Association between *Helicobacter pylori* seropositivity and mild to moderate COPD: clinical implications in an Asian country with a high prevalence of *H. pylori*

Ha Youn Lee¹,²
Ji Won Kim²,³
Jung Kyu Lee²,⁴
eun Young Heo²,⁴
Hee Soon Chung²,⁴
Deog Keom Kim¹,³

¹Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital; ²Department of Internal Medicine, Seoul National University College of Medicine; ³Division of Gastroenterology; ⁴Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University College of Medicine, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul, Republic of Korea

Background: *Helicobacter pylori* infection is a major cause of gastric diseases. The clinical implications of *H. pylori* infection in various diseases outside the gastrointestinal system have also been reported, including in some respiratory disorders. In this study, we investigated the seroprevalence of *H. pylori* in patients with mild to moderate COPD in an Asian country with a high prevalence of *H. pylori* infection. Also, we aimed to elucidate the association between the seroprevalence of *H. pylori* and the decline of lung function in patients with COPD.

Methods: Participants who underwent a medical checkup for *H. pylori* at a referral hospital in Korea were recruited for this study. All participants were tested for *H. pylori* infection using an immunoassay of the *H. pylori*-specific immunoglobulin G (IgG) concentration and a rapid urease test at the time of endoscopy with a gastric mucosal specimen. We assessed the decline in lung function using the spirometric data of those who underwent spirometry more than three times.

Results: In total, 603 participants (201 patients with COPD and 402 controls) were analyzed. The seroprevalence of *H. pylori* IgG in the patients and controls was 45.8% and 52.2%, respectively (P=0.134). The *H. pylori* IgG level in patients with COPD was not significantly different from that of the controls (114.8 and 109.6 units/mL, respectively; P=0.549). In addition, there were no significant differences in the annual forced expiratory volume in 1 second or forced vital capacity between the participants with *H. pylori* seropositivity and seronegativity.

Conclusion: This study showed no relationship between *H. pylori* infection and COPD in a country with a high burden of *H. pylori* infection. Furthermore, *H. pylori* infection did not affect the rate of lung function decline in this study population.

Keywords: *H. pylori*, COPD, lung function decline

Introduction

Helicobacter pylori can be resistant to the acidic conditions of the stomach and colonizes the gastric epithelium by producing urease.¹ This microorganism also causes gastric inflammation by various virulence factors such as vacuolating cytotoxin A, cytotoxin-associated gene product A, and neutrophil-activating protein A.¹² *H. pylori* infection is a major cause of gastric diseases such as chronic active gastritis, peptic ulcer disease, and mucosa-associated lymphoid tissue lymphoma.³⁻⁵ Infection with *H. pylori* can be detected by gastric mucosal biopsy, a rapid urease test, and simple serologic tests. Despite the limitations of serologic testing for *H. pylori* infection, this technique has been widely used because it is simple and noninvasive.
Interestingly, *H. pylori* infection may not be restricted to the stomach. Since the first report that coronary heart disease might be associated with *H. pylori* seropositivity in 1994, several studies on the implications of *H. pylori* infection in various diseases outside the gastrointestinal system have been published. Such systems include the cardiovascular, neurological, dermatological, immunological, hematological, hepatobiliary, ophthalmological, endocrinological, and gynecological systems. Until now, the extragastrointestinal implications of *H. pylori* infection have been hypothesized to be associated with systemic inflammation, which might in turn be associated with *H. pylori*-induced gastric inflammation. The chronic gastric inflammatory response induces systemic inflammation and immune responses by altering the polarized T-helper 1 and 2 responses. However, whether *H. pylori*-induced inflammation plays a role in the pathogenesis of extragastric diseases remains unclear.

