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Abstract: While a successful HIV vaccine will likely take several more years to become a 

reality, many anti-retroviral (ARV) drugs are currently available to treat HIV infection, and their 

effi cacious use has improved the quality of life and life expectancy of millions of HIV-infected 

individuals. A recent addition to these ARVs is a new class of drug that targets the HIV entry 

process by interfering with the action of the CCR5 coreceptor. The fi rst licensed member of this 

class is a drug called maraviroc, which is also the fi rst ARV that targets a cellular rather than 

a viral protein. Several other CCR5 antagonists with varied mechanisms of action are being 

developed. Key issues with the use of these drugs include determining their potential for use in 

treatment-naïve versus treatment-experienced patients, the development of sensitive coreceptor 

phenotyping assays to determine patient eligibility, and fi nally monitoring the emergence of 

resistant viruses and their mechanisms of resistance. This review summarizes the preclinical and 

clinical development of maraviroc as well as studies of HIV resistance to this drug both in vitro 

and in patients. In addition, a range of diverse CCR5 antagonists currently under development, 

are also discussed.
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Introduction
Twenty-fi ve years after its discovery, the human immunodefi ciency virus (HIV) and its 

ever-burgeoning prevalence continue to represent a growing worldwide public health 

problem. According to recent estimates, over 33 million people are living with HIV 

all over the world (WHO/UNAIDS 2007). In addition, acquired immunodefi ciency 

syndrome (AIDS), the disease caused by HIV, is responsible for over 2 million deaths 

per annum.

The use of drug cocktails combining multiple compounds that comprise highly 

active anti-retroviral therapy (HAART) has signifi cantly improved the quality-of-life 

and life expectancy of millions of HIV-infected individuals. The main components 

of HAART in the past couple decades have been inhibitors of the viral protease and 

reverse-transcriptase enzymes. However, in most patients HIV eventually develops 

resistance to all these drugs. The propensity of the virus for acquiring resistance to any 

given antiviral agent it is faced with, led to the advent of the combination therapies which 

constitute HAART, with the paradigm of using three anti-retrovirals in combination, 

being the current standard of care.

In more recent years, in an effort to target other steps in the virus lifecycle and to 

develop viable treatments for HAART-resistant HIV patients, entry inhibitors have 

emerged as a new target for anti-retroviral (ARV) therapy. HIV mediates its entry 

into target cells using the concerted action of the viral Env protein with a cell surface 

receptor CD4 and a coreceptor (usually chemokine receptors CCR5 or CXCR4). 

Viruses that use the CCR5 or the CXCR4 coreceptors alone are called R5 or X4 viruses 

respectively, while those that can use both are referred to as R5X4 viruses. The Env 

protein exists as a heterotrimer and is comprised of surface gp120 and transmembrane 

gp41 subunits. Receptor binding is mediated by gp120 and fusion by gp41. The entry 
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process begins with the engagement of the Env trimer on the 

surface of virions by CD4 on the target cell surface. This is 

followed by conformational changes that allow coreceptor 

binding and insertion of the fusion peptide into the target 

cell membrane. Finally the gp41 protein undergoes dramatic 

conformational changes, which serve to bring the viral and 

cellular membranes in close proximity and facilitate mem-

brane fusion.

Entry inhibitors can target the viral entry process, 

described above, at several steps. These include receptor 

binding, coreceptor engagement, and membrane fusion. 

Amongst these candidates the drugs that are farthest along 

in clinical development include the fusion inhibitors and the 

CCR5 coreceptor inhibitors.

Enfuvirtide (Fuzeon®/T-20) is a peptide fusion inhibitor 

that targets a conformational intermediate of the fusion 

process. While enfuvirtide was the only entry inhibitor on 

the market until late 2007, the use of this drug has been 

complicated by its need for twice daily injection, leading to 

some signifi cant problems with regards to compliance and 

injection site reactions. Owing to these issues, the use of enfu-

virtide has been restricted to treatment-experienced patients 

who are failing HAART, and are on salvage therapy.

CCR5 antagonists are another new class of entry inhibitors 

under development. These inhibitors block the Env: CCR5 

interaction leading to their antiviral effects. Genetic evidence 

provided strong biological rationale for targeting CCR5 in 

the development of new entry inhibitors. A mutation in the 

CCR5 open reading frame results in the premature trunca-

tion and a consequent 32-bp deletion in the protein (CCR5 

∆32). Although this mutation is relatively common in the 

Caucasian population, with an allele frequency of 15%–20%, 

it was found to be signifi cantly underrepresented in the HIV-1 

infected groups (Dean et al 1996; Samson et al 1996), and 

individuals homozygous for the mutation are only rarely 

infected with HIV (Biti et al 1997; O’Brien et al 1997; 

Theodorou et al 1997; Michael et al 1998; Gorry et al 2002). 

