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Abstract: Statins are a cornerstone of the pharmacologic treatment and prevention of athero-

sclerotic cardiovascular disease. Atherosclerotic disease is a predominant cause of mortality and 

morbidity worldwide. Statins are among the most commonly prescribed classes of medications, 

and their prescribing indications and target patient populations have been significantly expanded 

in the official guidelines recently published by the American and European expert panels. 

Adverse effects of statin pharmacotherapy, however, result in significant cost and morbidity and 

can lead to nonadherence and discontinuation of therapy. Statin-associated muscle symptoms 

occur in ~10% of patients on statins and constitute the most commonly reported adverse effect 

associated with statin pharmacotherapy. Substantial clinical and nonclinical research effort 

has been dedicated to determining whether genetics can provide meaningful insight regarding 

an individual patient’s risk of statin adverse effects. This contemporary review of the relevant 

clinical research on polymorphisms in several key genes that affect statin pharmacokinetics (eg, 

transporters and metabolizing enzymes), statin efficacy (eg, drug targets and pathways), and 

end-organ toxicity (eg, myopathy pathways) highlights several promising pharmacogenomic 

candidates. However, SLCO1B1 521C is currently the only clinically relevant pharmacogenetic 

test regarding statin toxicity, and its relevance is limited to simvastatin myopathy.
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Introduction
Statins are indicated for the prevention of cardiovascular disease and are among the 

most prescribed classes of medication.1 Their inhibition of HMGCR results in decreased 

intrahepatic cholesterol synthesis, upregulation of hepatocyte surface low-density 

lipoprotein cholesterol (LDL-C) receptors, increased LDL-C uptake by hepatocytes, 

and ultimately decreased systemic concentration of LDL-C. Decreased systemic 

LDL-C is commonly used as a surrogate measure of statin efficacy, with an estimated 

reduction in risk of major cardiovascular events of nearly 20% per mmol/L (38 mg/dL) 

reduction in LDL-C.2 Along with decreased systemic LDL-C, the pleotropic effects 

(eg, improved endothelial function, increased production of endogenous nitric oxide, 

enhanced plaque stability, and decreased release of inflammatory interleukins) of statins 

are beneficial for cardiovascular function and patient health. Contemporary official 

recommendations from leading expert panels in the US and Europe (eg, American 

Heart Association, National Lipid Association, European Atherosclerosis Society) 

emphasize the importance of statin pharmacotherapy in the treatment and prevention 

of atherosclerotic cardiovascular disease, recently expanding prescribing indications 

and target populations.3–5
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Not all patients, however, respond favorably to statins, 

and some do not achieve their cholesterol-reduction goals. 