An association between *H. pylori* infection and respiratory disease has recently been reported. Bronchiectasis, tuberculosis, and lung cancer are reportedly associated with higher *H. pylori* seroprevalence. However, several epidemiological studies have shown an inverse relationship between *H. pylori* infection and the incidence of allergic airway diseases including asthma. A few studies, including some with small study samples, have identified a potential association between *H. pylori* infection and COPD. The prevalence of *H. pylori* seropositivity was found to be higher in patients with COPD than in those without COPD. Also, a significant relationship between *H. pylori* seropositivity and the forced expiratory volume in 1 second (FEV₁) was recently demonstrated. However, considering that the prevalence of *H. pylori* infection exhibits regional variability, we suspected that the clinical impact of *H. pylori* infection on the prevalence of COPD and lung function may differ according to the regional prevalence of *H. pylori*. Nevertheless, until now, no reports have addressed the association between *H. pylori* infection and COPD and the impact of *H. pylori* infection on lung function in Asian countries with a high burden of *H. pylori* infection.

In this study, we aimed to elucidate the association between *H. pylori* infection and the presence of mild to moderate COPD in an Asian country with high prevalence of *H. pylori* infection. We also aimed to identify the impact of *H. pylori* infection on declining lung function in patients with COPD.

Methods

Study population

For this case–control study, we recruited participants aged ≥40 years who underwent a medical checkup and serologic test for *H. pylori* at Seoul Metropolitan Government-Seoul National University Boramae Medical Center from January 2013 to February 2015. Routine checkups during the study period also included esophagogastroduodenoscopy (EGD), spirometry, and a basic demographic questionnaire. The patients’ information was obtained from the clinical records and anonymized prior to analysis. The Institutional Review Board of Seoul Metropolitan Government–Seoul National University Boramae Medical Center approved the study protocol (IRB No 16-2015-40/041) however informed consent was not sought as per IRB requirements with retrospective studies.

Selection of cases and controls

Among the participants who underwent a medical checkup and serology test for *H. pylori*, patients with mild to moderate COPD were selected as cases and participants without airflow limitation on spirometry were regarded as controls.

Mild to moderate COPD was defined as a prebronchodilator FEV₁/forced vital capacity (FVC) ratio of <0.7 and FEV₁ (% predicted) of ≥50%; patients with these values were assigned to the case group. Participants with an FEV₁/FVC ratio of ≥0.7 were assigned to the control group. Age- and sex-matched controls were randomly selected at a control:case ratio of 2:1.

We excluded participants with allergic diseases such as asthma or allergic rhinitis as well as those with lung diseases that may contribute to airflow limitations such as lung cancer, pulmonary tuberculosis, and bronchiectasis involving more than one lobe.

The following clinical information was collected: age, sex, body mass index, comorbidities, smoking status, spirometric and laboratory data, radiographic findings, and EGD findings.

Among 236 patients with a defined airflow limitation, 35 patients were excluded as follows: 14 patients with asthma, eight patients with bronchiectasis involving more than one lobe, two patients with lungs destroyed by tuberculosis, one patient with empyema, four patients without available EGD data, five patients with severe COPD characterized by an FEV₁ of <50%, and one patient without a matched control. Finally, 201 patients with mild to moderate COPD and their 402 matched controls were included in this analysis.
Measurements

Seropositivity and rapid urease test for *H. pylori* infection

H. pylori-specific immunoglobulin G (IgG) concentrations were measured with a commercially available enzyme-linked immunosorbent assay (DIESSE Diagnostica Senese, Siena, Italy) according to the manufacturer’s protocol. The lower limit of a positive *H. pylori* IgG titer was 20 units/mL. To determine the *H. pylori* infection status, a rapid urease test (CLO test; Ballard Medical Products, Draper, UT, USA) was performed at the time of endoscopy with a gastric mucosa specimen obtained by endoscopic biopsy. The CLO test was positive when the gel pellet turned dark pink to magenta color for up to 24 hours.

Spirometry and annual rate of lung function decline

Spirometry was performed according to the criteria of the American Thoracic Society. The method described by Morris was used for the predicted FEV₁ and FVC. Prebronchodilator spirometry data were used for analysis because postbronchodilator testing is not performed in Korea. To assess the annual decline in lung function, we collected the participants’ spirometry data if they had undergone spirometry more than three times per year since January 2010.