In fact, in a group of people at high risk, two individuals that 

remained uninfected despite repeated exposure were found 

to be homozygous for the same ∆ccr5 mutation (Liu et al 

1996). Lymphocytes from these individuals are resistant 

in vitro to R5-using strains but permissive for X4 strains 

of HIV-1 (Paxton et al 1996). In addition, HIV-1 infected 

individuals who are heterozygous for the ∆ccr5 mutation, 

have around a 2-year delay in their progression to AIDS 

compared with wildtype controls (Dean et al 1996; Huang 

et al 1996; Michael et al 1997; Zimmerman et al 1997). 

Moreover, both heterozygous as well as homozygous carriers 

of the CCR5 ∆32 allele were apparently immunocompetent 

with no obvious abnormalities, suggesting that the absence 

of CCR5 function might not be harmful and that a CCR5 

antagonist should be well tolerated. It should be noted that 

more recently, an association between lack of CCR5 and an 

increased susceptibility to West Nile Virus has been reported 

(Glass et al 2005, 2006), although the mechanistic basis of 

this observation is not understood.

Most recently in October 2007, maraviroc, the fi rst-

in-class CCR5 antagonist, was licensed by the FDA for use 

in treatment-experienced patients. This review summarizes 

the recent literature on the use of maraviroc in the treatment 

of HIV infection as well as the future of CCR5 inhibitors.

Importance of coreceptor usage 
analysis
Although HIV can use one of two coreceptors CCR5 or 

CXCR4 to mediate entry into target cells, upon transmission 

the majority of newly infected individuals harbor only 

R5-using viruses. In fact 80% of ART therapy-naïve patients 

have only R5-viruses, while 20% have R5X4 and very few 

(�1%) have X4 viruses (Brumme et al 2005; Moyle et al 

2005). Due to confl icting results from different studies, it 

remains unclear if treated patients (with detectable viremia) 

maintain similar rates of R5X4 viral prevalence as treatment-

naïve patients (Moyle et al 2005; Hunt et al 2006). However, 

in highly treatment-experienced patients the prevalence of 

R5X4 viruses has been shown to approach that of R5 viruses 

in at least two studies (Melby et al 2006; Wilkin et al 2007). 

The emergence of X4 using viruses, which usually occurs 

later in disease, has historically been associated with lowered 

CD4 cell counts and more rapid progression to disease (Koot 

et al 1993, 1999; Shankarappa et al 1999). However, it is not 

clear whether the emergence of X4 using strains is a cause 

or an effect of the severe immunodefi ciency associated with 

disease progression to AIDS.

It has been anticipated that the use of CCR5 antagonists 

can lead to the emergence of CXCR4-using viruses. While 

de novo coreceptor switching is observed less commonly, 

the selection of pre-existing X4 viruses in association with 

the emergence of resistance to CCR5 antagonists has been 

reported in several studies. This highlights the importance 

of accurate and ultrasensitive detection of minority X4-using 

viruses in a patient’s viral quasispecies while determining 

eligibility for CCR5 antagonist therapy.

Interactions between the HIV Env protein and CD4 

lead to the exposure of the coreceptor-binding site, which 

includes the third variable loop (V3) of gp120 as well as the 
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bridging sheet, a discontinuous epitope that is formed only 

after CD4 engagement. The bridging sheet interacts with the 

N-terminus of CCR5 or CXCR4. The V3 loop, on the other 

hand, mediates interactions with the second extracellular 

loop (ECL2) of CCR5 or CXCR4 and is the principle deter-

minant of coreceptor specifi city. In fact specifi c mutations 

affecting the charge in the V3 region have been shown to 

correlate with coreceptor selectivity. For instance, X4 using 

viruses usually have higher net positive V3 charge than R5 

viruses, which is consistent with the fact that CXCR4 has a 

lower net positive charge than CCR5. Therefore in principle, 

env genotypic information should be able to determine the 

coreceptor usage phenotype.

Several methods have been developed for coreceptor usage 

prediction based on V3 region sequence. The simplest of these 

approaches is the 11/25 rule (De Jong et al 1992; Fouchier et al 

1992; Korber et al 1993; Fouchier et al 1995), which predicts 

that a virus is X4 using if there are basic amino acids present 

at positions 11 and 25 of the V3 loop, and R5 using if no basic 

amino acids present at these positions. While this rule is quite 

accurate for R5 viruses, it tends to misclassify many X4 using 

viruses (Jensen et al 2003). Other more sophisticated methods 

for coreceptor usage prediction, including Webcat, WebPSSM, 

and geno2-pheno[coreceptor], have recently been reviewed in 

detail elsewhere (Sierra et al 2007). However, while improve-

ments are being made in this area, the bottomline is that 

none of these methods have a high enough sensitivity and/or 

specifi city to accurately and consistently predict the tropism 

of a given Env from its V3 genotype.

