Comparison of liberal and restrictive blood transfusion: current insights into clinical outcomes

Merete Gregersen
Else Marie Damsgaard
Department of Geriatrics, Aarhus University Hospital, Aarhus, Denmark

Abstract: The aim of this review is to evaluate the evidence of randomized controlled trials and meta-analyses that the current blood transfusion guidelines are based upon. These studies examine the administration of blood to patients where benefits outweigh risks according to the hemoglobin (Hb) level. The guidelines for transfusion policies are based on studies published up to the year 2014 and recommend the restrictive Hb thresholds as applicable to all care environments compared to a more liberal one. Within the past 2 years, the published studies are more targeted on specific settings and disease groups who can tolerate anemia and who cannot. The recent findings raise the possibility that patient outcome is better using a more liberal transfusion policy in patients with cardiovascular disease and in perioperative patients (surgery for abdominal cancer, cardiac surgery, and frail older patients with hip fracture). There are still many ongoing studies reflecting, what this review also suggests, that the evidence of the restrictive limits used on all patients across the board is not usable for clinicians. In the clinic (as in research), it is crucial to have the opportunity to deviate from the guidelines if signs of anemia are present in the patients and to tailor the transfusion strategy to each patient. There is also a lack of evidence on the most optimal transfusion threshold in other cancer categories than abdominal and in the nonoperative old and frail patients. This should be studied in future experimental studies.

Keywords: literature review, hemoglobin thresholds, guidelines, acute anemia, chronic anemia, tailored intervention

Introduction
Red blood cell (RBC) transfusions have been a standard for treating anemia for >100 years.1 In the 1990s, researchers began to explore the evidence behind this practice. In the last decade, many randomized controlled trials (RCTs) and meta-analyses were performed in order to economize on erythrocyte components without impairing the clinical outcome. Most often, a restrictive RBC transfusion policy was compared with a more liberal one in various settings. Evidence supports that restrictive hemoglobin (Hb) thresholds are generally applicable to all care environments and that liberal Hb thresholds are important for subgroups of patients with cardiovascular disease (CVD) and in perioperative patients, especially the older ones.

The risk and benefits of RBC transfusions are complex. It is possible that the most optimal Hb threshold varies depending on underlying medical disorders. In patients with acute coronary syndrome and in frail older patients, a higher Hb concentration may be lifesaving. Of course, an increased blood volume may also increase the risk of pulmonary edema.2
In Denmark, 47.8 units of blood are annually spent per 1,000 inhabitants.1 It is considered a challenge to reduce this high number of transfusions. Clinical guidelines across the world recommend adhering to a restrictive transfusion policy even if a liberal policy in itself may not be harmful. The decision to transfuse RBCs should be based upon a comprehensive and patient-specific clinical assessment. This review aims to evaluate the evidence (RCTs and meta-analyses) that the current transfusion guidelines are based upon.

**Assessment of the literature**

The authors searched the databases PubMed/MEDLINE, Embase, The Cochrane Library, CINAHL, and Google Scholar and included RCTs and meta-analyses from January 1996 to April 2016 using the keywords “blood transfusion”, “transfusion”, “red blood cell”, “threshold”, “strategy”, “policy”, “liberal”, and “restrictive”. The RCTs and meta-analyses were grouped according to settings, diseases, countries, age groups, and outcomes. Meta-analyses that contained observational studies were excluded due to the risk of uncontrolled confounding as the need for RBC transfusion is a marker of illness burden. The reference lists of selected articles were also searched and screened ClinicalTrials.gov (the registry and results database of publicly and privately supported clinical studies of human participants conducted around the world) to identify relevant ongoing studies. Only full-text articles in the English language were reviewed.

The search identified 30 RCTs (Table 1) plus eight systematic reviews and meta-analyses solely based on RCTs comparing a restrictive RBC transfusion strategy with a more liberal RBC strategy (Table 2).

**Relevant clinical outcomes**

Most transfusion-related complications are rare and several of the RCTs are not powered to recognize the uncommon adverse events. The mostly used outcomes are mortality, cardiac morbidity (acute coronary syndrome), infections, functional recovery (lower extremity activities and activities of daily living [ADL]), length of hospital stay (LOS), quality of life (QoL), and further risk of bleeding. In some studies, intraoperative tissue oxygenation was used to measure the effect of the blood transfusions.