Statistical analysis

The chi-square test was used to compare categorical variables, a *t*-test was used to compare normally distributed continuous data, and the Wilcoxon rank sum test was used to compare non-normally distributed continuous variables. The associations between the *H. pylori* IgG level and various pulmonary function parameters were investigated using Pearson’s correlation coefficient. Multivariable association analysis was performed with logistic regression analyses, adjusting for sex, age, smoking status, gastric diseases known to be related to *H. pylori* infection, and the severity of airflow limitation as defined by FEV₁. Concordance between the CLO test result and IgG seropositivity for *H. pylori* infection was analyzed with the kappa index. Decline in FEV₁ or FVC over time was analyzed with random-slope, random-intercept mixed linear regression, adjusting for age, sex, body mass index, smoking status, and baseline FEV₁ or FVC. All statistical analyses were performed using Statistical Package for the Social Sciences for Windows (version 22.0; IBM Corporation, Armonk, NY, USA) and Stata software (version 12.1; StataCorp LP, College Station, TX, USA).

Results

Baseline characteristics of the study population

In total, 603 participants (201 patients with COPD and 402 controls) were analyzed in this study. The baseline characteristics of the study population are listed in Table 1. The participants’ mean age was 60 years, and most of them were men (87.1%). The mean FEV₁ of patients with COPD was 88.60%±14.9% of predicted, and nonsmokers comprised 15.4% of all patients with COPD. Hypertension and diabetes were the most common comorbidities and were suggested to be associated with *H. pylori* infection. The prevalence rates of these suggested comorbidities were not significantly different between the cases and controls.

H. pylori seropositivity and COPD

As shown in Table 2, IgG seropositivity for *H. pylori* was present in about half the participants in each group without a significant difference (cases, 45.8%; controls, 52.2%; *P* = 0.13). Also, in a quantitative comparison of the association between the IgG level of *H. pylori* and the presence of...
COPD, no significant difference was found between the two groups (cases, 114.8 units/mL; controls, 109.6 units/mL; P=0.55) (Table 2; Figure 1).

In a comparison of the concordance between *H. pylori* seropositivity and the CLO test results, 71 of 89 (79.8%) with a positive CLO test result showed *H. pylori* seropositivity and 99 of 147 (67.3%) patients with a negative CLO test result showed *H. pylori* seronegativity (kappa index, 0.442; P<0.001) (Table 3). The discordant fractions between the two tests were not different in either group (kappa index for cases, 0.407; kappa index for controls, 0.464; P<0.001 for both) (Table 3).

Figure 1 Helicobacter pylori serum IgG levels in COPD patients and control subjects.
Note: Displayed as median ± IQR.
Abbreviations: IgG, immunoglobulin G; IQR, interquartile range.

H. pylori seropositivity and severity of airflow limitation

When the airflow limitation (FEV₁) in patients with COPD was graded using the Global Initiative for Chronic Obstructive Lung Disease criteria, there was no significant difference in *H. pylori* seropositivity between patients with stage 1 and stage 2 COPD (46.1% and 44.9%, respectively; P=0.89 for all comparisons). In addition, no relationship between the serum level of IgG for *H. pylori* and FEV₁ was found in the cases or controls, or among the entire study population (n=187, r=-0.07, P>0.05) (Figure 2). Using an absolute value of FEV₁, there was no relationship between the serum level of IgG for *H. pylori* and FEV₁ (n=187, r=-0.026, P=0.729).

Multivariate analysis of the association between *H. pylori* infection and COPD

The presence of *H. pylori* infection was evaluated by seropositivity and the CLO test. Therefore, the association between *H. pylori* infection and COPD was tested with respect to seropositivity and the CLO test results.

The univariate analysis of associations with seropositivity revealed that smoking status, presence of cardiovascular disease, gastric diseases including gastritis and peptic ulcer disease, and COPD were not associated with *H. pylori* seropositivity, while gastroesophageal reflux disease (GERD) showed a significant negative association with *H. pylori* seropositivity (Table 4). After adjustment for smoking status, presence of cardiovascular disease, presence of endoscopic gastritis and peptic ulcers, and GERD, we found that COPD was not associated with *H. pylori* seropositivity in this analysis. Only GERD was negatively associated with *H. pylori* seropositivity.

