The clinicopathological significance of RUNX3 hypermethylation and mRNA expression in human breast cancer, a meta-analysis

Xiao-yun Song1,*
Bo-yan Li1,2,*
En-xiang Zhou3
Feng-xia Wu4

1Department of Thoracic Surgery, Beijing Chest Hospital, Capital Medical University, Beijing, People’s Republic of China; 2Department of Breast Surgery, Inner Mongolia Forestry General Hospital, Inner Mongolia, People’s Republic of China; 3Department of General Surgery, the Second Xiangya Hospital of Central South University, Changsha, Hunan, People’s Republic of China; 4Department of Breast Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, People’s Republic of China

*These authors contributed equally to this work

Abstract: Aberrant promoter methylation of RUNX3 has been reported in several tumors including human breast cancer (BC). However, the association between RUNX3 hypermethylation and incidence of BC remains elusive. In this study, a detailed literature search was performed in Medline and Google Scholar for related research publications. Analysis of pooled data were executed. Odds ratios with corresponding confidence intervals were determined and summarized, respectively. Finally, 13 studies were identified for the meta-analysis. Analysis of the pooled data showed that RUNX3 hypermethylation was significantly higher in both ductal carcinoma in situ and invasive ductal carcinoma (IDC) than in normal breast tissues. In addition, RUNX3 methylation was significantly higher in IDC than in benign tumor. However, RUNX3 methylation was not significantly higher in IDC than in ductal carcinoma in situ. We also determined that RUNX3 hypermethylation was significantly higher in ER positive BC than in ER negative BC. In addition, high RUNX3 mRNA expression was found to be correlated with better overall survival and relapse-free survival for all BC patients. Our results strongly support that RUNX3 hypermethylation may play an important role in BC incidence. RUNX3 methylation is a valuable early biomarker for the diagnosis of BC. Further large-scale studies will provide more insight into the role of RUNX3 hypermethylation in the carcinogenesis and clinical diagnosis of BC patients.

Keywords: breast cancer, estrogen receptor, RUNX3, meta-analysis, methylation, odds ratio

Introduction
Breast carcinogenesis is a multi-step process that originates as flat epithelial atypia, progresses to atypical ductal hyperplasia, advances to ductal carcinoma in situ (DCIS), and culminates as invasive ductal carcinoma (IDC).1,2 Although early diagnostic tools, surgical approaches, and molecular targeted therapy have undergone considerable improvements, the incidence of breast cancer (BC) is still increasing, and the outcome of BC patients remains disappointing due to the high postoperative recurrence rate and metastasis.3,4 Thus, the identification of the molecular mechanisms of incidence and development of BC is still required and will help to provide better prognostic prediction and individualized treatments of patients with higher chances of BC recurrence.

RUNX family genes consist of RUNX1, RUNX2, and RUNX3. They are essential regulators of cell fate in the regulation of p53-dependent DNA damage response and/or tumorigenesis.5,7 RUNX3 interacts with CTNNB1/TCFs and prevents the transactivation by inhibiting CTNNB1/TCFs’ DNA binding.8 Ito has observed that RUNX3 downregulates Wnt signaling by directly preventing β-catenin/TCFs in gastric and colon cancers.9 Therefore, RUNX3 via Wnt signaling pathway contributes to carcinogenesis as a tumor suppressor. The activation of the Wnt/CTNNB1 pathway was observed following...
knockdown of PTEN in human breast cells.10 Furthermore, the downregulation of the secreted Wnt inhibitor Sfrp1 was reported in most invasive human breast carcinomas.11 RUNX3 was first reported as a tumor suppressor because of the causal link between the loss of RUNX3 and gastric carcinogenesis.12 Since then, \textit{RUNX3} has been observed as a suppressor that is inactivated in a wide variety of pre-invasive and invasive epithelial and mesenchymal neoplasms.13 RUNX3 protein regulates the growth-suppressive effects of TGF-\(\beta\) by associating with SMAD, a downstream protein in the signaling pathway.14 Taken together, RUNX3 as a suppressor plays a critical role in the development of BC via TGF-\(\beta\)15 and Wnt signaling pathway.16 Even if previous reports showed that inactivation of the \textit{RUNX3} gene is mainly caused by its promoter hypermethylation in BC, the positive rates of \textit{RUNX3} hypermethylation in BC were extraordinarily diverse. In addition, it remains elusive whether or not \textit{RUNX3} gene hypermethylation is correlated with the early stage of BC. In this study, we performed a meta-analysis to determine the effects of \textit{RUNX3} hypermethylation on the incidence of BC. In addition, we evaluated \textit{RUNX3} mRNA as a prognostic marker in BC patients.