Furthermore, a considerable number of patients experience 

adverse effects. Statin myositis and statin-associated muscle 

symptoms (SAMS) comprise the most commonly reported 

adverse effect of statins, often leading to poor adherence or 

discontinuation of statin pharmacotherapy regimens.6 Statin 

myositis is characterized by inflammation of muscle tissue 

resulting in muscle pain or weakness and is accompanied by 

increased blood concentration of CK, a protein biomarker of 

damaged myocytes. The incidence of statin myopathy, statin 

myositis with CK levels tenfold greater than the upper limit 

of normal (ULN), is about one per 1,000 to one per 10,000 

person-years.7 SAMS has a broader definition that includes 

muscle symptoms (subjective or objective) in the absence of 

elevated CK. As a result, the incidence of SAMS is widely 

debated. Early pharmaceutical clinical trials in healthy sub-

jects reported incidences <5%.8 This markedly underestimates 

the true incidence, however, because those studies had strin-

gent criteria (clinical and laboratory) and various potential 

biases.9 in real-world patient populations, the incidence of 

SAMS has been significantly higher. The European Athero-

sclerosis Society Consensus Panel determined the incidences 

of SAMS to be 7%–29% in registries and observational stud-

ies,5 and the Predictions of Muscular Risk in Observational 

conditions (PRiMO) study, among the largest and more com-

monly referenced studies, found the incidence of SAMS to 

be ~10%.10 More often, the symptoms of SAMS occur within 

the first 6 months of initiating statin therapy and resolve after 

statin doses are lowered or discontinued.10–13

Another reported adverse effect associated with statins 

pharmacotherapy is liver toxicity. The incidence of liver 

toxicity, characterized by elevated blood concentrations of 

transaminases, is far less than that of SAMS. A meta-analysis 

of randomized controlled trials of statin use in hyperlip-

idemic patients found that the proportion of patients with 

liver toxicity was not significantly different between those 

receiving statins and those receiving placebo (0.0114 vs 

0.0105; 95% confidence interval [Ci] for odds ratio [OR] 

0.99–1.62).14 Another adverse effect of statins reported to 

occur with very low incidence is central nervous system 

(CNS) toxicity. Although recent case reports have received 

significant attention, they have been highly scrutinized by 

clinicians and researchers because a substantial amount of 

published research suggests that statins may in fact improve 

cognitive function.15,16

There is a paucity of research regarding statin-associated 

liver and CNS toxicities and reported incidences have been 

marginal at best. As a result, clinical research investigating 

statin toxicity has focused primarily on SAMS. Several clini-

cal risk factors for SAMS (Table 1) have been identified and 

verified in many clinical studies.17–19 Many of these are risk 

factors because they lead to increased patient exposure to 

Table 1 Nongenetic clinical risk factors for statin adverse 
reactions

Age (advanced age)
Body mass index (low)
Concomitant medications
 CYP3A-inhibiting medications
 SLCO1B1-inhibiting medications
  Antiretrovirals
   Amprenavir
   Atazanavir
   Darunavir
   indinavir
   Lopinavir
      Nelfinavir
   Ritonavir
   Saquinavir
  Azole antifungals
   Clotrimazole
   Ketoconazole
   Miconazole
   Pantoprazole
  Cyclosporine
  Digoxin
  Fibrates
      Bezafibrate
      Fenofibrate
      Gemfibrozil
  Macrolide antibiotics
   erythromycin
   Clarithromycin
  Rifampin
  Thyroxine
  Tacrolimus
  verapamil
Diseased states
 Alcohol consumption (excessive)
 Diabetes
 Hypothyroidism
 Hyperuricemia
 infectious state
 Liver disease
 Muscle disorders
  McArdle’s disease
  History of muscle pain with other lipid-lowering pharmacotherapy
  History of malignant hyperthermia
  Renal insufficiency
 Trauma
Sex (female)
Physical exercise (intense)
Race (Asian and African American)
Statin dose (higher dose)
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statin and metabolites. They should, therefore, have some 

relevance also regarding increased risks for statin-associated 

liver or CNS toxicities. in addition to those risk factors, 

comorbid conditions affecting liver or CNS function may also 

be relevant. Risk factors specific to CNS and liver toxicity 

have not been readily investigated, and similarly, nearly all 

the focus and literature regarding the pharmacogenomics of 

statin toxicity has centered on SAMS.

Hundreds of candidate gene studies and several genome-

wide association studies (GwASs) have focused on the 

influence of genetic variants on statin pharmacokinetics 

(eg, drug and metabolite levels in blood, area under the time– 

concentration curve [AUC]) and statin pharmacodynamics 

(lipid lowering, incidence of adverse events, incidence of 

cardiovascular events). Discussing relevant clinical research, 

this contemporary review focuses on polymorphisms in sev-

eral key genes that affect statin pharmacokinetics (eg, trans-

porters and metabolizing enzymes), statin efficacy (eg, drug 

targets and pathways), and end-organ toxicity (eg, myopathy 

pathways). As dose–response relationships have repeatedly 

been demonstrated for both statin efficacy and toxicity,10–14,20 

polymorphisms affecting statin pharmacokinetics can directly 

influence the incidence and severity of statin adverse events. 