Mortality, cardiac events, and infection outcomes are typically used as markers of short-term outcomes 30 and 90 days after the acute event. Long-term functional outcomes are important and often not addressed when discussing RBC transfusion policy. Only one trial has measured 1-year mortality,4 another 1-year physical recovery,5 and a third 3-year mortality.6 Primary and secondary outcomes vary depending on the hospital setting. Not all outcomes after hospital discharge are measured by face-to-face observations but by phone calls. Some patients are lost to follow-up due to loss of contact. The meta-analyses are challenged by various periods of follow-up and the different Hb thresholds used in the RCTs.

Seven of the RCTs are pilot studies7–13 and another seven base their results on <200 patients per trial14–20 and are probably too underpowered to explore differences in patient outcomes. Accordingly, they should be interpreted with caution. In the meta-analyses, the data from underpowered studies are useful. Eight systematic reviews and meta-analyses have been conducted within the last 5 years with the purpose to strengthen the estimates of the RCTs.21–28

**Hip and knee replacement**

Four RCTs have examined RBC transfusion policies in elective surgery.15,19,29,30 Implementation of transfusion protocols was accomplished during periods from 48 hours to 11 days. The mean age of the participants was from 69 to 71 years. Mortality and mobility were the primary outcome measures in these trials. Few of the patients died (0%–0.6% died within 30 days). The results did not permit any conclusion on short-term mortality. In 66 patients undergoing elective hip revision surgery, Nielsen et al59 found that a liberal RBC transfusion policy was associated with improved mobility (balance, walking speed, and mobility). However, the Hb did not differ within the groups and an association between better mobility and a higher Hb is highly questionable.59

**Hip fracture surgery**

Patients undergoing surgery for hip fracture are an ideal population to compare different transfusion policies. The patients constitute a large proportion of orthopedic patients. They are typically older, have coexisting diseases, and a high prevalence of preexisting anemia. Furthermore, fracture- and surgery-associated bleeding causes a high incidence of acute anemia and subsequent need for RBC transfusion rates, as well as relatively high mortality. The largest study until now is the multicenter FOCUS study.31 It included 2,016 participants at increased cardiovascular risk who were able to walk independently before the fracture occurred. A more liberal transfusion strategy was implemented within 3 days after surgery, but it did not improve the ability to walk independently or reduce mortality 60 days after surgery. Some of the patients in the restrictive group diverged from protocol. They were permitted...
Comparison of liberal and restrictive blood transfusion policies

Table 1 Randomized controlled trials published as articles in English language (January 1996–April 2016) in chronological order