Due to the lack of better genotypic predictors, at the 

moment phenotypic assays based on cell culture experiments, 

despite their higher cost and slower turnaround time, appear 

to be the most reliable predictors of coreceptor tropism. 

Several such approaches have been developed. These 

include the Trofi le assay (Monogram Biosciences), Tropism 

Recombinant Test (VIRalliance), HIV Phenoscript assay 

(BioAlliance Pharma) and deCIPhR (inPheno Molecular 

Diagnostics) among others. However, the most popular one 

in use at least in the US appears to be the Trofi le assay and 

recently a more sensitive version of this assay called the 

enhanced Trofi le assay has been developed and is being 

used for detection of X4-using viruses at low levels (Reeves 

et al 2007).

Maraviroc: preclinical development
Developed by Pfi zer Global Research and Development, 

maraviroc is the first CCR5 antagonist approved by 

the FDA for use in treatment-experienced patients 

harboring only R5 viruses. The drug was identifi ed in a 

high-throughput screen designed to select compounds that 

prevented the binding of radiolabeled macrophage infl am-

matory factor (MIP)-1β, an endogenous chemokine, to the 

CCR5 receptor. The details of the discovery of maraviroc 

have been reviewed elsewhere (Wood and Armour 2005; 

Meanwell and Kadow 2007). Briefl y, lead optimization 

efforts focused on improving the binding effi ciency of the 

screening hits and reducing their persistent type 1 CYP2D6 

inhibition as well as the potent hERG cardiac potassium 

channel inhibition liabilities. Eventually, after a lengthy 

optimization process that entailed the synthesis of almost 

1000 compounds, maraviroc was developed. Maraviroc is 

a potent inhibitor of MIP-1β binding to the CCR5 receptor 

(IC
50

 = 2 nM) and a potent antiviral agent (EC
90

 = 1 nM 

for inhibition of HIV
BAL

 replication in PM1 cells), while 

its inhibition of the hERG potassium channel is modest 

(Wood and Armour 2005).

Similar to other small molecular CCR5 inhibitors 

(discussed below), the mechanism of action of maraviroc 

is one of allosteric modification. Insertion of these small 

molecules into a cavity located within the transmembrane 

helices disrupts the geometry of a multi-point interaction 

between CCR5 and HIV-1 gp120 (Dragic et al 2000; 

Tsamis et al 2003; Watson et al 2005; Seibert et al 2006). 

This multi-point interaction is formed by binding of the 

second extracellular loop (ECL-2) to elements of the 

gp120 V3 region and the tyrosine-sulfated N-terminus 

(Tyr-Nt) of CCR5 binding the more conserved bridging 

sheet that forms between the C1, C2, and C4 domains 

upon CD4 binding (Cormier and Dragic 2002; Huang 

et al 2007).

In vitro resistance to maraviroc
Antiretroviral drug resistance is a major hurdle in the success 

of long-term HIV therapy. HIV has a propensity for acquiring 

mutations and developing resistance to antiviral drugs owing to 

its high replication rate coupled with the low fi delity and lack 

of RT proof-reading resulting in a high error rate. Resistance to 

entry inhibitors has been a particularly diffi cult problem since 

these drugs target the env gene, which is the most variable of 

all the HIV genes. Specifi cally, this diversity in env can lead 

to variable baseline susceptibilities and the pre-existence of 

resistance mutations in patients naïve to these drugs.

For CCR5 inhibitors such as maraviroc, several possible 

mechanisms of resistance can be expected (Figure 1). 

A coreceptor-switching event could occur with R5-using 

viruses switching to using CXCR4 or an alternative 
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coreceptor, or the emergence of pre-existing X4 viruses. 

Alternatively, viruses could acquire the ability to bind and 

enter using a drug-bound coreceptor. Resistance to CCR5 

inhibitors could also result from viruses that bind coreceptor 

with higher affi nity (and can therefore compete out bound 

drug), or are able to enter by scavenging low levels of core-

ceptor either due to higher affi nity or a greater proclivity for 

Env protein triggering.

An in vitro study has shown that maraviroc does not lead to 

a de novo switch to X4-using viruses during serial passaging of 

laboratory-adapted and three of the six CCR5-tropic primary 

isolates studied (Westby et al 2007). However, in the case of 

one virus (SF162) the emergence of pre-existing X4-using 

viruses was reported in this study. For two of the passaged 

primary isolates, maraviroc resistance arose with the mutant 

Envs acquiring an ability to use a drug-bound form of  CCR5. 

