecules able to counteract it.

The pathophysiology of 
neuroinflammation and its role in 
Alzheimer’s disease
Even if Aβ deposits can alone induce an inflammatory 

response that subsequently leads to AD development, it is 

well established that the neuroinflammatory pathophysiology 

is more complex and driven by the activation of different 

brain cells. In particular, growing evidence suggests that 

this phenomenon is mainly supported by glial cells, which 

respond quickly to brain injuries, activating a series of 

repair mechanisms to restore brain physiology. Glial cells 

are nonexcitable cells of the central nervous system. These 

cells are a highly heterogeneous population, responsible for 

many important brain functions.24 While microglia acts as the 

first form of immune defense in the brain, astrocytes are an 

essential neurosupportive cell type. Indeed, astrocytes finely 

control the environment by regulating pH, ion homeostasis, 

oxidative stress, and blood flow.25,26 These cells together with 

microglia, oligodendrocytes, neurons, pericytes, and endo-

thelial cells constitute the neurovascular unit, responsible for 

the proper functioning of the BBB.27 In addition, astrocytes 

contribute importantly to synaptogenesis and dynamically 

modulate information processing and signal transmission, 

regulate neural and synaptic plasticity, and provide trophic 

and metabolic support to neurons.28,29 Interestingly, data from 

animal models and human autopsy revealed that both SPs 
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and NFTs cause an immune response in the brain and colo-