Polymorphisms affecting statin efficacy have the capacity to 

influence statin toxicity in an indirect manner (eg, prescribers 

often increase statin doses in patients not achieving substan-

tial lipid reduction). Polymorphisms affecting end-organ 

toxicity too can directly influence the incidence and severity 

of statin adverse events.

Pharmacogenomics of statin 
adverse effects
Genetic polymorphisms affecting statin 
pharmacokinetics directly affect risk of 
statin toxicity
Several polymorphisms in SLCO1B1, the gene encoding 

the SLCO1B1, result in altered transport of statins and their 

metabolites into the liver. it is within hepatocytes that statins 

exert their lipid-lowering action, inhibition of the cholesterol-

synthesizing enzyme HMGCR. Despite the prominent role of 

SLCO1B1 in statin transport, variants in SLCO1B1 have been 

associated with only small effects on statin response. Several 

studies have demonstrated that SLCO1B1 521C (rs4149056) 

was associated with statistically significant, albeit marginal 

(<5%), attenuation of the lipid-lowering effect of simvastatin, 

atorvastatin, lovastatin, and pravastatin.21,22 SLCO1B1 521C 

does, however, significantly affect statin pharmacokinetics 

and risk of statin toxicity. The AUC for simvastatin was 

approximately double for SLCO1B1 521C carriers compared 

to wild type (n=41, P<0.01), and in the Genetics of Diabetes 

Audit and Research in Tayside Scotland database, SLCO1B1 

521C homozygous carriers were approximately three times 

more likely to be statin intolerant (blood concentration of CK 

> ULN or ALT >1.5ULN) compared to wild type (n=4,340, 

P<0.01).23 A GwAS of 175 patients receiving simvastatin 

80 mg daily determined that SLCO1B1 521C carriers were 

significantly more likely to develop statin myositis compared 

to wild type; heterozygote and homozygote carriers were 

4.5 and 16.9 times more likely to develop statin myopathy, 

respectively, compared to wild type, and the ORs for the 40 mg 

cohorts were 2.6 and 5.2.20 in a case–control study (n=108) 

reported by Brunham et al, a significant association (P<0.05) 

with statin myopathy was confirmed for simvastatin (OR: 3.2 

per allele) but not atorvastatin.24 Repeatedly demonstrated 

associations of polymorphisms in SLCO1B1 with decreased 

simvastatin transport into hepatocytes, increased systemic 

simvastatin concentrations, and increased risk of myopathy 

prompted the Clinical Pharmacogenetics implementation 

Consortium (CPiC), a partnership between the US National 

institutes of Health Pharmacogenomics Research Network and 

The Pharmacogenomics Knowledge Base (PharmGKB®), to 

establish formal prescribing recommendations for simvastatin 

which are based on myopathy risk categories (low, interme-

diate, or high) defined by SLCO1B1 genotype (Table 2).25,26 

Although nearly 200 common variants in SLCO1B1 have been 

described, SLCO1B1 521C is the most clinically relevant and 

has the highest level of clinical evidence. in CPiC’s Recom-

mended Dosing of Simvastatin Based on SLCO1B1 Pheno-

type, all haplotypes conferring increased risk of simvastatin 

myopathy (*5, *15, and *17) contain the SLCO1B1 521C 

polymorphism.26 CPiC’s SLCO1B1-based prescribing guid-

ance for simvastatin is a commonly cited example of formal 

guidance regarding the pharmacogenomics of statin toxicity, 

and reports from clinician groups utilizing SLCO1B1-based 

guidance have been encouraging.27–29 Josephine et al reported 

increased LDL-C reduction and significant improvements in 

patients’ perception and adherence in 59 patients receiving 

statin therapy guided by SLCO1B1*5 genotype compared 

to 58 concurrent controls receiving statin therapy without 

genotype-based guidance.29

Hepato-biliary and renal–urinary transport of statins 

and their metabolites occurs largely via ABCB1 transport 

protein (synonymous with MDR1). Associations with statin 

pharmacokinetic parameters and with measures of statin 

toxicity have been demonstrated for three polymorphisms 
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in the ABCB1 gene: 1236T, 2677T, and 3435T (rs1128503, 

