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Abstract: Perinatal hypoxic-ischemic encephalopathy (HIE) affects one to three per 1,000 

live full-term births and can lead to severe and permanent neuropsychological sequelae, such as 

cerebral palsy, epilepsy, mental retardation, and visual motor or visual perceptive dysfunction. 

Melatonin has begun to be contemplated as a good choice in order to diminish the neurological 

sequelae from hypoxic-ischemic brain injury. Melatonin emerges as a very interesting 

medication, because of its capacity to cross all physiological barriers extending to subcellular 

compartments and its safety and effectiveness. The purpose of this commentary is to detail the 

evidence on the use of melatonin as a neuroprotection agent. The pharmacologic aspects of 

the drug as well as its potential neuroprotective characteristics in human and animal studies are 

described in this study. Melatonin seems to be safe and beneficial in protecting neonatal brains 

from perinatal HIE. Larger randomized controlled trials in humans are required, to implement 

a long-awaited feasible treatment in order to avoid the dreaded sequelae of HIE.
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Introduction
Perinatal asphyxia is defined as the interference of gas exchange or blood flow to 

and from the fetus in the perinatal age.1 This interruption could be extended to partial 

asphyxia and sudden subtotal asphyxia because of a sentry experience or a combi-

nation of both.2 Hypoxic-ischemic injuries to the brain might be the outcome if the 

perinatal asphyxia is of an adequate intensity or extended beyond the capability of 

the fetus to compensate.3,4

Perinatal hypoxic-ischemic encephalopathy (HIE) affects one to three per 1,000 

live full-term births.5,6 Up to one-fifth of the affected newborns will perish in the 

postnatal period, and a further 25% will develop severe and permanent neuropsy-

chological sequelae, such as cerebral palsy, epilepsy, mental retardation, and visual 

motor or visual perceptive dysfunction.7 Ensuing a hypoxic-ischemic (HI) abuse, an 

instantaneous phase of neuronal cell injury and enervation of energy stores occurs, 

followed by oxidative stress and apoptosis.8 Many crucial neuronal groups are more 

susceptible to HI injury in newborns than in adults, especially those related to enhanced 

density and function of excitatory amino acid receptors.9 The neonatal brain has 

higher water content, underdeveloped cortex, lower myelin, and a more conspicuous 

germinal matrix than the mature brain.10 The morbidity and mortality of infants are 

strongly affected by their ability to preserve physiologic homeostasis.11 Melatonin 

has begun to be contemplated as a good choice in order to diminish the neurological 
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sequelae from HI brain injury. Melatonin emerges as a very 

interesting medication, because of its capacity to cross all 

physiological barriers extending to subcellular compart-

ments and its safety and effectiveness.12,13 It effortlessly 

crosses the blood–brain barrier and the placenta, stretching 

to subcellular compartments with minimal toxicity and high 

effectiveness,12,14 rendering it a relatively safe treatment that 

could be administered to newborns.15 The purpose of this 

commentary is to detail the evidence on the use of melatonin 

as a neuroprotection agent.

Search strategy and selection 
criteria
A search in PubMed, Google Scholar, and Embase databases 

was conducted using different combinations of the following 

terms: melatonin, perinatal, hypoxic, encephalopathy, treat-

ment, prevention, and strategy. Moreover, the references of 

the identified articles were searched for further articles. Later, 

the abstracts and titles were inspected, and studies that were 

appropriate to the topic of interest were selected. Finally, the 

search was restricted to manuscripts that were published in 

Spanish and English from inception till July 2016 (Figure 1).