calize close to activated glial cells. Astrocyte and microglia 

acquire a reactive phenotype20 and rapidly act in response to 

pathology undergoing important changes in their morphology 

and functioning.30,31 Such an activation is fundamentally a 

protective response aimed at removing injurious stimuli. The 

neuroprotective action of reactive astrocytes takes place by 

modulating Aβ-mediated neurotoxicity, degrading, internal-

izing, and removing Aβ, thus creating a protective barrier that 

surrounds plaques.32–34 However, uncontrolled and prolonged 

activation goes beyond physiological control, and detrimental 

effects override the beneficial ones. In this condition, glial 

cells foster neuroinflammatory response, accounting for 

the synthesis of different cytokines and proinflammatory 

mediators.35,36 This condition is called reactive gliosis and is 

a characteristic event of AD brains (Figure 1). For example, 

activated microglia reduces Aβ accumulation by increasing 

its phagocytosis, clearance, and degradation,37 as well as by 

secreting factors such as the glia-derived neurotrophic factor, 

helpful for neuronal survival.38 Recently, microglia functions 

aimed at Aβ clearance were attributed to the presence of 

triggering receptor expressed on myeloid cells 2 (TREM2), 

a transmembrane receptor;39,40 indeed not long ago, TREM2 

was identified as a risk gene for AD.41,42 It is reasonable to 

think that this association between TREM2 and AD is due 

to the many functions carried out through the activation of 

different pathways ranging from phagocytosis to encouraging 

survival and proliferation, and finally promoting secretion of 

cytokines and chemokines.43–45

Even astrocytes play an important role in the maintenance 

of the cerebral homeostasis. These cells are responsible for 

the proper functioning of the BBB, provide nutrients to 

neurons, preserve the extracellular ion balance, and remove 

and degrade Aβ.46 However, glial functions are deeply 

altered whenever tissue physiology is not restored. In these 

circumstances, the inability to counteract Aβ and NFTs 

accumulation constantly stimulates the machinery needed 

to remove debris; in this way, astrocytes actively support 

inflammation.47,48

Several studies demonstrated that their action becomes 

relevant from early stages of the pathogenic process, turning 

to a cycle independent from Aβ presence, neural dysfunction, 

cell death, and disease progression.49–51 The resulting chronic 

inflammation is due to the release of proinflammatory mol-

ecules that act not only in an autocrine manner, allowing the 

perpetuation of the reactive gliosis, but also in a paracrine 

one, the main cause of the neuronal death that increases the 

pathological damage.52,53 Neuronal death is determined by the 

release of not only inflammatory mediators, but also of reac-

tive oxygen species, nitric oxide (NO), proteolytic enzymes, 

complement factors, and/or excitatory aminoacids.54 At 

the molecular level, the release of these mediators affects 

neuron–glia crosstalk, influencing redox enzyme sensors, 

receptors, and transcription factors.55

In physiological conditions, microglia protects the brain 

from pathogens, and, together with macroglia, helps maintain 

homeostasis of the tissue. In AD, all these cells became more 

reactive and change their morphology  surrounding SPs.56 

Blood vessel

Blood vessel

Activated microglia

Reactive astrocyte

BBB dysfunction

Neuronal death

Proinflammatory mediators
Anti-inflammatory mediators
ROS
NO

Synaptic loss

Intracellular Aβ
Tau aggregation

Microglia

Astrocyte

Neuron

Aβ
Proinflammatory mediators
S100Β

Figure 1 Schematic representation of glial activation.
Notes: As a result of brain damage (eg, brain trauma, ischemia, Aβ accumulation, NFTs, etc) microglia and astrocytes acquire a so-called reactive phenotype losing their 
physiological functions. Morphofunctional changes, loss of three-dimensional network, and neurovascular unit alterations contribute to cause a homeostatic imbalance. 
Moreover, after activation, these cells produce a wide range of cytokines and proinflammatory mediators, leading to chronic inflammation. Even if the initial intent of these 
modifications is reparative, such long-lasting and uncontrolled activation causes further neurodegeneration.
Abbreviations: ROS, reactive oxygen species, NO, nitric oxide; Aβ, β-.amyloid; NFTs, neurofibrillary tangles; BBB, blood–brain barrier.
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This is possible because of the presence of proinflammatory 

receptors on their surface. Microglia is able to identify and 

bind Aβ oligomers and fibrils and the amyloid precursor 

protein (APP)57 through a large number of receptors, includ-

ing scavenger receptor class A type 1, MARCO, scavenger 

receptor class B member 1, CD36, and the receptor for 

advanced glycation end product,58,59 G protein-coupled 

receptors formyl peptide receptor 2 60 and chemokine-like 

receptor 1,61 toll-like receptors (TLRs) TLR2,62 TLR4, and 

the CD14 coreceptor, and α6β1 integrin.63 The outcome of 

the bond between Aβ and these receptors is the production 

of inflammatory mediators such as cytokines (interleu-

kin [IL]-1α, IL-1β, IL-6, IL-8, IL-12, IL-18, and IL-23, 

interferon (IFN)-γ, tumor necrosis factor [TNF]-α, and 

granulocyte-macrophage colony-stimulating factor [GM-

CSF]),64,65 chemokines (monocyte chemotactic protein 1 

(MCP1), MCP-113, fractalkine),66,67 chemoattractant pro-

teins, prostaglandins, complement factors, thromboxanes, 

pentraxins, NO, reactive oxygen species, leukotrienes, 

proteases, protease inhibitors, adhesion molecules (inter-

action between CD40-CD40 ligand CD40L),68 coagulation 

factors, and C-reactive protein, most of which are detectable 

in AD animal and/or in the brain or cerebrospinal fluid of 

AD patients.25,69,70 However, glial cells are also capable of 

producing some regulatory cytokines, such as IL-10 and 

transforming growth factor-β (TGF-β), but in AD their 

release is modified, exacerbating the disease.71–73 Among 

anti-inflammatory factors, we also recall the cluster of dif-

ferentiation-200 (CD200) regulated by the anti-inflammatory 

IL-4 and expressed by neurons, T- and B-cells, whose recep-

tor is expressed by glia. Both AD patients and mouse models 

show an age-related or Aβ-induced CD200 reduction.74–76

Upstream of cytokines production is the activation of the 

nuclear factor-kappa B (NF-κB) pathway,77 and the subse-

quent activation of mitogen-activated protein kinase (MAPK) 

pathways, whose proinflammatory gene expression is Aβ 

dependent.78 Extracellular signal-regulated protein kinases 

(ERKs), stress-activated protein kinases c-Jun NH2-terminal 

kinase (JNK), and p38 constitute the set of MAPKs whose 

action is exerted both in the cytoplasm and in the nucleus, 

thereby phosphorylating transcription factors. For example, 

p38 can contribute to neuroinflammation by inducing TNF-α 

gene transcription, which increases the activator protein-1 

(AP-1) activity,79 besides being directly responsible for tau 

phosphorylation.80

In turn, proinflammatory mediators increase the activ-

ity and the products of amyloidogenic pathway, especially 

Aβ
(1–42)