<table>
<thead>
<tr>
<th>First author, country</th>
<th>Year</th>
<th>Journal</th>
<th>Clinical setting/name of study (if any)</th>
<th>Number of patients</th>
<th>Mean age, years</th>
<th>Hemoglobin transfusion thresholds (restrictive vs liberal), g/dL</th>
<th>Follow-up</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bush,14 California, USA</td>
<td>1997</td>
<td>Am J Surg</td>
<td>Elective major arterial reconstructions</td>
<td>99</td>
<td>65</td>
<td>9 vs 10</td>
<td>30 days</td>
<td>Mortality</td>
</tr>
<tr>
<td>Carson,7 New Jersey, USA</td>
<td>1998</td>
<td>Transfusion</td>
<td>Hip fracture surgery</td>
<td>84</td>
<td>82</td>
<td>8 vs 10</td>
<td>30 days</td>
<td>Mortality</td>
</tr>
<tr>
<td>Bracey,43 Texas, USA</td>
<td>1999</td>
<td>Transfusion</td>
<td>Primary coronary bypass graft surgery</td>
<td>428</td>
<td>61</td>
<td>8 vs 9</td>
<td>In-hospital</td>
<td></td>
</tr>
<tr>
<td>Hebert,35 Canada</td>
<td>1999</td>
<td>N Engl J Med</td>
<td>ICU, critically ill patients TRICC study</td>
<td>838</td>
<td>58</td>
<td>7 vs 10</td>
<td>In-hospital</td>
<td></td>
</tr>
<tr>
<td>Lotke,15 Pennsylvania, USA</td>
<td>1999</td>
<td>J Arthroplasty</td>
<td>Elective total knee arthroplasty</td>
<td>152</td>
<td>69</td>
<td>9 g/dL vs 2 units of autologous blood</td>
<td>30 days</td>
<td></td>
</tr>
<tr>
<td>Hebert,36 Canada</td>
<td>2001</td>
<td>Crit Care Med</td>
<td>Critically ill with CVD</td>
<td>357</td>
<td>65</td>
<td>7 vs 10</td>
<td>In-hospital</td>
<td>mortality</td>
</tr>
<tr>
<td>Grover,16 UK</td>
<td>2006</td>
<td>Vox Sang</td>
<td>Elective hip and knee replacement</td>
<td>218</td>
<td>71</td>
<td>8 vs 10</td>
<td>14 days</td>
<td></td>
</tr>
<tr>
<td>Lacroix,37 Canada</td>
<td>2007</td>
<td>N Engl J Med</td>
<td>Pediatric ICU, critically ill children TRIPICU study</td>
<td>637</td>
<td>3</td>
<td>7 vs 9.5</td>
<td>28 days</td>
<td></td>
</tr>
<tr>
<td>Webert,8 Canada</td>
<td>2008</td>
<td>Transfusion</td>
<td>Chemotherapy in acute leukemia or stem cell transplantation</td>
<td>60</td>
<td>48</td>
<td>8 vs 12</td>
<td>In-hospital</td>
<td></td>
</tr>
<tr>
<td>Foss,14 Denmark</td>
<td>2009</td>
<td>Transfusion</td>
<td>Hip fracture surgery</td>
<td>120</td>
<td>81</td>
<td>8 vs 10</td>
<td>In-hospital</td>
<td>mortality</td>
</tr>
<tr>
<td>Zygun,9 Canada</td>
<td>2009</td>
<td>Crit Care Med</td>
<td>Severe brain injury</td>
<td>30</td>
<td>39</td>
<td>8 vs 9 vs 10</td>
<td>30–180 minutes</td>
<td>Brain tissue oxygen*</td>
</tr>
<tr>
<td>So-Osman,10 Holland</td>
<td>2010</td>
<td>Vox Sang</td>
<td>Elective orthopedic surgery</td>
<td>603</td>
<td>70</td>
<td>(7.2–9.7) vs (9.7–10.5)</td>
<td>14 days</td>
<td>Mortality</td>
</tr>
<tr>
<td>Hajjar,14 Brazil</td>
<td>2010</td>
<td>JAMA</td>
<td>Cardiopulmonary bypass surgery TRACS-study</td>
<td>512</td>
<td>59</td>
<td>9.2 vs 10.6</td>
<td>30 days</td>
<td></td>
</tr>
<tr>
<td>Cholette,17 New York, USA</td>
<td>2011</td>
<td>Pediatr Crit Care Med</td>
<td>Single-ventricle physiology post cavopulmonary connection</td>
<td>60</td>
<td>2.5</td>
<td>9 vs 13</td>
<td>48 hours</td>
<td>Arterial lactate level</td>
</tr>
<tr>
<td>Cooper,10 Washington DC, USA</td>
<td>2011</td>
<td>Am J Cardiol</td>
<td>Acute myocardial infarct</td>
<td>45</td>
<td>73</td>
<td>8 vs 10.6</td>
<td>In-hospital</td>
<td>mortality</td>
</tr>
<tr>
<td>Carson,13 Canada</td>
<td>2011</td>
<td>N Engl J Med and Lancet</td>
<td>Hip fracture patients with CVD FOCUS study</td>
<td>2,016</td>
<td>82</td>
<td>8 vs 10</td>
<td>30 days</td>
<td>Mortality</td>
</tr>
<tr>
<td>Shehata,11 Canada</td>
<td>2012</td>
<td>Transfusion</td>
<td>Cardiac surgery</td>
<td>50</td>
<td>68</td>
<td>7.5 vs 10</td>
<td>In-hospital</td>
<td></td>
</tr>
<tr>
<td>Nielsen,14 Denmark</td>
<td>2012</td>
<td>Transfus Med</td>
<td>Major spinal surgery</td>
<td>48</td>
<td>61</td>
<td>7.3 vs 8.9</td>
<td>60–360 minutes</td>
<td></td>
</tr>
<tr>
<td>Villanueva,15 Spain</td>
<td>2013</td>
<td>N Engl J Med</td>
<td>Acute upper gastrointestinal bleeding</td>
<td>921</td>
<td>65</td>
<td>7 vs 9</td>
<td>45 days</td>
<td></td>
</tr>
<tr>
<td>Walsh,12 UK</td>
<td>2013</td>
<td>Crit Care Med</td>
<td>ICU—critically ill mechanically ventilated</td>
<td>100</td>
<td>67</td>
<td>7 vs 9</td>
<td>30 days</td>
<td></td>
</tr>
</tbody>
</table>