This leads to a characteristic “plateau” of maximal inhibition 

in a dose-response curve; in other words, beyond a certain 

maraviroc concentration, increasing drug levels did not inhibit 

virus infection. These plateaus in dose-response have been 

observed for viruses resistant to other coreceptor antagonists, 

suggesting that the recognition of an altered conformation 

of the coreceptor is a common mechanism for escape from 

non-competitive inhibitors of entry (Figure 2B). This is in 

contrast to a competitive mode of  resistance that typically leads 

to clear IC
50

 shifts in dose-response curves (Figure 2A).

Genotypic changes in resistant viruses are a common 

hallmark of all classes of anti-retrovirals. Typically mutations 

accumulate in a step-wise manner in the gene targeted by a 

drug and either confer resistance or compensate for impaired 

activity resulting from resistance mutations at the drug 

target site. For several antiviral agents, the viral genotype 

is a good measure of phenotype, or the sensitivity of a virus 

to any given drug. Charts containing mutations that are 

known to impart resistance to particular drugs are available 

to physicians, who can create a tailored regimen for each 

patient based on their viral genotype. In this way molecular 

information can be used to guide clinical decisions.

In the case of coreceptor antagonists, the V3 loop of gp120 

is the expected site for resistance mutations since this region 

of the protein is important in mediating the specifi city of Env-

coreceptor interactions. However, while genotypic changes are 

found in the V3 region of some coreceptor inhibitor-resistant 

viruses, in other cases mutations are also observed in other 

Scavenge unbound 
coreceptors more coreceptor-bound

drug

Use drug-bound
coreceptor

De novo switch
to using CXCR4

OR
Emergence of 
pre-existing
CXCR4 virus 

Switch to using 
alternative coreceptors
(CCR2, CCR8 etc.)

CCR5-using virus

1.
2. 4.3.

5.

Figure 1 Potential mechanisms of resistance of HIV to CCR5 antagonists. HIV can become resistant to CCR5 inhibitors in a number of ways.  The virus can adapt to 
scavenge low levels of unbound coreceptors more effi ciently either by binding coreceptors with higher affi nity or triggering fusion more quickly (1). HIV could also become 
resistant by competing off drug from coreceptors (2) or by using a drug-bound conformation of the coreceptor (3).  Alternatively, the virus could switch to using CXCR4, 
either via a de novo switch or due to emergence of a pre-existing X4 virus (4), or it could switch to using an alternative coreceptor (5).
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regions of both gp120 and gp41 (Trkola et al 2002; Marozsan 

et al 2005; Baba et al 2007; Pugach et al 2007; Westby et al 

2007; Ogert et al 2008). Moreover, for each parental strain 

passaged in the presence of coreceptor inhibitors, different 

resistance-associated changes are observed. Therefore the use 

of viral env genotype as a predictor of resistance to coreceptor 

inhibitors such as maraviroc, might be more complicated 

than for other entry inhibitors such as ENF, where resistance 

mutations usually map to the HR1 region of gp41 which is 

the targeted binding site of ENF.

Maraviroc use in the clinic
Phase 1 and 2 clinical trials
Several phase 1/2a clinical studies have been conducted 

with maraviroc, which all showed signifi cant reductions in 

HIV viral load in HIV-infected individuals (Fätkenheuer 

et al 2005). In a study that reviewed data from 5 multiple-

dose, phase 1/2a double-blinded, placebo-controlled studies 

of maraviroc, the drug appeared to be well-tolerated in 

10-day monotherapy (Fätkenheuer et al 2004). The most 

adverse effects, which included nausea, rhinitis, dizziness, 

and headache, were moderate. Some subjects on maraviroc 

showed elevations in levels of transaminases or occasional 

elevation in creatinine; however, these effects were not 

considered to be severe. Postural hypotension was the only 

dose-limiting complication that occurred at higher rates than 

placebo in patients receiving a maraviroc dose of 600 mg 

or higher. Encouragingly, 10-day monotherapy studies 

with maraviroc resulted in mean viral load reductions of 

1.6 log
10

 copies/mL with a dose of 300 mg once daily and 
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Figure 2 Competitive and non-competitive mechanisms of resistance to coreceptor inhibitors. In a competitive mechanism of resistance (A), HIV acquires the ability to 
bind unoccupied coreceptors more effi ciently, and in this case there is an IC50 shift in a dose response curve relative to a sensitive virus.  Alternatively, in a non-competitive 
mechanism of resistance (B), the virus adapts to enter using a drug-bound conformation of the coreceptor, resulting in a dose-response curve where no further inhibition 
of virus entry occurs beyond a certain drug concentration (“plateau effect”) and no shift in IC50 is observed.
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1.84 log
10

 copies/mL with a dose of 300 mg twice daily. Based 

on these results, phase 2b/3 studies of maraviroc were initiated 

in treatment-experienced and treatment-naïve patients.