. For instance, the γ-secretase cell-based assays 

showed that TNF-α, IL-1β, and IFN-γ cause the initiation 

of APP cleavage through the MAPK pathway,81 and a more 

recent study demonstrated that NF-κB signaling, activated 

by TNF-α, results in an increased Aβ synthesis driven by the 

β-secretase (BACE-1) transcription.82

To the vicious circle driven by cytokines and MAPKs,83,84 

the resulting activation of the complement cascade has to be 

added,85 as well as the induction of proinflammatory enzymes, 

such as cyclooxygenase-2 (COX-2)86 and the inducible nitric 

oxide synthase (iNOS).87 Induction of these enzymes may 

also be linked to the excessive release of S100B (ββ form 

of the S100), a neurotrophin expressed by activated astro-

cytes,88 which is able to induce NF-κB activation,89 as well as 

encourage tauopathy.23 Two more proinflammatory proteins, 

implicated in the pathophysiology of AD, belong to the S100 

family: S100A9 and S100A12. These proteins, produced by 

activated microglia and macrophages, are increased in AD 

brain and are responsible for protein complex formation.90,91 

S100A9 is present within SPs and Aβ deposits surrounding 

blood vessels, and it is also abundant in tissues neighboring 

Aβ deposits, confirming that increased S100A9 levels can 

stimulate peptides aggregation and deposition.92

Studies report that tau hyperphosphorylation is directly 

affected by inflammatory mediators, including the cyclin-

dependent kinase 5 (CDK5):93 IL-6 stimulates neuronal 

protein p35, which in turn is responsible for the kinase 

activation that can act on tau.94 CDK5 is not the only kinase 

related to neuroinflammation. Recently, the role of protein 

kinase 2 (CK2, former casein kinase II) has been described. 

In fact, CK2 immunopositive astrocytes have been found to 

be associated with amyloid deposits in AD brains, suggesting 

its involvement in the neuroinflammatory response.95

Inflammatory mediators, in particular cytokines, are also 

responsible for increased BBB permeabilization driven by 

chemokines, allowing leukocyte penetration in the brain.96,97 

This is possible because of altering the resistance of tight 

junctions, upregulation of cytokines expression, and COX-2 

transcription in endothelial cells.98 For example, IL-6, IL-10, 

IL-13, and prostaglandins stimulated by lipopolysaccharide 

may increase the influx of Aβ across the BBB, besides 

upregulating APP processing in the brain.99,100

Another mechanism underlying the pathogenic process 

led by neuroinflammation is the blockage of neurogenesis, 

which is inhibited by some proinflammatory cytokines such 

as IL-6, TNF-α, and IL-18, responsible for neural progenitor 

cells death, and inhibition of their differentiation.101 Interest-

ingly, these cells are located in the subgranular layer of the 

dentate gyrus of the hippocampus, in the subventricular zone 
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of the lateral ventricles, and amygdala – areas mainly affected 

by AD and cognitive impairment.102

One of the still poorly explored mechanisms that might 

govern the relationship between AD and neuroinflammation, 

but definitely is in charge of the neurodegenerative processes, 

involves the glycogen synthase kinase-3 (constitutively active 

serine/threonine protein kinase) pathway.103 This idea comes 

from the observation of the results obtained by blocking this 

kinase, which causes an increase of the anti-inflammatory 

IL-10 and a decrease of proinflammatory cytokines as a 

consequence of TLRs stimulation and NO production.104–106

The salient events reported in this paragraph are sum-

marized in Figure 2.

Neuroinflammatory targets in 
Alzheimer’s disease
Because of the knowledge acquired so far and the fail-

ure of so many antiamyloid trials, scientific interest has 

shifted to other features of neurodegeneration including 

neuroinflammation.107

Evidence mentioned in “The Pathophysiology of Neuro-

inflammation and Its Role in Alzheimer’s Disease” section 

shows how neuroinflammation is driven by a large number 

of events apparently different but strongly dependent one on 

the other.108 For this reason, it is difficult to identify the best 

target upon which to act. Recently, much work has been done, 

but much more research still needs to be done.