(Continued)
Gregersen and Damsgaard

Received RBC transfusion if signs of anemia were present due to chest pain, congestive heart failure, unexpected tachycardia, hypotension unresponsive to fluid replacement, or in patients with clinically diagnosed dementia because they might not be able to report their symptoms. These patients may have been the frailest with the highest risk of death neutralizing a possible difference. This was also the case in the study of hip fracture patients by Parker.4 They found no difference in the outcomes related to transfusion.4

In Denmark, two RCTs have been conducted in hip fracture patients. Foss et al16 recruited nonfrail older patients and concluded that a restrictive threshold policy should be used with caution. Neither did Gregersen et al32 find any differences in the clinical outcomes (TRIFE study). However, in a subgroup analysis of the outcome for nursing home residents (mean age 87 years) a liberal strategy demonstrated an improved survival within 90 days after surgery.32 The liberal strategy also reduced the number of patients in a state of delirium 10 days after hip fracture repair,33 25% of the participants died within a year. In the survivors, ADL recovery was improved in the liberal transfusion group.5

### Table 1 (Continued)

<table>
<thead>
<tr>
<th>First author, country</th>
<th>Year</th>
<th>Journal</th>
<th>Clinical setting/name of study (if any)</th>
<th>Number of patients</th>
<th>Mean age, years</th>
<th>Hemoglobin transfusion thresholds (restrictive vs liberal), g/dL</th>
<th>Follow-up</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carson, New Jersey, USA</td>
<td>2013</td>
<td>Am Heart J</td>
<td>Acute coronary syndrome or stable angina undergoing cardiac catheterization</td>
<td>110</td>
<td>71</td>
<td>8 vs 10</td>
<td>30 days 6 months</td>
<td>Mortality**, Cardiac events</td>
</tr>
<tr>
<td>Parker, UK</td>
<td>2013</td>
<td>Injury</td>
<td>Hip fracture surgery</td>
<td>200</td>
<td>84</td>
<td>Symptoms of anemia vs 10 g/dL (2 units)</td>
<td>30 days 90 days 120 days 1 year 3 days 1 week 3 weeks 6 weeks</td>
<td>Mortality Physical ability</td>
</tr>
<tr>
<td>Prick, Holland</td>
<td>2014</td>
<td>BJOG</td>
<td>Severe postpartum hemorrhage</td>
<td>521</td>
<td>31</td>
<td>No RBC vs 8.9</td>
<td></td>
<td>Fatigue*, Quality of life</td>
</tr>
<tr>
<td>Robertson, Texas, USA</td>
<td>2014</td>
<td>JAMA</td>
<td>Traumatic brain injury</td>
<td>200</td>
<td>30</td>
<td>7 vs 10</td>
<td>6 months</td>
<td>Mortality Infections ARDS Thromboembolic events**, Physical ability**</td>
</tr>
<tr>
<td>Nielsen, Denmark</td>
<td>2014</td>
<td>BMC Anesthesiol N Engl J Med</td>
<td>Elective hip revision surgery</td>
<td>66</td>
<td>70</td>
<td>7.3 vs 8.9</td>
<td>30 days</td>
<td></td>
</tr>
<tr>
<td>Holst, Denmark, Norway, Sweden, Finland</td>
<td>2014</td>
<td>Anesthesiol N Engl J Med</td>
<td>Septic shock in the ICU TRISS study</td>
<td>998</td>
<td>67</td>
<td>7 vs 9</td>
<td>90 days</td>
<td>Mortality Ischemic events Serious adverse event</td>
</tr>
<tr>
<td>de Almeida, Brazil</td>
<td>2015</td>
<td>Anesthesiology</td>
<td>Surgery for abdominal cancer</td>
<td>198</td>
<td>64</td>
<td>7 vs 9</td>
<td>30 days 60 days</td>
<td>Mortality**, Infections**, Physical ability**, Mortality QoL Bleeding Infections Mortality Adverse event QoL</td>
</tr>
<tr>
<td>Gregersen, Denmark</td>
<td>2015</td>
<td>Acta Orthop and J Am Med Dir Assoc</td>
<td>Hip fracture surgery TRIFE study</td>
<td>284</td>
<td>86</td>
<td>9.7 vs 11.3</td>
<td>30 days 90 days 1 year 1 week 3 weeks 6 weeks</td>
<td></td>
</tr>
<tr>
<td>Jairath, UK</td>
<td>2015</td>
<td>Lancet</td>
<td>Acute upper gastrointestinal bleeding TRIGGER study</td>
<td>936</td>
<td>59</td>
<td>8 vs 10</td>
<td>In-hospital 28 days</td>
<td></td>
</tr>
<tr>
<td>Murphy, UK</td>
<td>2015</td>
<td>N Engl J Med</td>
<td>Cardiac surgery</td>
<td>2,003</td>
<td>70</td>
<td>7.5 vs 9</td>
<td>90 days</td>
<td>Serious infections Infections Ischemic events Mortality** Health costs</td>
</tr>
</tbody>
</table>