rs2032582, and rs1045642, respectively). in combination 

with 1236T or 2677T or both, 3435T alters the structure and 

function of ABCB1 by disrupting proper usage of codons 

during translation of ABCB1. Those with the TTT haplotype 

(1236T, 2677T, and 3435T alleles) had an AUC that was 

nearly 60% greater for simvastatin acid and 55% larger for 

atorvastatin acid compared to those with the CGT haplotype 

(P=0.039 and P<0.025, respectively).30 Ferrari et al reported 

significantly (P=0.013) increased frequencies of the 1236 

and 3435 variant alleles in a simvastatin case–control study 

(23 patients with elevated CK blood concentrations vs 23 

controls).31 Hoenig et al reported a significantly higher 

frequency of the ABCB1 3435T variant in patients with 

atorvastatin-induced myopathy compared to controls on 

atorvastatin without myopathy in a 98-patient study (80% 

vs 62%; P=0.043).32 This finding has not been replicated, 

and the limited number of patients with myopathy (n=10) 

included in the analysis markedly increased the scrutiny 

regarding the report by Hoenig et al. Furthermore, Hermann 

et al reported no difference in ABCB1 3435T allele frequency 

in a case–control study of atorvastatin myopathy,33 no asso-

ciation was detected between ABCB1 2677T and atorvastatin 

blood concentrations in a case–control study reported by 

DeGorter et al,34 and a reduced frequency of the ABCB1 TTT 

haplotype in statin myopathy patients compared to controls 

(20% vs 41%; P=0.03) was reported by Fiegenbaum et al in 

a prospective trial (n=146) of simvastatin 20 mg daily given 

for 6 months.35 As the clinical research findings regarding 

ABCB1 variants have been inconclusive and discordant, 

routine clinical use of ABCB1 genotyping to predict statin 

toxicity is not currently recommended. Nonetheless, ABCB1 

plays an important role in statin transport, and the future of 

statin therapy may include multigene guidance that includes 

ABCB1 variants.

Simvastatin, atorvastatin, and lovastatin are primarily 

metabolized by cytochrome P450 (CYP) 3A enzymes. Most 

CYP3A metabolism occurs within hepatocytes, but some also 

occurs in the small intestine. Significant associations between 

CYP3A polymorphisms and statin blood concentrations have 

been reported, and the US Food and Drug Administration-

approved product and prescribing label for simvastatin clearly 

warns clinicians about the marked increase in the risk of 

simvastatin myotoxicity associated with concomitant use of 

CYP3A-inhibiting medications (Table 3).36 in addition, other 

enzymes (CYPs and non-CYPs) are involved in the metabo-

lism of certain statins (Table 4).37 Although less studied than 

CYP3A, those enzymes too can be significantly altered by the 

use of certain concomitant medications, resulting potentially 

in increased risk of statin adverse effects.

CYP3A4*22 (rs35599367) is a decrease-of-function 

polymorphism that results in signif icantly decreased 

CYP3A4 enzyme level and activity and altered pharmaco-

kinetics and dynamics of simvastatin, atorvastatin, and lov-

astatin.38 Although the role of CYP3A5 in statin metabolism 

is less prominent than that of CYP3A4,39 associations with 

altered statin pharmacokinetics and dynamics have been 

reported for CYP3A5 polymorphisms. The most frequent 

and commonly studied CYP3A5 polymorphism is the loss 

of function CYP3A5*3 (rs776746) allele.40 For simvastatin, 

which has an annual prescription rate near 80 million in the 

US alone,1 the following associations have been reported: 