It is now clear that the AD neurodegenerative process is 

also orchestrated by proinflammatory cytokines and their 

receptors, which therefore become promising targets on 

which to focus by means of different approaches. Blocking 

gene expression of cytokines, releasing or binding their recep-

tors, or better regulating the functioning of cells implicated in 

the neuroinflammation are definitely strategies still in explo-

ration.109 The possibility of of reducing tau kinase activity and 

oligomeric and fibrillary Aβ accumulation by  neutralizing 

Brain injuries
Glial activation

Morphofunctional changes
Synaptic dysfunction

Homeostatic imbalance

Neurovascular unit dysfunction

Loss of three-dimensional network

BBB dysfunction

Neuroinflammation

Acquisition of a reactive phenotype

S100B/GFAP/IBA1/CD11/b

           IL-1α/IL-1β/IL-6/IL-8/IL-12/IL-18/IL-23/IFN-γ/GM-CSF/
             MCP1/MCP-113/fractalkine/chemo-attractant proteins/

               complement factors/thromboxanes/prostaglandins/
leukotrienes/pentraxins/NO/ROS/proteases/protease inhibitors/
adhesion molecules/coagulation factors/C-reactive protein, etc

SCARA-1/MARCO/SCARB-1/CD36
RAGE/GPCRs/FPR2/CMKLR1
TLR2/TLR4/CD14/α6β1 integrin
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- Astrocyte endfeet retraction
- Amoeboid microgliaBinding receptors for Aβ and APP

Proinflammatory mediators and cytokines

N
e
u
r
o
n
a
l

 
d
e
a
t
h

Injuries removal Recovery(trauma, surgery, oxidative 
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Figure 2 Integrated pathways between glial activation, neuroinflammation, and neuronal death after brain injury.
Notes: Whenever a brain injury occurs, glial activation takes place with the aim of removing injurious stimuli. To this aim, activated cells undergo a series of morphofunctional 
changes and acquire a reactive phenotype. Activation causes, among other things, glial hypertrophy, astrocyte endfeet retraction, and gain of amoeboid microglial structure. 
These changes, if not stopped, can induce synaptic dysfunction, homeostatic imbalance, neurovascular unit dysfunction, loss of three-dimensional network, and BBB 
dysfunction. In addition, reactive microglia and astrocytes release a wide range of proinflammatory mediators aimed at removing the primary injury. The occurrence of a 
reactive state is very probably a protective response. However, uncontrolled and prolonged activation goes beyond physiological control, and detrimental effects override 
the beneficial ones. Solid arrows indicate complete pathways. Dashed arrows indicate pathways that that occur partially or do not.
Abbreviations: BBB, blood–brain barrier; Aβ, β-amyloid; NFTs, neurofibrillary tangles; SCARA-1, scavenger receptor class A Type 1; SCARB-1, scavenger receptor class B 
member 1; RAGE, receptor for advanced glycation end product; GPCRs, G protein-coupled receptors; FPR2, formyl peptide receptor 2; CMKLR1, chemokine-like receptor 
1; TLRs, toll-like receptors; IL, interleukin; IFN-γ, interferon-γ; GM-CSF, granulocyte-macrophage colony-stimulating factor; NO, nitric oxide; ROS, reactive oxygen species; 
SPs, senile plaques; IBA1, ionized calcium-binding adapter molecule 1; CD, cluster of differentiation.
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IL-1β or  TNF-α/TNF-α receptor through antibodies has been 

demonstrated in murine models of AD.64,110–113 In this context, 

the role of molecules with anti-inflammatory properties (such 

as minocycline) that are able to decrease astrocyte release of 

proinflammatory cytokines and reduce both tau and amyloid 

pathogenesis,114 as well as improve AD behavioral symptoms, 

is not less important.115

Interestingly, both in vitro and in vivo studies have shown 

that pharmacological inhibition of COX-2 and inducible NO 

synthase has positive outcomes.38,116–120

Lastly, in AD models it was observed that it is possible 

to obtain satisfactory results by modulating kinases that are 

not only directly related to tau hyperphosphorylation but 

also to neuroinflammation. One example is the modulation 

of glycogen synthase kinase-3β. Experimental studies have 

shown that it is possible to exert anti-inflammatory effect by 

inhibiting this enzyme, giving us another potential therapeutic 

target to consider.87,88,121

Currently available products 
and products in research and 
development focusing on 
neuroinflammatory targets
In the past decades, several epidemiological and clinical 