\section*{Methods}

\subsection*{Search strategy and methodological assessment}

We searched Embase, PubMed, and ISI web of knowledge to select studies from January 1, 1998 to October 2015 using the terms: “breast” and “cancer or tumor or neoplasm or carcinoma”, “methylation”, and “RUNX3”. We also manually searched the reference lists of the retrieved reviews and articles for additional studies.

We used the following criteria for identification of studies: 1) \textit{RUNX3} methylation examined in the primary BC tissues, 2) research showed the correlation between \textit{RUNX3} methylation and BC incidence, 3) studies contained enough data to determine odds ratio (OR) and 95\% confidence interval (CI). The exclusion criteria were: 1) reviews, letters, case reports, editorials, conference abstracts, and expert opinions, 2) all articles regarding cell lines, in vitro/ex vivo studies, and human xenografts were also excluded.

We reviewed and evaluated data from the eligible studies. The following information was recorded for each study: year of publication, the first author’s name, authors’ country, number of cases, sample source, methylation detection method, clinicopathological parameters, methylation rate, and follow-up. Disagreements were resolved by discussion and consensus. Heterogeneity of studies was evaluated to determine whether the data could be used and analyzed for a meta-analysis. Data for study characteristics were summarized in a table format.

For the methodological evaluation of the studies, we read through each article independently, and assessed and scored them according to the Newcastle–Ottawa Quality Assessment Scale (NOQAS), for cohort and case-control studies.17 Studies are rated from one to nine stars in the NOQAS, with nine stars indicating a high-quality study. Any discrepancies or disagreements were discussed, and if consensus could not be achieved, a third reviewer resolved the issue. The Institutional Review Board of Beijing Chest Hospital does not require ethics approvals for these case studies.

\subsection*{Prognostic value of \textit{RUNX3} mRNA expression in BC patients}

An online database18 was used to determine the relevance of \textit{RUNX3} mRNA expression to prognosis of BC patients. We used the database that was established using gene expression data and survival information of 3,455 BC patients. \textit{RUNX3} gene was entered into the database (http://kmplot.com/analysis/index.php?p=service&cancer=breast) to get Kaplan–Meier survival plots. The mRNA expression above or below the median separates the cases into high expression and low expression. Hazard ratio and 95\% CIs, as well as logrank \(P\) were calculated.

\subsection*{Statistical analysis}

Analysis was performed using the Review Manager 5.2 (Cochrane Collaboration, Oxford, UK) and STATA 12.0 (StataCorp LP, College Station, TX, USA). Heterogeneity among studies was determined with Cochran’s Q test19 and the \(I^2\) statistic.20,21 If there was substantial heterogeneity (\(P\) values \(\geq 50\%\)), a random-effects model was used to pool data and attempt to identify potential sources of heterogeneity based on subgroup analyses. When heterogeneity was not an issue (\(P\) values \(< 50\%\)), a fixed effect model was used to calculate parameters. The pooled frequency of \textit{RUNX3} hypermethylation and 95\% CIs were estimated. \(P\)-values tailed less than 0.05 were considered statistically significant.

A method reported by Egger et al was used for assessment of publication bias.22 The analysis of meta-regression and publication bias was evaluated using STATA version 10.0. We also examined reasons for statistical heterogeneity using meta-regression, subgroup analysis, and sensitivity analysis.