Melatonin
Melatonin (N-acetyl-5-methoxytryptamine) is an endog-

enously produced indolamine originating from the pineal 

gland.16 Melatonin, a naturally appearing neuroendocrine 

molecule is released as a result of environmental light–dark 

cycles, effortlessly crosses biological membranes and per-

forms through receptor-dependent and receptor-independent 

mechanisms to adjust gene expression and cell signaling.17,18 

It has a short half-life.19,20 The augmentation in serum levels 

and excretion after oral ingestion of melatonin is rapid 

(60–150 min).21 Melatonin is usually metabolized in the liver 

and excreted by the kidney.22

It comprises several other biological functions in vari-

ous tissues and organs,23 which involve harmonizing energy 

metabolism,24 protecting against oxidative stress,25 delaying 

aging,26 and embellishing immune function.27

Autogenous melatonin is indispensable to normal neu-

rodevelopment and preserves the developing brain from 

injury.28–30 Maternal melatonin levels are increased during 

pregnancy and melatonin effortlessly crosses the blood–brain  

barrier and placenta.31,32 Neonates born at term produce, 

to some extent, low pineal melatonin and therefore have 

deficiencies in diurnal variation for the first week of life.33 

Moreover, another raise in serum melatonin levels occurs in 

very sick children as well as in patients with cerebrovascular 

accidents entailing an aspect of melatonin in an autogenous 

protective reaction.34,35

Melatonin accomplishes its strong neuroprotective result 

through anti-inflammatory, anti-apoptotic, and antioxidant 

processes through nuclear and cell membrane receptors28,29,36 

and by boosting glial and neuronal development.37,38 Evolving 

young brain is easily exposed to free radical damage,39,40 

and the strong free radical-scavenging characteristics of 

melatonin and its metabolites contribute to a crucial neuro-

protective process.25,41,42

Under abnormal circumstances, one of the most crucial 

regulators of apoptotic cell death is mitochondrial deterio-

ration, as the severance of its membrane integrity can limit 

cell survival by dispensation of apoptotic proteins, impaired 

calcium homeostasis, and generation of reactive oxygen 

species.43

Studies have shown that melatonin decreased or blocked 

caspase (a family of protease enzymes playing essen-

tial roles in programmed cell death-1) and caspase-3 

activation,44–46 interfered with release of cytochrome c,45,46 

decreased Bad (B-cell lymphoma 2-associated death 

promoter),47,48 and Bax (B-cell lymphoma 2-associated 

X protein)49 pro-apoptotic proteins, and diminished the Figure 1 Flow diagram of selection of references.
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number of terminal deoxynucleotidyl transferase dUTP 

nick end labeling (TUNEL)-positive cells.50–53 Melatonin 

can also produce antiexcitatory effects on neurons through 

the modulation of gamma-aminobutyric acid and glutamate 

receptors,54,55 leading to the decrease in cytosolic calcium 

concentrations.56,57

The approach moderated by melatonin and its main 

metabolites circumscribes the downregulation of some 

inflammation-associated molecules such as prostaglandin,58 

cyclooxygenase,59,60 5-lipoxygenase,61 tumor necrosis factor-α, 

cytokines, interleukin-6, and interleukin-8,62–65 and also the 

hindrance of neuronal nitric oxide (nNO).66,67 Melatonin 

hence diminishes vascular endothelial growth factor concen-

tration, NO production, and, therefore, vascular permeability 

that results increased after hypoxic exposure.68

Other important functions of melatonin at the molecular 

level include maintenance of the mitochondrial integrity and 

the upregulation of antioxidant enzymes.25,42 Several animal 

studies have demonstrated that melatonin decreases oxidative 

injury to cerebral lipids69–74 and improves cerebral energy 

breakdown75 and apoptosis.74–78 Melatonin promotes protec-

tion after HI75–80 and in lipopolysaccharide-sensitized HI.81

Several actions are arbitrated through the G-protein-

coupled melatonin receptors in cellular membranes.82 Other 

molecular actions of melatonin include its cooperation with 

molecules such as calmodulin in the cytosol and orphan 

nuclear receptors.83 Nonreceptor-mediated actions of mela-

tonin are usually associated with its capability to detoxify 

reactive oxygen species.84

Melatonin as a neuroprotector 
in animal models
The neuroprotective outcomes of melatonin in the fetal brain 