**Notes:** *Statistical significant difference in favor of the restrictive strategy. **Statistical significant difference in favor of the liberal strategy.

**Abbreviations:** ICU, intensive care unit; MODS, multiple-organ-dysfunction syndrome; LOS, length of hospital stay; QoL, quality of life; ARDS, adult respiratory distress syndrome; CVD, cardiovascular disease; RBC, red blood cell.
Comparison of liberal and restrictive blood transfusion policies

Abdominal cancer

In 198 patients subjected to major gastrointestinal cancer surgery, de Almeida et al.20 found that a liberal transfusion strategy provides better outcomes than a restrictive as low as 7 g/dL. Survival within 30 and 60 days was improved and the patients had less abdominal infections.20 The number of cardiovascular complications was also lower in the liberal group (5.2% vs 13.9%). The mean age of the patients was 64 years. Both elective and emergency surgical patients were included. The authors consider that cancer patients receiving restrictive transfusion may be more susceptible to altered oxygen delivery in the postoperative period due to impaired microvascular flow. No other trials are completed in only the oncologic patients.

Table 2 Systematic reviews and meta-analyses published in English language (January 1996–April 2016) in chronological order

<table>
<thead>
<tr>
<th>First author, country</th>
<th>Year</th>
<th>Journal</th>
<th>Clinical setting</th>
<th>Number of patients</th>
<th>Number of RCTs</th>
<th>Restrictive Hb thresholds, g/dL</th>
<th>Liberal Hb thresholds, g/dL</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carson,21 New Jersey, USA</td>
<td>2012</td>
<td>Cochrane Database Syst Rev</td>
<td>Critical illness, trauma, and surgery</td>
<td>6,264</td>
<td>19</td>
<td>7–9</td>
<td>9–10</td>
<td>In hospital mortality*, 30- and 60-day mortality, Physical ability, Adverse events</td>
</tr>
<tr>
<td>Wang,22 The People’s Republic of China</td>
<td>2013</td>
<td>World J Gastroenterol</td>
<td>Gastrointestinal bleeding</td>
<td>982</td>
<td>4</td>
<td>7–8, plasma protein, or hematocrit 21%</td>
<td>9, ≥2 units, or hematocrit 28%</td>
<td>Mortality*, LOS*, Rebleeding</td>
</tr>
<tr>
<td>Salpeter,23 New York, USA</td>
<td>2014</td>
<td>Am J Med</td>
<td>Critical illness and gastrointestinal bleeding</td>
<td>2,364</td>
<td>3</td>
<td>7</td>
<td>9–10</td>
<td>Cardiac events*, Rebleeding*, Mortality* Infections, Healthcare-associated infections, Serious infections*</td>
</tr>
<tr>
<td>Rohde,24 Michigan, USA</td>
<td>2014</td>
<td>JAMA</td>
<td>Critical illness, trauma, and surgery</td>
<td>7,593</td>
<td>18</td>
<td>6.4–9.7</td>
<td>9–11.3</td>
<td></td>
</tr>
<tr>
<td>Holst,27 Denmark</td>
<td>2015</td>
<td>BMJ</td>
<td>Critical illness, trauma, and surgery</td>
<td>9,813</td>
<td>31</td>
<td>7–9</td>
<td>9–10</td>
<td>Mortality, Myocardial infarction, Infections*, Mortality Functional recovery, Morbidity</td>
</tr>
<tr>
<td>Fominskiy,26 Italy</td>
<td>2015</td>
<td>Br J Anaesth</td>
<td>Perioperative setting, Critically ill</td>
<td>7,552</td>
<td>17</td>
<td>7–9.7</td>
<td>8.9–11.3</td>
<td>All-cause mortality**, All-cause mortality</td>
</tr>
<tr>
<td>Docherty,28 UK</td>
<td>2016</td>
<td>BMJ</td>
<td>Cardiovascular disease in orthopedics, gastrointestinal bleeding, critical care, and cardiac surgery</td>
<td>3,033</td>
<td>11</td>
<td>7–9.7</td>
<td>9–11.3</td>
<td>Mortality, Acute coronary syndrome**</td>
</tr>
</tbody>
</table>