studies were carried out to demonstrate the neuroprotec-

tive potential of several nonsteroidal anti-inflammatory 

drugs.122,123 After the pioneering work with indometacin 

demonstrated the ability to restore cognitive functions in the 

enrolled subjects, many other clinical trials have shown only 

unsatisfactory results.124–127 Since the failure of trials with 

classical nonsteroidal anti-inflammatory drugs, scientists 

tested COX-2-selective compounds effects. Once again, 

results were disappointing.128,129 Evidence from a clinical 

trial with naproxen suggests its ability to reduce tau and Aβ 

levels in cerebrospinal fluid and plasma.130 AD is a multifac-

torial disease and the inflammatory outcome, driven by glial 

activation, depends on the context and on the stage of the 

pathology. For these reasons, an ideal anti-inflammatory com-

pound should be able to control the detrimental effects and, 

at the same time, preserve the physiological glial activation.

An alternative and recent therapeutic approach is repre-

sented by nutraceuticals (eg, curcumin, apigenin, docosa-

hexaenoic acid, resveratrol, and n-3 fatty acids).131–134 Despite 

encouraging preclinical results, the success rate in humans 

has been very low.135

Complex results were obtained after vaccinating AD 

patients against Aβ and NFTs. A large number of studies 

have been done in this field, and promising data were obtained 

in preclinical models. Unfortunately, these encouraging 

findings were not replicated in clinical trials, and promising 

vaccines were stopped because of adverse effects such as 

meningoencephalitis.136 Some of these studies revealed that 

immunization halts glial activation.137 By the physiological 

importance of this phenomenon, this is probably why the 

immunization has caused severe adverse reactions.

Presently, several competing hypotheses (especially related 

to time of intervention) may help explain the failure of translat-

ing preclinical studies into the clinical ones, but so far there 

is no way to confirm which of these explanations is correct.

Future research direction
The pathogenic role of neuroinflammation in AD is now 

well recognized and accepted. Nevertheless, the underlying 

mechanisms have not been sufficiently elucidated. Several 

factors contribute to this failure. First of all, there is a lack 

of adequate preclinical models that best mimic the disease 

and, in particular, the processes of glial activation and 

neuroinflammation. Then, another important factor is the 

comprehension of the role of each cellular component in 

the inflammatory process, for example, the identification 

of cell-specific biomarkers. Indeed, specifically clarifying 

changes in both immune system and inflammatory machinery 

would make available different pathways for pharmacological 

manipulations aimed at delaying the onset and/or the pro-

gression of the disease. Finally, it is important to define the 

inflammatory stages to correlate each phase to AD progres-

sion and to clarify which processes are protective and which 

ones are detrimental.

The achievement of these goals will allow scientists to 

practice many other experimental approaches. The hope is to 

get satisfactory results from clinical studies with compounds 

that have been successful in vitro, ex vivo, and/or in vivo 

experiments, such as the administration of molecules like 

acetylpuerarin,138 edaravone,139 palmitoylethanolamide,38 

N-[2-(4-hydroxyphenyl)ethyl]-2-(2,5-dimethoxyphenyl)-

3-(3-methoxy-4-hydroxyphenyl) acrylamide (compound 

FLZ),140 oleuropeinaglycone,141 oridonin,142 protocatechuic 

acid,143  resveratrol,110 rutin,144 or immunotherapies145,146 and 

vaccinations.147

Conclusion
Growing evidence confirms that neuroinflammation, finely 

orchestrated by neuronal, glial, and immune components, 

is a contributing cause of Aβ aggregation, tau hyperphos-

phorylation, and neuronal damage and death. The resulting 

production of cytokines and proinflammatory molecules has 
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initially a neuroprotective role, but subsequently becomes the 

cause of further neurodegeneration.

Unfortunately, because of the lack of appropriate animal 

models, we still lack a complete understanding of the relation-

ship between inflammatory process stages and AD progres-

sion. This could explain, at least in part, the unsuccessful 

results of clinical trials performed with anti-inflammatory 

molecules whose efficacy was significantly proven in pre-

clinical investigations.

Therefore, future experimental studies must intensively 

investigate the intricate paths of the neuroinflammatory 

process and define the best time to control it. In this way, 

it will be possible to achieve more focused and functional 

therapeutic strategies in the hope of not only alleviating but 

also modifying AD progression.
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