have been evaluated in several animal models. Melatonin 

administration to both preterm and near-term fetal sheep 

has been demonstrated to decrease oxidative stress69 and 

debilitate cell injury and death in the fetal brain, in associa-

tion with a decreased inflammatory reaction.79

Following acute neonatal hemorrhagic brain injury in 

neonatal rats, melatonin was administered to assess germinal 

matrix hemorrhage. Lekic et al85 concluded that melatonin is 

an efficient antioxidant that can guard the infant’s brain from 

the posthemorrhagic ramifications of mental retardation and 

cerebral palsy. Husson et al86 showed that melatonin, through 

its adenylate cyclase inhibition, showed neuroprotection of 

the murine periventricular white matter against neonatal 

excitotoxicity challenge. Mice that received melatonin 

through the intraperitoneal route expressed 82% reduction 

in size of ibotenate-induced white matter cysts. The study 

also concluded that melatonin can bolster secondary lesion 

repair of white matter lesions. Robertson et al75 studied 

the neuroprotective outcome of adding melatonin to thera-

peutic hypothermia after transient HI in a swine model of 

perinatal asphyxia using magnetic resonance spectroscopy 

biomarkers backed by immunohistochemistry. Amid global 

HI insult, 17 newborn piglets were randomized to receive 

either therapeutic hypothermia (33.5°C from 2 to 26 h after 

resuscitation, n=8) or therapeutic hypothermia plus intra-

venous melatonin (n=9). The dose of melatonin used was 

5 mg/kg/h over 6 h initiated at 10 min after resuscitation 

and repeated for 24 h. The study showed that plasma levels 

of melatonin were 10,000 times higher in the hypothermia 

plus melatonin compared to the hypothermia alone group. In 

addition, melatonin-increased hypothermia greatly decreased 

the HI-induced area, as projected by the proton magnetic 

resonance spectroscopy lactate/N-acetyl aspartate and lactate/

total creatine ratios in the deep gray matter.

Pazar et al87 investigated the neuroprotective effects of 

melatonin in an experimental hemolysis-induced hyperbili-

rubinemia in 72 newborn Sprague–Dawley rats. Phenylhy-

drazine hydrochloride (PHZ; 75 mg/kg) was injected at 0 and 

24 h. The rats were administered either saline or melatonin 

(10 mg/kg) half an hour prior to the first and second PHZ 

injections and 24 h after the second PHZ injections. The 

control group (n=24) were injected with saline, but not PHZ. 

The study concluded that augmented TUNEL cells in the 

hippocampus of saline-treated PHZ group were decreased 

by melatonin treatment, indicating the neuroprotective 

and antiapoptotic effects of melatonin on the oxidative 

neuronal damage of the newborn rats with hemolysis and 

hyperbilirubinemia.

Melatonin as a neuroprotector 
in human clinical studies
The neuroprotective outcomes of melatonin in the fetal brain 

have been assessed in several human studies. In a randomized 

controlled pilot study, Aly et al16 tested the clinical outcomes 

of melatonin and neurophysiological aftermath of neonates 

with HIE. The study included 45 newborns, 30 with HIE and 

15 healthy controls. The dose of melatonin used was 10 mg/kg 

daily for a total of five doses. Serum nitric oxide (NO) and 

melatonin as well as plasma superoxide dismutase (SOD) were 

measured for the 45 newborns and at 5 days for the HIE groups 

(N=30). The study concluded that compared with healthy 

neonates, the HIE groups had increased melatonin, SOD, and 

NO. Moreover, at 5 days, the melatonin/hypothermia group 
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had a higher level of melatonin (P,0.001) and decrease in NO 

(P,0.001), and SOD (P=0.004). The melatonin/hypothermia 

group had fewer seizures on follow-up electroencephalogram 

and fewer white matter abnormalities on MRI. Furthermore, 

at 6 months, the melatonin/hypothermia group had better 

mortality rate without developmental or neurological abnor-

malities (P,0.001).