\subsection*{Results}

\subsection*{Identification of relevant studies}

Six hundred and twenty-three articles were identified by the search method as described earlier. Six hundred and ten of those were excluded due to laboratory studies, non-original
articles (review), or studies irrelevant to the current analysis. Finally, there were 13 studies included in final analysis, as shown in Figure 1.

Study characteristics

Thirteen reports published from 2005 to 2015 were selected and eligible for this meta-analysis. A total of 718 BC patients from the People’s Republic of China, Japan, Singapore, South Korea, and USA were enrolled. Basic study characteristics are shown in Table 1.

The correlation of RUNX3 hypermethylation with carcinogenesis

Comparison of RUNX3 hypermethylation in DCIS, IDC tissue, and normal breast tissue

We first assessed whether RUNX3 hypermethylation was significantly higher in DCIS than in normal breast tissues. The pooled OR from four studies including 134 DCIS and 103 normal breast tissue is shown in Figure 2A (OR = 18.27, 95% CI = 7.67–43.54, z score = 6.56, P < 0.00001). There was no evidence of heterogeneity across the studies (P-value for heterogeneity = 0.13; I² = 47%). RUNX3 hypermethylation was also significantly higher in IDC than in normal breast tissues. The pooled OR from five studies including 160 IDC and 123 normal breast tissue is shown in Figure 2B (OR = 29.2, 95% CI = 12.52–68.14, z score = 7.81, P < 0.00001). There was also no evidence of heterogeneity across the studies (P-value for heterogeneity = 0.23; I² = 29%).

Comparison of RUNX3 hypermethylation in IDC vs benign tumor, IDC vs DCIS

We then determined that RUNX3 methylation was significantly increased in IDC compared to a benign tumor, OR was 30.90 with 95% CI = 4.20–227.48, z score = 3.37, P = 0.0008, F = 66%, P = 0.03 (Figure 3A). However, RUNX3 methylation was not significantly increased in IDC compared to DCIS, OR was 1.61 with 95% CI = 0.94–2.76, z score = 1.73, P = 0.08, F = 0%, P = 0.8 (Figure 3B).

Association of RUNX3 hypermethylation with estrogen receptor status in BC

Then, we determined whether or not RUNX3 hypermethylation rate in BC was associated with ER status in BC patients. The pooled OR from four studies including 207 ER positive BC and 146 ER negative BC is shown in Figure 4 (OR = 8.16, 95% CI = 4.53–14.71, z score = 6.99, P < 0.00001, F = 43%, P = 0.15).

Figure 1 Schematic flow diagram for selection of included studies.
Table 1 Main characteristics of included studies