Maraviroc use in treatment-experienced 
patients
MOTIVATE-1 and MOTIVATE-2 were randomized, 

double-blind placebo-controlled phase 2b/3 clinical trials 

assessing the safety and effi ciacy of maraviroc in heavily-

treatment experienced patients with triple-class ARV 

resistance. MOTIVATE-1 included 601 participants from 

the US and Canada, whereas MOTIVATE-2 included 475 

subjects from Europe, Australia and USA. In both studies, 

subjects were randomly assigned to receive maraviroc at 

doses of 300 mg once-daily (qd) or twice-daily (bid), or 

else placebo, in combination with an optimized background 

therapy (OBT) regimen.

Results from 24 weeks of follow-up in both studies 

indicated signifi cantly better effi cacy in patients treated with 

maraviroc (qd or bid) + OBT versus placebo + OBT, with 

the virologic response rates being about twice as high in the 

maraviroc arms compared to the placebo arm (Lalezari et al 

2007; Nelson et al 2007). Specifi cally, mean decreases in 

viral load from baseline were 1.95–1.97 log
10

 copies/mL in 

the maraviroc bid arms, 1.82–1.95 log
10

 copies/mL in the 

maraviroc qd arms, and 0.93–1.03 log
10

 copies/mL in the 

placebo arms. 45.6%–48.5% of patients in the maraviroc bid 

arms, and 40.8%–42.2% in the qd arms achieved viral loads 

below 50 copies/mL, compared with 20.9%–24.6% in the 

placebo arms. Similar trends were observed for viral loads 

below 400 copies/mL, indicating that a higher proportion of 

patients achieved viral loads �50 and �400 copies/mL when 

maraviroc was administered twice instead of once daily. CD4 

cell counts increased from baseline by 102–111 and 107–112 

cells/mm3 in the bid and qd arms, respectively, compared 

with 52–64 cells/mm3 in the placebo arms. While fewer 

patients in the maraviroc arms experienced treatment failure 

compared with placebo, more patients in the maraviroc arm 

experienced a shift in HIV coreceptor usage from CCR5-

tropic to CXCR4-tropic or dual/mixed tropism. Adverse 

event profi les were similar in both maraviroc arms and the 

placebo arm. Based on these 24-week results, in August 

2007 the Food and Drug Administration (FDA) approved 

maraviroc for use in treatment-experienced patients.

More recently, data from a 48-week combined analysis 

of the MOTIVATE 1 and 2 studies were presented (Hardy 

et al 2008). As seen in the 24-week analysis, maraviroc pro-

duced greater virological response compared with placebo. 

CD4 cell benefits were greater in the maraviroc arms 

(124 cells/mm3 bid, 116 cells/mm3 qd) compared with the 

placebo arm (61 cells/mm3). The pooled analysis revealed no 

new or unique safety fi ndings beyond the 24-week analysis. 

Discontinuations due to adverse events, serious adverse 

events, and laboratory abnormalities occurred with similar 

frequency in the maraviroc and placebo arms. Therefore, 

treatment with maraviroc appears to provide sustained ARV 

effi cacy and tolerability in treatment-experienced patients.

Maraviroc use in treatment-naïve patients
Maraviroc in Treatment-naïve Patients (MERIT) is an 

ongoing phase 3 clinical trial designed to compare the 

efficacy and safety of maraviroc 300 mg twice daily 

versus efavirenz 600 mg once daily, each administered 

in combination with fixed-dose zidovudine/lamivudine 

(Combivir®). The study is continuing for 96 weeks; however, 

preliminary analysis from 48-week data were presented 

recently (Saag et al 2007; Heera et al 2008). Twice-daily 

maraviroc was non-inferior to efavirenz in patients with 

vRNA �400 copies/mL (70.6% vs 73.1%) but not in the 

�50 copies/mL analysis (65.3% vs 69.3%). In subjects with 

high viral loads (vRNA � 100,000 copies/mL) the differ-

ence was even more pronounced in favor of efavirenz, with 

the proportion of subjects with �50 copies/mL on efavirenz 

66.6% and on maraviroc 59.6%. However, maraviroc had a 

superior safety profi le and a more benign lipid profi le than 

efavirenz and an overall higher CD4 benefi t.

In another study aimed at analyzing the virological 

correlates of treatment failure in the MERIT trial, it was 

found that of 721 patients, 24 (3.3%) changed from R5 

at screening to dual/mixed at baseline (Heera et al 2008). 