Tsamandouras et al determined that simvastatin bioavail-

ability was nearly 50% greater in CYP3A4*22 carriers 

compared to wild type;41 Kim et al determined that simvas-

tatin AUC was 2.3- and 3.3-fold higher in heterozygous and 

homozygous CYP3A5*3 carriers compared to wild type;42 

and Kitzmiller et al determined that 12-hour post-dose 

concentrations of simvastatin and metabolite in whites were 

20% and 14% higher in *22 carriers compared to wild type 

and that simvastatin concentration in African Americans 

was 170% higher in *22 carriers compared to wild type and 

Table 2 Recommended dosing of simvastatin based on SLCO1B1 
phenotype

Phenotype Genotype Myopathy  
risk

Dosing 
recommendations

Normal  
function, 
homozygous  
wild type

TT Normal Prescribe desired 
starting dose and 
adjust doses of 
simvastatin based 
on disease-specific 
guidelines

intermediate 
function, 
heterozygotyes

TC intermediate Prescribe a lower 
dose or consider 
an alternative statin 
(eg, pravastatin 
or rosuvastatin); 
consider routine  
CK surveillance

Low function, 
homozygous 
variant or  
mutant

CC High Prescribe a lower 
dose or consider 
an alternative statin 
(eg, pravastatin 
or rosuvastatin); 
consider routine  
CK surveillance

Notes: The minor C allele at rs4149056 is contained within SLCO1B1*5 (rs4149056 
alone) as well as the *15 and *17 haplotypes and is associated with lower plasma 
clearance of simvastatin. The magnitude of this effect is similar for *5, *15, and *17 
haplotypes.
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33% higher in homozygous CYP3A5*3 carriers compared 

to those with functional CYP3A5.43

Although many studies have demonstrated the increased 

risk of statin toxicity with concomitant use of medications 

that inhibit CYP3A metabolism, there is a paucity of research 

investigating CYP3A polymorphisms and statin toxicity. 

Several studies investigating their effects on statin efficacy, 

however, have been reported. wang et al determined that 

CYP3A4*22 carriers required statin doses of atorvastatin, 

simvastatin, or lovastatin, which were only 20%–60% of 

those required by wild type in a cohort of 235 dyslipidemic 

patients receiving statin doses titrated to achieve optimal 

lipid concentrations (P<0.05).38 Elens et al reported that 

simvastatin-associated LDL-C reduction in CYP3A4*22 

carriers was 7% greater compared to noncarriers (41% 

vs 48%; P=0.054).44 Kivistö et al reported that the mean 

percent reduction in total cholesterol was higher (31% vs 

17%) in homozygous CYP3A5*3 carriers compared to 

those with functional CYP3A5 in a study of 69 Caucasians 

who received lovastatin, simvastatin, or atorvastatin.45 No 

association, however, between CYP3A5*3 and LDL-C low-

ering was reported by Ragia et al in a study of 99 patients 

of European ancestry who received 20 mg simvastatin daily 

for 6 months,46 no association between CYP3A4*22 and 

LDL-C lowering was reported by Hu et al in a study of 229 

patients of Chinese ancestry who received 40 mg simvastatin 

daily,47 and no association between CYP3A4*22 and lipid-

lowering response was reported by Ragia et al in a study of 

209 patients who received 10–40 mg simvastatin daily for 

6 months.46 Although findings have been inconsistent and 

routine clinical use of CYP3A testing is not currently rec-

ommended, the importance of CYP3A in the metabolism of 

Table 3 CYP3A-inhibiting medications

Amiodarone
Anastrozole
Azithromzcin
Cannabinoids
Cimetidine
Clarithromycin
Clotrimazole
Cyclosporine
Danazol
Delavirdine
Dexamethasone
Diethyldithiocarbamate
Diltiazem
Dirithyromycin
Disulfiram
entacapone
erythromycin
ethinyl estradiol
Fluconazole
Fluoxetine
Fluvoxamine
Gestodene
Grapefruit juice
indinavir
isoniazid
Ketoconazole
Metronidazole
Mibefradil
Miconazole
Nefazodone
Nelfinavir
Nevirapine
Norfloxacin
Norfluoxetine
Omeprazole
Oxiconazole
Paroxetine
Propoxyphene
Quinidine
Quinine
Quinupristine
Ranitidine
Ritonavir
Saquinavir
Sertindole
Sertraline
Troglitazone
Troleandomycin
valproic acid