<table>
<thead>
<tr>
<th>Study</th>
<th>Country</th>
<th>Patients (n)</th>
<th>Methods</th>
<th>Primary aims</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yan et al^1^</td>
<td>People’s Republic of China</td>
<td>113</td>
<td>Methylation specific PCR (MSP)</td>
<td>To investigate the relationship between hypermethylation of RUNX3 gene promoter and ER in BC patients.</td>
</tr>
<tr>
<td>Wang et al^6^</td>
<td>People’s Republic of China</td>
<td>40</td>
<td>MSP</td>
<td>To investigate the methylation status of RUNX3 promoter and RUNX3 expression in breast lesion tissues.</td>
</tr>
<tr>
<td>Li et al^7^</td>
<td>People’s Republic of China</td>
<td>48</td>
<td>MSP</td>
<td>To investigate the methylation status of the RUNX3 gene and protein expression in BC patients.</td>
</tr>
<tr>
<td>Park et al^8^</td>
<td>South Korea</td>
<td>129</td>
<td>Methylight</td>
<td>To investigate the methylation status of 15 tumor suppressors in BC patients.</td>
</tr>
<tr>
<td>Qiao et al^9^</td>
<td>People’s Republic of China</td>
<td>60</td>
<td>MSP</td>
<td>To investigate the methylation status of the RUNX3 gene in early diagnosis of BC patients.</td>
</tr>
<tr>
<td>Park et al^10^</td>
<td>South Korea</td>
<td>35</td>
<td>Methylight</td>
<td>To assess the role of seven tumor suppressors in BC patients.</td>
</tr>
<tr>
<td>Subramaniam et al^11^</td>
<td>Singapore</td>
<td>40</td>
<td>MSP, IHC</td>
<td>To investigate the role of RUNX3 gene and protein in the progression of BC patients.</td>
</tr>
<tr>
<td>Du et al^12^</td>
<td>People’s Republic of China</td>
<td>40</td>
<td>MSP, IHC</td>
<td>To investigate the role of RUNX3 gene and protein in the prediction of BC.</td>
</tr>
<tr>
<td>Tian and Chen^13^</td>
<td>People’s Republic of China</td>
<td>56</td>
<td>MSP</td>
<td>To determine the correlation of RUNX3 methylation in BC and its pathologic features.</td>
</tr>
<tr>
<td>Subramaniam et al^11^</td>
<td>Singapore</td>
<td>61</td>
<td>MSP, IHC</td>
<td>To investigate the role of RUNX3 gene and protein in the progression of BC patients.</td>
</tr>
<tr>
<td>Jiang et al^11^</td>
<td>People’s Republic of China</td>
<td>15</td>
<td>MSP, IHC</td>
<td>To determine the correlation of RUNX3 methylation and protein in BC and its pathologic features.</td>
</tr>
<tr>
<td>Lau et al^16^</td>
<td>USA</td>
<td>44</td>
<td>MSP, RT-PCR</td>
<td>To investigate the role of RUNX3 gene and protein in the progression of BC patients.</td>
</tr>
<tr>
<td>Suzuki et al^13^</td>
<td>Japan</td>
<td>37</td>
<td>MSP</td>
<td>To investigate inactivation of TGFβ-related genes DRM1/Gremlin, RUNX3, and HPP1 in human cancers.</td>
</tr>
</tbody>
</table>

Abbreviations: BC, breast cancer; IHC, immunohistochemistry; RT-PCR, reverse transcription polymerase chain reaction; ER, estrogen receptor.

A Study or subgroup DCIS events | Normal breast tissue events | Weight | Odds ratio M–H, fixed, 95% CI | Odds ratio M–H, fixed, 95% CI |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Park et al^10^</td>
<td>17</td>
<td>35</td>
<td>0</td>
<td>8.6%</td>
<td>57.70 (3.27–1,017.55)</td>
</tr>
<tr>
<td>Subramaniam et al^11^</td>
<td>30</td>
<td>40</td>
<td>1</td>
<td>12.5%</td>
<td>27.00 (3.03–240.39)</td>
</tr>
<tr>
<td>Subramaniam et al^11^</td>
<td>15</td>
<td>20</td>
<td>1</td>
<td>6.2%</td>
<td>87.00 (9.30–813.71)</td>
</tr>
<tr>
<td>Wang et al^16^</td>
<td>18</td>
<td>39</td>
<td>4</td>
<td>72.7%</td>
<td>6.21 (1.83–21.06)</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>134</td>
<td>103</td>
<td>100%</td>
<td>18.27 (7.67–43.54)</td>
<td></td>
</tr>
<tr>
<td>Total events</td>
<td>80</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heterogeneity: (\chi^2 = 5.81, \text{df} = 3 (P = 0.13); P = 0.47)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect: (Z = 6.56 (P < 0.00001))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B Study or subgroup IDC events | Normal breast tissue events | Weight | Odds ratio M–H, fixed, 95% CI | Odds ratio M–H, fixed, 95% CI |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Lau et al^16^</td>
<td>23</td>
<td>44</td>
<td>0</td>
<td>11.5%</td>
<td>44.81 (2.55–787.02)</td>
</tr>
<tr>
<td>Park et al^10^</td>
<td>24</td>
<td>35</td>
<td>0</td>
<td>6.0%</td>
<td>129.96 (7.29–2,317.21)</td>
</tr>
<tr>
<td>Subramaniam et al^11^</td>
<td>16</td>
<td>21</td>
<td>1</td>
<td>11.3%</td>
<td>28.80 (2.90–286.42)</td>
</tr>
<tr>
<td>Subramaniam et al^11^</td>
<td>16</td>
<td>20</td>
<td>1</td>
<td>5.6%</td>
<td>116.00 (11.93–1,128.13)</td>
</tr>
<tr>
<td>Wang et al^16^</td>
<td>23</td>
<td>40</td>
<td>4</td>
<td>65.5%</td>
<td>9.81 (2.90–33.19)</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>160</td>
<td>123</td>
<td>100%</td>
<td>29.20 (12.52–68.14)</td>
<td></td>
</tr>
<tr>
<td>Total events</td>
<td>102</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heterogeneity: (\chi^2 = 5.61, \text{df} = 4 (P = 0.23); P = 0.29)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect: (Z = 7.81 (P < 0.00001))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 2 Comparison of RUNX3 hypermethylation in DCIS, IDC tissue and normal breast tissue.