The virologic response in this group of patients was lower 

both for the efavirenz as well as maraviroc groups, with the 

proportion of subjects with �50 copies/mL being only 54.6% 

and 7.1%, respectively. Moreover, X4 using viruses were 

detected at failure in 10/32 (31.3%) maraviroc patients with 

R5 virus at baseline. Therefore the conclusions from this 

study were that the presence of X4 using viruses at baseline 

is an important predictor of virologic failure on maraviroc. 

Also, similar to treatment-experienced patients, failure due 

to the emergence of X4-using virus is an important, albeit 

infrequently observed, mechanism associated with maraviroc 

failure.

Future of CCR5 inhibition
Besides maraviroc, several promising strategies for CCR5 

blockade are currently being employed in the development 
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of CCR5 antagonists. These include other small-molecule 

inhibitors, monoclonal antibodies, and genetically derived 

molecules. Modified chemokine derivates (analogs of 

the CCR5 ligand RANTES) are also being developed for 

potential use as microbicides (Kish-Catalone et al 2006; 

Lusso 2006). In general, CCR5 antagonists can be classifi ed 

into three broad categories (Figure 3). First, small molecule 

inhibitors cause allosteric modifi cations in CCR5, leading 

to the induction or stabilization of a conformation of CCR5 

that can not be bound by gp120, thereby preventing virus 

entry. Second, monoclonal antibodies sterically block access 

of virus to CCR5. Finally, genetically derived molecules 

(zinc fi nger nucleases) as well as chemokine analogs induce 

the intracellular trapping of CCR5 to the endoplasmic 

reticulum, preventing CCR5 expression on the surface of 

lymphocytes.

Different types of CCR5 inhibitors have their advan-

tages and disadvantages. For instance, small-molecule 

inhibitors are orally bioavailable, while monoclonal 

antibodies need to be injected intravenously. On the other 

hand, monoclonal antibodies usually have prolonged serum 

half-lives allowing for relatively infrequent administrations, 

whereas orally administered small molecules need more 

frequent dosing to maintain adequate concentrations in the 

face of serum protein binding and active catabolic mecha-

nisms. The therapies discussed below are not intended 

as an exhaustive summary of all CCR5 inhibitors under 

development, but rather a sampling of the same to give the 

reader a fl avor for the diversity of potential future options 

in this drug class.

Allosteric modulation: small molecule 
inhibitors
Vicriviroc
Vicriviroc is the second most advanced agent in the CCR5 

antagonist class of ARV drugs. Forty-eight week data from 

the Phase II VICTOR-E1 study (Vicriviroc in Combination 

Treatment with Optimized ART Regimen in Experienced 

Subjects) that examined the safety and effi cacy of vicriviroc 

(30 mg or 20 mg qd) in combination with an optimized 

ritonavir-boosted, protease inhibitor-containing ART 

regimen, were recently presented (Zingman et al 2008). 

Potent and sustained viral suppression was achieved in the 

vicriviroc arms with 1.77 and 1.75 log
10

 copies/mL mean 

decreases from baseline viral load compared with 0.79 log
10

 

copies/mL in the control group. Signifi cantly more patients 

(56%) who added vicriviroc 30 mg once daily to a new OBT 

had fully suppressed HIV-RNA down to �50 copies/mL 

compared with patients on OBT alone (14%). Also mean 

increases from baseline in CD4 cell counts in the vicri-

viroc groups were +102 and +134 cells/mm3, respectively, 

compared with +65 in the control group. Moreover, there 

were no signifi cant differences in the safety profi le between 

the vicriviroc and control arms with respect to liver toxicity, 

opportunistic infections, malignancies or other conditions. 

Based on the VICTOR-E1 results, 2 large global phase III 

trials (VICTOR-E3 and VICTOR-E4) are currently enrolling 

approximately 375 treatment-experienced subjects (at more 

than 160 sites worldwide) who will receive 30 mg vicriviroc 

qd in combination with OBT or OBT alone.

Second-generation maraviroc
Following the successful licensing of maraviroc, Pfi zer is 

developing a second-generation CCR5 inhibitor. Their lead 

candidate PF-232798 is an imidazopiperidine CCR5 inhibitor 

that was identified in a medicinal chemistry synthetic 

campaign guided by a biological screening cascade after the 

identifi cation of the triazole inhibitor maraviroc (Dorr et al 

2008). PF-232798 is a potent oral CCR5 antagonist with 

a primary and selectivity/safety pharmacological profi le 

similar to maraviroc. It also has broad-spectrum anti-HIV-1 

activity similar to maraviroc. PF-232798 is also active against 

lab-generated maraviroc-resistant CCR5 tropic HIV-1. The 

drug binds to the same pocket as maraviroc within the 

transmembrane region of CCR5, but also shows interactions 

with the ECL2 hinge region. PF-232798 was well tolerated 

in normal volunteers and exhibited more favorable pharma-

cokinetic profi le than maraviroc, highlighting its potential 

for once-daily dosing.