A total of 232 (38.5%) study participants underwent the CLO test because it was performed at the discretion of the endoscopist. Of these 232 patients, 89 (38.4%) showed CLO positivity. The CLO test was not associated with COPD, smoking status, the presence of cardiovascular disease, presence of endoscopic gastritis and peptic ulcers, and GERD, we found that COPD was not associated with *H. pylori* seropositivity in this analysis. Only GERD tended to be associated with a lower rate of CLO positivity.

Impact of *H. pylori* seropositivity on lung function decline

A total of 195 participants (51 cases, 144 controls) underwent spirometry three or more times per year. Among them, 93 (47.7%) exhibited *H. pylori* seropositivity. Because the final trends were not different between cases and controls, we assessed the association between *H. pylori* seropositivity and the decline in lung function in the total study population. Even in the whole study population, there was no difference

Table 2 The prevalence of positive *Helicobacter pylori* serology by COPD stage

<table>
<thead>
<tr>
<th></th>
<th>COPD (n=201)</th>
<th>Control (n=402)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>H. pylori IgG seropositivity n(%)</td>
<td>92 (45.8)</td>
<td>210 (52.2)</td>
<td>0.134</td>
</tr>
<tr>
<td>H. pylori IgG level, units/mL Median (IQR)</td>
<td>114.8 (33.6–191.0)</td>
<td>109.6 (34.3, 166.4)</td>
<td>0.549</td>
</tr>
</tbody>
</table>

Notes: *P*-value from chi-squared test, **P*-value from Mann-Whitney test.
Abbreviations: IgG, immunoglobulin G; IQR, interquartile range.

Table 3 The association of seropositivity of *Helicobacter pylori* and CLO tests

<table>
<thead>
<tr>
<th></th>
<th>CLO positive patients (89)</th>
<th>CLO negative patients (147)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H. pylori seropositive (119)</td>
<td>71 (79.8%)</td>
<td>48 (32.7%)</td>
</tr>
<tr>
<td>H. pylori seronegative (117)</td>
<td>18 (20.2%)</td>
<td>99 (67.3%)</td>
</tr>
</tbody>
</table>

Notes: Kappa index: 0.442, P<0.001.
Although a few studies have suggested a cross-sectional relationship between \textit{H. pylori} seroprevalence and COPD, there is no definitive evidence of a causal pathophysiologic association between \textit{H. pylori} and COPD. Moreover, compared to the two previous studies, our study included relatively healthy patients because we used data from participants in an annual health screening program. GERD and cigarette smoking have been suggested as important confounding factors that explain this inconsistent seroprevalence in patients with COPD. As in the present study, many epidemiological studies have demonstrated a negative association between \textit{H. pylori} infection and GERD.21,22 However, according to the epidemiologic reports of COPD, GERD is one of the most common comorbidities in patients with COPD, especially advanced-stage COPD.23,24 This inverse relationship among COPD, GERD, and \textit{H. pylori} infection is related to the inconsistent seroprevalence of \textit{H. pylori} in patients with COPD. Nevertheless, because only patients with mild to moderate COPD were recruited in this study, the impact of COPD severity on the prevalence of GERD and \textit{H. pylori} infection may be minimal.

Cigarette smoking might also have an ambivalent influence on the association between COPD and \textit{H. pylori} infection. Smoking is a major risk factor for the development of COPD, but whether \textit{H. pylori} infection is associated with smoking remains unclear. Both higher and lower seropositivity of \textit{H. pylori} have been reported in smokers compared with nonsmokers.25–28

Seropositivity was relatively high in the present study (up to half of the patients with COPD), similar to the general population of Korea.29,30 Therefore, \textit{H. pylori} infection is so common that it may have only a modest effect on the incidence and disease progression of COPD in countries with a high burden of \textit{H. pylori} infection, even if it is a real contributor.

Another point should be considered when interpreting the results of studies on the seroprevalence of \textit{H. pylori} and its

![Figure 2. Correlation between Helicobacter pylori IgG titer and FEV,](image-url)

Figure 2. Correlation between \textit{Helicobacter pylori} IgG titer and FEV,.

Notes: The distribution of \textit{H. pylori} IgG titer according to the airflow limitation. Linear regression of the \textit{H. pylori} IgG versus FEV, (%). No significant correlation was found between two variables (n=187, r=-0.071, P=0.333).