Notes: (A) Forest plot for RUNX3 methylation in DCIS and normal breast tissue. (B) Forest plot for RUNX3 methylation in IDC and normal breast tissue.

Abbreviations: DCIS, ductal carcinoma in situ; IDC, invasive ductal carcinoma; CI, confidence interval; M–H, Mantel–Haenszel; df, degrees of freedom.
Table 1

A Study or subgroup	IDC events	Total	Benign tumor events	Total	Weight M–H, random, 95% CI	Odds ratio M–H, random, 95% CI
Du et al22 | 19 | 40 | 0 | 15 | 21.7% | 28.12 (1.58–501.92)
Park et al23 | 24 | 35 | 0 | 30 | 21.7% | 129.96 (7.29–2317.21)
Subramaniam et al24 | 16 | 20 | 0 | 20 | 20.9% | 150.33 (7.54–2997.83)
Wang et al25 | 23 | 40 | 7 | 35 | 35.7% | 5.41 (1.92–15.29)
Total (95% CI) 135 | 100 | 100% | 30.90 (4.20–227.48)

B Study or subgroup	IDC events	Total	DCIS events	Total	Weight M–H, fixed, 95% CI	Odds ratio M–H, fixed, 95% CI
Park et al23 | 24 | 35 | 17 | 35 | 25.4% | 2.31 (0.87–6.12)
Subramaniam et al24 | 16 | 21 | 30 | 40 | 23.4% | 1.07 (0.31–3.66)
Subramaniam et al24 | 16 | 20 | 15 | 30 | 14.3% | 1.33 (0.30–5.93)
Wang et al25 | 23 | 40 | 18 | 39 | 36.9% | 1.58 (0.65–3.84)
Total (95% CI) 116 | 134 | 100% | 1.61 (0.94–2.76)

Figure 3 Comparison of RUNX3 hypermethylation in IDC vs benign tumor and IDC vs DCIS.
Notes: (A) Forest plot for RUNX3 methylation in IDC and benign tumor. (B) Forest plot for RUNX3 methylation in IDC and DCIS.
Abbreviations: DCIS, ductal carcinoma in situ; IDC, invasive ductal carcinoma; CI, confidence interval; M–H, Mantel–Haenszel; df, degrees of freedom.

indicating that RUNX3 hypermethylation was significantly higher in ER positive BC than in ER negative BC.

Sensitivity analyses and publication bias
A sensitivity analysis was conducted to assess the result stability. The pooled OR was not significantly changed, indicating the stability of our analyses. The funnel plots were largely symmetric (Figure 5A–E) suggesting there were no publication biases in the meta-analysis. We used the NOQAS for assessment of the quality of each study. Of 13 studies, three scored 8 points, six scored 7 points, and three scored 6 points. Therefore, the selected studies were of a relatively high quality (Table 2).