Steric blockade: monoclonal antibodies
Several antibody-based agents targeting the HIV entry 

process are being developed. For example, TNX-355 targets 

CD4, PRO 542 is aimed at gp120, and PRO 140 and HGS004 

bind CCR5.

PRO 140
PRO 140 is a humanized monoclonal antibody that binds 

to CCR5 without altering its structure or normal function; 

it sterically blocks binding of the coreceptor to virus. 

Interestingly, viral mutants resistant to small-molecule 

inhibitors (derived by in vitro passage), appear to remain 

susceptible to inhibition by PRO 140 (Kuhmann et al 2004; 

Marozsan et al 2005). PRO 140 can also act synergistically 

with maraviroc and vicriviroc to block membrane fusion 

mediated by a primary R5 virus (Murga et al 2006).
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PRO 14 was humanized from the original mouse 

monoclonal antibody PA14 and entered phase 1b clinical 

trials in 2007. In this single-dose study, PRO 140 was 

well tolerated at all doses and produced signifi cant reduc-

tions in viral load and suppressed viral replication for 2–3 

weeks (Progenics). PRO 140 has been granted Fast Track 

designation by the FDA.

HGS004 (CCR5mAb004)
HGS004 is a fully human IgG4 monoclonal antibody against 

CCR5 with robust in vitro activity against several HIV-1 isolates 

(Lalezari et al 2008). A phase I clinical trial examined the safety 

and preliminary antiviral activity of this antibody. This was a 

single-blind, placebo-controlled study that enrolled 63 subjects 

randomized into 5 dosage cohorts (0.4, 2, 8, 20, and 40 mg/kg) 

who received a single intravenous dose of HGS004 or placebo. 

HGS004 was well tolerated even at the highest dose and high-

levels of receptor occupancy were observed for up to 28 days in 

the higher dose cohorts. On day 14, 54% of subjects in the 8-, 

20- and 40-mg/kg groups had plasma HIV-1 RNA reductions 

of  �1 log
10

 copies/mL. In the 40 mg/kg group, 4 of 10 subjects 

had a �1 log
10

 copies/mL plasma RNA reduction at day 28.

Removal of CCR5 from cell surfaces
Chemokine analogs
The natural ligands of CCR5 have been shown to possess 

anti-HIV activity in vitro (Cocchi et al 1995). Moreover, 

increased expression of the CCR5 ligand, MIP-1a/CCL3, in 

humans (as a result of gene duplication) provides protection 

from HIV acquisition (Gonzalez et al 2005). Chemokine 

analogs can be engineered to enhance their anti-HIV activ-

ity (reviewed in (Hartley and Offord 2005)). Their mecha-

nism of action involves binding of the chemokine receptor 

(eg. CCR5), followed by agonist-induced receptor inter-

nalization, leading to intracellular sequestration (Figure 3). 

While N-terminally modifi ed chemokine analogs such as 

AOP-RANTES (Simmons et al 1997) and PSC-RANTES 

(Hartley et al 2004) have shown prolonged receptor 

sequestration and potent anti-HIV activity, these protein 

molecules are not orally bioavailable and are likely to have 

poor pharmacokinetics after injection due to aggregation 

on cell surface proteoglycans. However, these factors do 

not preclude the development of these chemokine analogs 

as components of topical microbicides in the prevention of 

HIV transmission (Moore 2005).

Genetic therapies
Several anti-HIV gene therapy approaches, that target HIV 

genes or their products, have also been investigated in the 

past several years (reviewed in [Rossi et al 2007]). These 

genetic-based approaches, such as intrakines (Yang et al 

1997), degrakines (Coffi eld et al 2003), and zinc-fi nger 

nucleases (ZFNs), aim to create phenotypic knockouts 

of CCR5.