Notes: *Statistical significant difference in favor of the restrictive strategy. ††Statistical significant difference in favor of the liberal strategy.

Abbreviations: RCTs, randomized controlled trials; LOS, length of hospital stay; Hb, hemoglobin.
**Traumatic brain injury and spinal surgery**

Patients with severe traumatic brain injury commonly develop anemia. RBC transfusions result in improved brain tissue oxygen without appreciable effect on cerebral metabolism. This transfusion practice was expected to reduce the neurological injuries. However, in an RCT from 2014, a liberal transfusion threshold of 10 g/dL was associated with a higher incidence of thromboembolic events in 200 patients with traumatic brain injury. Nielsen et al found that during major spinal surgery a higher threshold was not associated with a higher subcutaneous oxygen tension.

**Critically ill patients**

In patients admitted to an intensive care unit (eg, TRICC study, TRIPICU study, and TRISS study), a restrictive strategy is at least as effective as a liberal. In the TRICC study, the critically ill patient had a mean age of 58 years. The mortality rate during hospitalization was lower in the restrictive transfusion group. A restrictive RBC transfusion strategy generally appears to be safe in critically ill patients with CVDs, though there may be an exception in patients with severe ischemic heart disease. In the TRIPICU study, the population was children with a mean age of 3 years and a mean intervention period of 2.3 days. Nor in that study a significant difference was found in mortality rates or infectious complication rates. A multicenter study from the Scandinavian countries (TRISS study), in which 998 patients were enrolled, the restrictive transfusion policy did not harm the septic shock patients. The number of days alive, ischemic events, and severe adverse reactions to blood were similar in the two groups. In the TRISS study, all participants who fulfilled the inclusion criteria had septic shock before the randomization. In a pilot study of 100 critically ill patients hospitalized in an intensive care unit, Walsh et al found a nonsignificant trend toward a lower 180-day mortality rate connected with a restrictive policy.

**Upper gastrointestinal bleeding**

A restrictive strategy reduced the 45-day mortality rate in 921 cases of acute upper gastrointestinal bleeding in patients aged 18 years or older. Deaths due to initial unsuccessfully controlled bleeding were not equally distributed between the transfusion groups: three patients (0.7%) died in the restrictive strategy group vs 14 patients (3.1%) in the liberal strategy group \((P=0.01)\). Simply by equalizing the patient number in this category, death and transfusion policy were no longer related. The ongoing bleeding may have contributed to the increased mortality. Jairath et al examined RBC transfusion strategies in 936 patients in the TRIGGER study. They found no difference in clinical outcomes. In a meta-analysis concerning only patients with upper gastrointestinal bleeding (4 RCTs), the mortality was lower in patients treated according to a restrictive transfusion strategy. Also, the patients had a shorter LOS in the restrictive group based on two of the four trials. Three of the trials weighted only for 9.5% of the result, whereas the RCT of Villanueva et al weighted for the most. However, in older people with acute upper gastrointestinal bleeding, it is not clear if a restrictive approach to transfusion is safe.

**Severe postpartum hemorrhage**

In a multicenter study in 521 women with sustained postpartum hemorrhage, an Hb threshold of 8.9 g/dL was compared with no transfusion or transfusion only if severe symptom of anemia appeared within 12 hours after delivery. The authors recorded physical fatigue and found that women randomized to nonintervention showed a higher mean fatigue score. The clinical relevance of this difference seemed negligible.