Table 4 Select transport and metabolism proteins by statin type

Transport
ABCB1 Atorvastatin, lovastatin, pravastatin, simvastatin
ABCC2 Atorvastatin, lovastatin, pravastatin, simvastatin
ABCG2 Pravastatin
ABCB11 Pravastatin, rosuvastatin
SLC15A1 Fluvastatin
SLC22A6 Pravastatin
SLC22A8 Pravastatin
SLCO1B1 Atorvastatin, fluvastatin, lovastatin, pravastatin, 

rosuvastatin, simvastatin
SLCO2B1 Atorvastatin, fluvastatin, lovastatin, pravastatin, 

rosuvastatin, simvastatin
SLCO1B3 Atorvastatin, fluvastatin, lovastatin, pravastatin, 

rosuvastatin, simvastatin
SLCO10A1 Atorvastatin, lovastatin, simvastatin

Metabolism
CYP3A4 Atorvastatin, lovastatin, simvastatin
CYP3A5 Atorvastatin, lovastatin, simvastatin
CYP2C8 Atorvastatin, fluvastatin, lovastatin, simvastatin
CYP2C9 Atorvastatin, fluvastatin, lovastatin, simvastatin
CYP2C19 Atorvastatin, fluvastatin, lovastatin, simvastatin
CYP2D6 Atorvastatin, lovastatin, simvastatin
UGT1A1 Atorvastatin, fluvastatin, lovastatin, simvastatin
UGT1A3 Atorvastatin, fluvastatin, lovastatin, simvastatin
UGT2B7 Atorvastatin, lovastatin, simvastatin
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atorvastatin, simvastatin, and lovastatin suggests that further 

investigation may likely uncover clinically relevant effects of 

CYP3A polymorphisms on the risk of statin adverse effects 

in certain patient populations.

Genetic variation in the enzymes other than CYP3A 

which are involved in statin metabolism (Figure 1) also affects 

statin pharmacokinetic parameters and may alter the risk of 

statin adverse effects.48 Reports of investigations regarding 

the effect of altered metabolism in these enzymes (UGT, 

CYP2D6, and CYP2C) on the risk of statin adverse effects 

are rare and insufficient to suggest routine genetic testing. 

Significant biological plausibility exists, but the influence 
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of polymorphisms in these metabolizing enzymes has been 

considered limited because alternate metabolism pathways 

can readily compensate or because they have insignificant 

impact, occur too infrequent, or are yet to be discovered.

Genetic polymorphisms decreasing statin 
efficacy indirectly affect risk of statin 
toxicity
Although many of the new guidelines regarding cardiovas-

cular pharmacotherapies no longer specify lipid goals,3–5 

many prescribers continue to utilize lipid-lowering response 

as a surrogate measure of statin efficacy, titrating statin dose 

accordingly. Along with various clinical factors (eg, race, 

sex, ethnicity, and comorbidities) affecting lipid-lowering 

response to statins, genetic factors too can affect lipid-

lowering response, thereby, indirectly affecting the risk of 

statin toxicity (ie, prescribers increase statin dose in patients 

not achieving significant lipid reduction, simultaneously 

increasing the risk of statin toxicity).

Several candidate genes have been investigated, but the 

majority of reported findings regarding statin efficacy focus 

on variants in HMGCR and in CETP. The pharmacologic 

target of statins, HMGCR, is polymorphic, and genetic varia-

tion can significantly affect statin efficacy. Although not a 

pharmacologic target of statins, CETP plays an important 

role in cholesterol metabolism, bringing cholesterol esters 

into the liver and transferring triglycerides from LDL to 

high-density lipoprotein.49 Polymorphisms in CETP have 

been associated with cholesterol levels, clinical outcomes 

(eg, myocardial infarction or stroke), and response to statins. 