Abbreviations: FEV, forced expiratory volume in 1 second; IgG, immunoglobulin G.

in the annual rate of decline in the FEV, between the \textit{H. pylori}-seropositive and -seronegative groups (7.8±6.8 and 6.8±6.6 mL/year, respectively; \(P=0.92\)) (Table 5; Figure 3). Similarly, the annual rate of decline in the FVC was not different between the \textit{H. pylori}-seropositive and -seronegative groups (28.9±8.7 and 27.4±8.5 mL/year, respectively; \(P=0.90\)).

Discussion

The seroprevalence of \textit{H. pylori} among patients with COPD was not different from that of healthy controls in this study. Also, \textit{H. pylori} seropositivity did not accelerate the annual rate of lung function decline during the 3-year follow-up period. This indicates that the seroprevalence of \textit{H. pylori} might not be associated with the incidence and progression of COPD in countries with a high burden of \textit{H. pylori} infection. Our results regarding lung function decline are consistent with a recent large cohort study that demonstrated no difference in the annual rate of lung function decline between seropositive and seronegative individuals.17

<table>
<thead>
<tr>
<th>Variables</th>
<th>Seropositivity</th>
<th>CLO positivity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Unadjusted OR (95% CI)</td>
<td>P-value</td>
</tr>
<tr>
<td>Smoking</td>
<td>0.857 (0.602–1.220)</td>
<td>0.391</td>
</tr>
<tr>
<td>CVD</td>
<td>1.510 (0.531–4.297)</td>
<td>0.440</td>
</tr>
<tr>
<td>Gastritis/peptic ulcer</td>
<td>1.343 (0.761–2.371)</td>
<td>0.309</td>
</tr>
<tr>
<td>GERD</td>
<td>0.482 (0.322–0.721)</td>
<td>0.001</td>
</tr>
<tr>
<td>COPD</td>
<td>0.772 (0.550–1.084)</td>
<td>0.135</td>
</tr>
</tbody>
</table>

Note: P-value from multiple logistic regression analysis, adjusting for sex, age, smoking status, gastric diseases known to be related to \textit{H. pylori} infection, and the severity of airflow limitation as defined by FEV,.

Abbreviations: CI, confidence interval; GERD, gastroesophageal reflux disease; OR, odds ratio; CVD, cardiovascular disease.
Table 5 Impact of Helicobacter pylori test on the lung function decline

<table>
<thead>
<tr>
<th></th>
<th>H. pylori seropositive (93)</th>
<th>H. pylori seronegative (102)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEV₁ (SE)</td>
<td>7.8 mL/year (6.8)</td>
<td>6.8 mL/year (6.6)</td>
<td>0.92</td>
</tr>
<tr>
<td>FVC (SE)</td>
<td>28.9 mL/year (8.7)</td>
<td>27.4 mL/year (8.5)</td>
<td>0.90</td>
</tr>
</tbody>
</table>

Note: Adjusted by age, sex, BMI, initial FEV₁ or FVC, smoking status.

Abbreviations: BMI, body mass index; FEV₁, forced expiratory volume in 1 second; FVC, forced vital capacity; SE, standard error.

Figure 3 Impact of Helicobacter pylori seropositivity on lung function decline.

Notes: (A) FEV₁ decline and (B) FVC decline.
Abbreviations: FEV₁, forced expiratory volume in 1 second; FVC, forced vital capacity.
on the decline in lung function were not considered because we could not verify the use of respiratory medications.

In conclusion, this study demonstrated no association between H. pylori infection and mild to moderate COPD in a country with a high burden of H. pylori infection. Furthermore, H. pylori infection did not affect the rate of decline in lung function in this study population.

Author contributions

DKK designed and coordinated the study. HYL performed the data analysis and drafted the manuscript. JWK participated in interpretation of the data. JKL, EYH, and HSC contributed to acquire these data and helped with reviewing the study and the manuscript. All authors contributed toward data analysis, drafting and revising the paper and agree to be accountable for all aspects of the work.

Disclosure

The authors report no conflicts of interest in this work.

References