**Cardiopulmonary surgery**

A lower threshold does not adversely affect patient outcome in cardiac surgery. However, Murphy et al conducted a multicenter RCT in 17 cardiac surgery centers in the UK. It included 2,003 participants. Three months after randomization more deaths were found in the restrictive threshold group than in the liberal group (4.2% vs 2.6%). There was no difference with regard to serious infections, ischemic events, or QoL. Carson et al found that in patients with acute coronary syndrome or stable angina undergoing cardiac catheterization subjected to the restrictive strategy had more than twice the rate of death, myocardial infarction, or revascularization in the first 30 days of care compared to patients following a more liberal strategy. In the TRACS study of 512 adults undergoing cardiopulmonary bypass surgery, there was no difference in mortality and infection risk with regard to the RBC transfusion policy. However, in patients aged 60 years or older, cardiogenic shock was more frequent in the restrictive transfusion group. In the patients <60 years no such difference was found. In infants and children with elective partial or total cavopulmonary connection, Cholette et al found no benefit from a liberal transfusion strategy with an Hb threshold of 13 g/dL compared to a restrictive of 9 g/dL within 48 hours after surgery.
CVD

A recent meta-analysis suggested that for 3,033 patients with CVD (11 RCTs), the restrictive transfusion thresholds were associated with higher rates of acute coronary syndrome than the more liberal transfusion thresholds. The authors found a tendency toward lower 30-day mortality with a liberal policy. The authors concluded that a high-quality RCT has to be undertaken in CVD patients due to the diversity between trial populations and the varied thresholds between trials.23

Various disease groups

In a Cochrane review from 2012 including 6,264 patients with various diseases and settings (19 RCTs), Carson et al21 showed higher in-hospital mortality in patients receiving liberal transfusions compared to those following a restrictive strategy. No difference was found in 30- or 60-day mortality and neither in infections nor in physical abilities.21 Holst et al22 carried out a similar study and added the RCT data published in the last 3 years to examine whether the evidence of the previous meta-analyses still supported a restrictive strategy without harming the patient. The analysis now including 9,813 patients (31 RCTs) confirmed the findings of Carson et al.21

Rohde et al24 found that serious infections were related to a liberal policy in pooled data from 7,593 patients (18 RCTs). However, health care-associated infections such as pneumonia, mediastinitis, wound infection, and sepsis were not linked to a liberal strategy. The definitions of serious infections and health care-associated infections were not clear when comparing data from the included studies.24

In 7,552 perioperative patients (17 RCTs), Fominskiy et al26 found that a liberal blood transfusion strategy improved survival in acute anemia. The perioperative settings were hip fracture surgery, cardiac surgery, abdominal cancer surgery, elective hip and knee replacement, spinal fusion with instrumentation, and postpartum hemorrhage. In 2014, Salpeter et al23 studied 2,364 patients (3 RCTs) and pooled the results from patients with critical illness with the results from the bleeding patients and found that a restrictive strategy (Hb threshold 7 g/dL) reduced cardiac events, rebleeding, and 30-day mortality. No difference in infection risk was found in the disparate populations.23 The motives for combining medical patients, gastrointestinal bleeding patients, and adults and children in the meta-analysis are not clear.

RBC transfusion thresholds

Most trials have used a “restrictive” Hb threshold of 7 or 8 g/dL, a few trials between 9.0 and 9.7 g/dL. The mostly used “liberal” Hb threshold was 10 g/dL (Table 1). Four trials used a liberal Hb threshold of 9 g/dL (similar to the restrictive threshold in other trials). One RCT used a threshold of 11.3 g/dL,32 another 12 g/dL,9 and a third 13 g/dL.17 A challenge of the trials was protocol adherence. In some studies, eg, FOCUS, TRICC, TRACS, and TRISS, the patients in the restrictive RBC transfusion group were transfused when Hb concentrations were higher than those of the protocol thresholds. Likewise, there was a lower adherence to the liberal policy. This may have been due to the clinicians’ knowledge of the present guidelines advocating a restrictive transfusion policy. Per-protocol analyses are unfortunately rarely presented in the trials.