eg, small molecules 

Steric Blockade
eg, monoclonal Abs

Removal from cell surfaces
eg, RANTES analogs,
genetic approaches

Figure 3 Mechanisms of action of different types of CCR5 inhibitors. Several CCR5 antagonists with diverse modes of action are being developed. In general, there are 
three categories of these inhibitors: those that allosterically modify CCR5 (such as small molecules), those that sterically block viral access to CCR5 (such as monoclonal 
antibodies) and fi nally those that lead to decreased expression of CCR5 on the cell surface (eg, RANTES analogs and genetic therapies such as ZFNs).
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ZFN proteins can be engineered to bind with a high 

degree of specifi city to particular sequence motifs in the 

genome, and the associated nuclease cleaves the bound DNA 

(Mani et al 2005). Repair of these double-stranded breaks is 

associated with the introduction of high frequency deletions 

and insertions at the cleavage site. CCR5-ZFN proteins have 

been developed and their administration to T-cell lines and 

primary human CD4+ T-cells resulted in a population of 

CCR5-modifi ed HIV-resistant cells (Perez et al 2008). ZFN-

modifi ed T-cell lines expanded in culture in the presence of 

HIV, and comprised the majority of cells in the population 

after 70 days. Genetic disruption of CCR5 imparted robust, 

stable, and heritable protection against HIV-1 in a NOG/SCID 

mouse model of infection (Perez et al 2008). The eventual 

clinical goal is to use these CCR5-ZFNs to perform ex vivo 

gene therapy on T cells from HIV-infected individuals and 

generate a reservoir of permanently HIV-resistant T cells that 

can be engrafted back into patients by reinfusion. Therefore, 

the fact that HIV-infected mice engrafted with ZFN-modifi ed 

CD4+ T cells had lower viral loads and higher CD4+ T cell 

count than mice engrafted with wild-type CD4+ T cells, in this 

study, holds promise for the potential to reconstitute immune 

function in individuals with HIV/AIDS by maintenance of 

an HIV-resistant CD4+ T-cell population.

Conclusion
Maraviroc is a valuable addition to the arsenal of ARV drugs 

available in the combat against HIV and AIDS. It heralds 

a new class of ARV drugs, namely CCR5 inhibitors, with 

several other second-generation candidates following in 

the clinical pipeline. While they comprise a promising new 

approach in controlling HIV infection, CCR5 inhibitors 

come with their share of problems and important caveats 

that should be kept in mind for ensuring their successful 

use. One of the greatest hurdles in the success of this class of 

drugs is the need to phenotype the patients’ viral quasispecies 

and sensitive detection of very low level CXCR4 usage, to 

prevent treatment of ineligible patients. In the coming years, 

more sophisticated coreceptor usage prediction programs 

as well as phenotypic assays with higher sensitivities are 

required to overcome this problem.

Resistance is another hurdle that inevitably rears its ugly 

head in the use of any ARV drug. Coreceptor inhibitors are 

no exception to this rule. One of the most feared predicted 

mechanism of resistance to CCR5 inhibitors was a de novo 

switch to X4-using viruses, which are associated with late-

stage disease. However, results from most resistance studies, 

thus far, suggest that this switch to CXCR4 usage is in fact 

not observed frequently and instead viruses usually acquire 

resistance to these drugs by using a drug-bound conformation 

of the CCR5 coreceptor.

Another key issue in the optimal administration of CCR5 

antagonists, such as maraviroc, is which patient should 

receive these drugs: treatment-experienced or treatment-

naïve patients? On the one hand, the use of new ARV drugs 

fi nds favor with physicians in a salvage regimen administered 

to multi-class resistant treatment-experienced patients. In fact 

this is the current recommendation for the use of maraviroc. 

However, in the case of CCR5 inhibitors the percentage of 

patients harboring R5 only using viruses is much higher 

in treatment-naïve patients (about 80% in naïve versus 

48%–60% in experienced patients), arguing for a more favor-

able target population in these rather than more experienced 

subjects. Moreover, maraviroc’s new mechanism of action 

may result in a reduction in the number of latently infected 

cells, and add to its promise as a candidate for fi rst line 

therapy. While there is no doubt in the benefi t that treatment-

experienced patients (with R5 viruses) can derive from using 

maraviroc (MOTIVATE trial results), recent clinical data 

from treatment-naïve patients (MERIT trial) can potentially 

revitalize interest in CCR5 antagonists as a treatment option 

for treatment-naïve patients especially since despite its lack 

of non-inferiority in patients reaching viral loads below 

50 copies/mL, maraviroc had a superior safety profi le and 

greater CD4 benefi t compared to efavirenz.

Since CCR5 antagonists such as maraviroc target a cel-

lular instead of viral protein (as do all other ARVs), another 

point to consider in the prescription of these drugs is whether 

they should be used in addition to triple therapy or as a 

replacement for one drug of triple therapy. Further studies 

into the different combinations of maraviroc with existing 

ARV regimens are required to address this question.

In conclusion, with the advent of maraviroc, an exciting 

new class of drugs has entered the arena of ARV therapy. 

Several key issues and questions regarding its optimal use and 

application remain unanswered, and should be addressed in 

upcoming clinical trials. Moreover, in the years to come, we can 

look forward to several other CCR5 antagonists with diverse 

mechanisms of action becoming available to patients.
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