Patients carrying the CETP Taq 1B polymorphism (rs708272) 

had lower concentrations of CETP, higher concentrations of 

high-density lipoproteins, and less atherosclerotic progres-

sion compared to wild type.49–51 The 10-year mortality rate 

for male statin-treated patients was higher for carriers of 

the Taq 1B variant compared to wild type.52 Together, these 

findings suggest that although untreated patients with the 

Taq 1B variant have less risk of atherosclerotic progression 

compared to wild type, statins may be more efficacious in 

wild type compared to those with the Taq 1B variant. in 

a meta-analysis (n=13,677) reported by Boekholdt et al, 

associations among the Taq 1B variant and concentrations 

of high-density lipoprotein and risk of atherosclerosis were 

confirmed; however, the Taq 1B association with statin treat-

ment was not substantiated.53 in vitro studies have not yet 

been successful in elucidating the mechanisms by which the 

Taq 1B variant may affect cholesterol levels, cardiovascular 

risk, or response to statin pharmacotherapies. More recently, 

Papp et al reported that cholesterol concentrations and sex-

dependent cardiovascular risk were significantly associated 

with transcription-altering polymorphisms in the promoter 

and enhancer regions of CETP and with a polymorphism in 

exon 9 of CETP that leads to formation of a nonfunctional or 

dominant-negative splice isoform of CETP.54 Further clini-

cal association studies of these polymorphisms may help to 

better determine whether polymorphisms in CETP effect 

cardiovascular risk and response to statin pharmacotherapy.

within hepatocytes, statins and metabolites inhibit 

HMGCR, the rate-limiting step of cholesterol synthesis. 

Decreased intrahepatic cholesterol synthesis leads to upregu-

lation of hepatic surface LDL-C receptors and increased 

LDL-C uptake by hepatocytes. Systemic LDL-C is decreased 

as hepatic LDL-C uptake is increased. Ultimately, lower 

blood concentrations of LDL-C reduce the progression of 

atherosclerotic cardiovascular disease. Polymorphisms in 

HMGCR, however, can result in significantly diminished 

response to statin pharmacotherapy. Comprising three 

polymorphisms (rs17244841, rs3846662, and rs17238540), 

H7 haplotype of HMGCR appears to result in attenuated 

lipid-lowering response to statin pharmacotherapy.55 LDL-C 

reduction was ~20% less in a combined analysis of the Cho-

lesterol and Pharmacogenomics (CAP) study, the Genetics 

of Diabetes Audit and Research in Tayside Scotland, and 

the Pravastatin inflammation/CRP Evaluation (PRiNCE) 

trial.55–57 The findings from a combined analysis of additional 

patient cohorts (Treatment to New Targets [TNT], Atorvas-

tatin Comparative Cholesterol Efficacy and Safety Study 

[ACCESS], Assessment of Lescol in Renal Transplantation 

[ALERT], and Prospective Study of Pravastatin in the Elderly 

at Risk [PROPSER]) did not replicate an association of the 

H7 haplotype with diminished LDL-C response.58–61 Like 

CETP, HMGCR plays an important role in statin efficacy. The 

research to date, however, does not support CETP or HMGCR 

testing for guiding statin therapy. in fact, no efficacy-based 

pharmacogenomic biomarkers are currently recommended 

for guiding statin pharmacotherapy.

Genetic polymorphisms affecting end-
organ toxicity pathways directly affect 
risk of statin toxicity
The decrease-of-function SLCO1B1 521C polymorphism 

results in decreased statin transport into liver cells. SLCO1B1 

521C, therefore, should theoretically confer a decreased risk 

of statin-associated liver toxicity due to attenuated hepatic 

statin exposure. This, however, has not been studied. More 

importantly, SLCO1B1 521C does result in increased sys-
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temic statin exposure and increased risk of statin myopa-

thy.20,23,25,26,31,34 Likewise, polymorphisms affecting transport 

across the blood–brain barrier would have the capacity to 

affect the risk of CNS toxicity, but this too has not been stud-

ied. No studies have been reported regarding the investigation 

of polymorphisms in CNS or liver as related to risk of statin-

associated liver or CNS toxicity. Reports of polymorphisms 

in muscle, however, have been reported to influence risk of 

statin myopathy.