Fulia et al88 investigated the implications of free radicals in 

the pathogenesis of neonatal asphyxia and its complications. 

The study that included 20 asphyxiated newborns measured 

malondialdehyde (a product of lipid peroxidation) and the 

nitrite/nitrate levels before and after the administration of 

melatonin within the first 6 h of life. One group of newborns 

received a total of 80 mg of melatonin orally (eight doses 

of 10 mg each separated by 2 h intervals). A single blood 

sample was gathered prior to melatonin administration, and 

two further blood samples (at 12 and 24 h) were gathered after 

the oral administration of melatonin. The study showed that 

serum malondialdehyde and nitrite + nitrate concentrations 

in newborns with asphyxia prior to treatment were markedly 

higher than those in infants without asphyxia. In the asphyxi-

ated group that received melatonin, there was a marked 

decrease in levels of malondialdehyde and nitrite/nitrate 

levels at both 12 and 24 h. Thirty percent of the asphyxiated 

children who did not receive melatonin died within 72 h after 

birth, whereas all the asphyxiated newborns who received 

melatonin lived. The study concluded that the melatonin may 

be useful and advantageous in the management of newborn 

infants with asphyxia.

Carloni et al89 investigated whether administering mela-

tonin before or after HI in immature rats provides significant 

protection and long-lasting benefit on ischemic outcomes. The 

authors concluded that brain injury was significantly debili-

tated in the melatonin-treated ischemic group. Signorini et al90 

studied the production of oxidative damage mediators and 

the likely outcomes of melatonin administration in a model 

of HIE in newborn rats (7 days old). The study showed that 

HI induces an augmentation in desferrioxamine-chelatable 

free iron in the cerebral cortex, which can lead to cerebral 

oxidative stress, whereas the cerebral injury by the oxidative 

stress may be avoided by melatonin administration.

Maternal–fetal transfer of melatonin in pregnant women 

near term has been documented by measuring the concentra-

tion of melatonin in the fetal circulation after its administra-

tion. The oral administration of 3 mg of melatonin resulted 

in augmentation in the serum levels with maximum values 

being observed 2 h after drug administration; the blood levels 

of melatonin in the umbilical vein corresponded well to those 

in the maternal vein.91 These results solidify the concept 

that melatonin is easily transferred from maternal to fetal 

circulation and can be an option for its therapeutic use as an 

antioxidant in patients with preeclampsia.

Safety profiles and possible side 
effects of melatonin
Human investigations have demonstrated melatonin toxicity 

to be very low with negligible side effects.16,88,92 Melatonin 

can be used in children with severe learning disorders to 

ameliorate sleep patterns93,94 and learning disabilities,93 in 

neonates with respiratory distress syndrome,95–97 and in 

children with attention deficit/hyperactivity disorder and 

chronic sleep onset insomnia.98

Experiments on animals have shown that even high 

doses of melatonin (200 mg/kg/day) from gestational 

days 6–19 did not have any teratogenic or any negative 

side effect on rat newborns.99 Another study conducted 

by Sadowsky et al100 showed that high melatonin dose did 

not affect the myometrial electromyography activity in the 

pregnant sheep at 138–142 days gestation (term =147 days 

gestation).

However, there is a concern with regard to the inhibi-

tion effect of melatonin on the synthesis of prostaglandins, 

and hence on the endocrine and circulatory capacity in the 

fetus.101 In addition, there was a report of decreased threshold 

of seizure activities in four children with neurologic impair-

ments treated with melatonin.102

Conclusion
Melatonin seems to be safe and beneficial in protecting 

neonatal brains from perinatal HIE. However, the number 

of infants included in the studies were small, and therefore, 

larger randomized controlled trials in humans are needed 

to implement a long-waited feasible treatment to avoid the 

dreaded sequelae of HIE.
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