Some studies used leukocyte-reduced blood, others nonreduced. Also, the varying lengths of protocol implementation, an insignificant interval between the Hb thresholds in the two transfusion groups, different liberal and restrictive thresholds across the trials, and various disease and age groups must all influence the general evidence of the meta-analyses.

Should age influence transfusion strategies?

A patient’s ability to tolerate anemia depends on how quickly compensatory mechanisms develop.47 In the pediatric age group, two trials have been conducted in children with single-ventricle physiology postcavopulmonary connection and in critically ill children. No outcome improvements were found by a higher Hb concentration.17,37 However, in older age the compensatory functions are reduced. Several studies have demonstrated the association between chronic anemia and mortality in critical illness.48 Low Hb concentrations represent underlying diseases and are related to the severity of the disease, immune function, and comorbidity. Old age is highly correlated with lower immune function, less physiologic reserves as well as more severe cardiac diseases. Frailty prevalence increases with age from 3.9% in the age 65–74 years to 25% in the age group >85 years.49 Anemia in frail older persons is related to 90-day mortality.50 Older hospitalized patients are at high risk to become delirious, and the risk of delirium is associated with advanced age and an Hb <10 g/dL.51 Acute anemia (Hb <10 g/dL) is associated with complications such as pneumonia and myocardial infarction.52 In patients who undergo surgery, the level of frailty is related to adverse outcomes such as postoperative complications, delayed recovery, morbidity, and mortality.53 Overall, anemia in older people has been well documented as being an independent risk factor for increased mortality, reduced physical performance, hospital readmissions, falls, and impaired cognition.54,55 It is reasonable
to make the assumption that a liberal transfusion policy may be lifesaving in the frail and oldest patients.

Previous RCTs have been conducted in children or adults aged 16/18 years or older. Only the TRACS study carried out analyses in young and old age groups separately. The outcomes after cardiopulmonary bypass surgery were improved by a liberal transfusion policy in patients aged 60 years or older. This difference was not present in younger patients. Only six of the 30 RCTs used age inclusion criteria ≥18 years: ≥50 years in hip fracture patients, ≥55 years in critically ill patients and elective surgery, and ≥65 years in hip fracture patients, and ≥70 years in elective hip- and knee replacement patients (a high-risk subgroup). For the FOCUS study, Carson et al selected high-risk patients defined by CVD. Only Gregersen et al examined the RBC transfusion policies in the frail older patients. The frail older patients, defined by a nursing home residency, with acute anemia did benefit from a more liberal transfusion policy.

Conclusion

Current studies still support that restrictive Hb thresholds are applicable to all care environments with the exception of important subgroups of patients with CVD and perioperative patients with acute anemia, who require a more liberal transfusion approach. The restrictive policy is adverse to the assumption that oxygen delivery to the vital organs is helpful to nonsurgical patients recovering from acute illness. In many countries, there is a need to reduce transfusion overuse. A reduction in the number of RBC units and of patients transfused is possible when applying a restrictive policy.

Guidelines for transfusion policy are important in the clinical settings. Even though the guidelines are based upon trials rated at the highest evidence level, they may not have been performed congruently. As seen in several of the trials, the thresholds diverged from the protocol due to signs of anemia. In the clinic (as in research), it is similarly crucial to have the opportunity to deviate from the guidelines if signs of anemia are present and to tailor the transfusion strategy to each patient.

Future implications

Trials on transfusion policies are still ongoing and may indicate that the guidelines have not yet convinced the clinicians and researchers that a restrictive policy is the right choice. This may be due to the limitations of the previous experimental studies, and the knowledge that anemia in the immediate postoperative period can impede early recovery and prolong hospital stay. According to “ClinicalTrials.gov”, the settings in progress are acute myocardial infarction, cardiac surgery, aneurysmal subarachnoid hemorrhage, acute leukemia, and vascular surgery. All studies are conducted in adults aged 18 years or older. To the authors’ knowledge, no ongoing studies on RBC transfusion thresholds are focusing on the older and frail patients. It is a normal procedure to perform trials in pediatric setting or in adults in different disease groups. However, the influence of old age and frailty status in a geriatric setting should be studied in future RCTs or meta-analyses with regard to RBC transfusion strategies.

Disclosure

The authors report no conflicts of interest in this work.

References

Comparison of liberal and restrictive blood transfusion policies