Associations between genetic variation in COQ2 and statin 

myopathy have been reported. Puccetti et al determined that 

rs4693075, a polymorphism in the COQ2, was associated 

with statin muscle intolerance in their analysis of 76 cases 

(46 and 30 cases treated with atorvastatin and rosuvastatin, 

respectively) and matched controls.62 Allele frequencies 

of rs4693075 were 0.11 and 0.56 in rosuvastatin-tolerant 

and rosuvastatin-intolerant patients, respectively, and 0.12 

and 0.24 in atorvastatin-tolerant and atorvastatin-intolerant 

patients, respectively. in rosuvastatin-treated patients, the 95% 

Ci of the OR was 1.7–4.4 (P<0.001). in the atorvastatin-treated 

patients, the 95% Ci of the OR was 1.9–6.4 (P<0.001).62 

Ruaño et al reported an association between another polymor-

phism in COQ2, rs4693570, and statin-induced myalgia in a 

case–control study (n=377 cases vs 416 controls) of patients 

receiving various statins (P<0.01).63 Although some patient 

reports have described benefits from COQ2 supplementation 

in cases of statin myopathy,64 neither COQ2 supplementation 

nor COQ2 testing is currently recommended for routine use 

in patients receiving statin pharmacotherapy.

GATM is the rate-limiting enzyme in the creatine bio-

synthesis pathway. Providing an important source of cellular 

energy, creatine is predominantly synthesized in the liver 

and kidneys and subsequently transported to skeletal muscle. 

A GATM polymorphism, rs9806699, was associated with 

decreased risk of statin myopathy (95% Ci for meta-analysis 

OR was 0.45–0.81) in an analysis of 172 cases of statin 

myopathy.65 Mangravite et al suggested that the protective 

effect of the GATM polymorphism may likely have been the 

result of the attenuation of cellular processes (via diminished 

myocellular capacity for phosphocreatine energy storage 

as a result of decreased creatine availability) necessary for 

development of statin myopathy.65 The detected effect reported 

by Mangravite et al was not substantiated in three separate 

cohorts: analyses reported by Luzum et al, Carr et al, and 

Floyd et al found no associations between rs9806699 and 

statin myopathy (n=609, 150, and 175 cases, respectively).66–68 

Furthermore, the mechanism (regarding the apparent protec-

tive effect of GATM rs9806699) proposed by Mangravite et al 

is not consistent with the reported findings that suggest GATM 

deficiency as a contributing factor in cases of myopathy.69,70 

The clinical significance of GATM rs9806699 is therefore 

uncertain, and additional research is necessary to determine 

whether the variant truly confers a protective effect against 

statin myopathy in certain patient populations.

Future considerations and 
directions
with proven efficacy and relatively few adverse effects, statins 

remain among the most commonly prescribed medication 

classes. Most patients benefit; however, some experience ath-

erosclerotic events despite statin therapy, and some experience 

adverse effects. Despite the completion of hundreds of candidate 

gene studies and numerous GwASs, the only clinically relevant 

pharmacogenetic test regarding statin toxicity is SLCO1B1 

521C and its relevance is limited to simvastatin myopathy. The 

research findings regarding polymorphisms in other key genes 

(eg, ABCB1, CYP3A, HMGCR, CETP, GATM, and COQ2) 

suggest that additional research is warranted and that clini-

cally meaningful genetic testing for risk of statin toxicity may 

ultimately be summative (eg, multigene risk score modeling). 

Future research must also incorporate nongenetic risk factors 

and consider interactions (eg, gene–gene, gene–environment). 

Flexibility to accommodate risk factors specific to statin type 

and the ability to adjust for race and ethnicity are also essential. 

Ultimately, a pharmacogenomic test, in the form of a multi-

polymorphism and multigene array, could provide opportunity 

for prescriber and patient to better assess the expected benefit 

and potential risks of statin pharmacotherapy, allowing for more 

informed strategies for selecting statin dose and type.
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