Prognostic values of high RUNX3 mRNA expression in BC patients
We finally assessed the clinical relevance of RUNX3 in a patient survival analysis using an online database containing

Figure 4 Forest plot for RUNX3 methylation in ER positive and negative of BC.
Abbreviations: BC, breast cancer; CI, confidence interval; M–H, Mantel–Haenszel; df, degrees of freedom; ER, estrogen receptor.
the expression of 22,277 genes and 20-year survival information of 3,455 BC patients. High RUNX3 mRNA expression was found to be correlated with better overall survival (OS) for all BC patients followed for 20 years (Figure 6A, hazard ratio 0.78, \(P = 0.037 \)). In addition, high RUNX3 mRNA expression was also found to be correlated with better relapse-free survival (RFS) for all BC patients followed for 20 years (Figure 6B, hazard ratio 0.8, \(P = 0.00013 \)).

Discussion

The RUNX3 transcription factor is a downstream effector of TGF-\(\beta \) signaling pathway. TGF-\(\beta \) is activated after binding to their respective cognate receptors, phosphorylate transducers named Smads. Smads 2 and Smads 3 are called R-Smads, which associate with a common Smad 4 (co-Smad) and enter the nucleus. R-Smad/co-Smad complex binds to transcription factors and regulates the transcription of target genes. RUNX3 interacts with R-Smads,
RUNX3 hypermethylation plays an important role during normal development and tumorigenesis in several types of tumors including BC. To date, there have been some studies describing the precise expression and methylation status of RUNX3 in BC; however, the roles of RUNX3 hypermethylation in BC and its correlation with carcinogenesis have not been thoroughly investigated. Analysis of the pooled data showed that RUNX3 hypermethylation was significantly higher in both DCIS and IDC compared to normal breast tissues. In addition, RUNX3 methylation was significantly increased in IDC compared to a benign tumor. However, RUNX3 methylation was not significantly increased in IDC compared to DCIS. We also determined that RUNX3 hypermethylation was significantly higher in ER positive BC than in ER negative BC. The results from the current study indicated that the hypermethylation rate of RUNX3 gene is an early event during BC carcinogenesis. Thus, RUNX3 methylation is a valuable early detection biomarker for the diagnosis of BC.

Epigenetic alterations, particularly aberrant DNA methylation, one of the best-characterized epigenetic modifications, contribute to tumor initiation and progression. RUNX3 has been reported to downregulate Wnt signaling by directly inhibiting CTNNB1/TCF4 in colon cancer and gastric cancer. Wnt signaling pathway is not only critical for the normal development of the mammary gland, but also for regulating cell proliferation and survival. RUNX3 inhibits the oncogenic Wnt signaling pathway via the formation of a complex with the TCF4-CTNNB1 complex and hampering it from binding to target genes such as c-myc and CCND1.

RUNX3 also acts as a novel co-activator for p53 through regulating its DNA damage-induced phosphorylation at Ser-15 and mediates tumor suppression. Numerous studies have supported that RUNX3 is a suppressor and is inactivated in BC by protein mislocalization, reduced copy number, hemizygous deletion, and gene hypermethylation. Based on this meta-analysis, we may conclude that RUNX3 hypermethylation in BC tends to indicate higher incidence of BC, its inactivation could contribute to tumor initiation and progression.

ER signaling plays an important role in the development of normal mammary gland through the regulation of genes involved in cell cycle and apoptosis. Abnormal ER signaling contributes to initiation and progression of BC. A recent report has shown that RUNX3 inhibits ER signaling through

Figure 6 The clinical relevance of RUNX3 was determined in a patient survival analysis using an online database containing the expression of 22,277 genes and 20-year survival information of 3,455 breast cancer (BC) patients.

Notes:
(A) High RUNX3 mRNA expression was found to be correlated with better overall survival for all BC patients followed for 20 years, hazard ratio (HR) 0.78, \(P = 0.037 \).
(B) High RUNX3 mRNA expression was also found to be correlated with better relapse-free survival for all BC patients followed for 20 years, HR 0.8, \(P = 0.00013 \).
suppressing the transcription activity of ERα and reducing ERα-dependent cancer cell proliferation. In this meta-analysis, we determined that the pooled OR from four studies including 207 ER positive BC and 146 ER negative BC, OR =8.16, 95% CI = 4.53–14.71, z score = 6.99, P < 0.00001, F = 43%, P = 0.15, indicated that RUNX3 hypermethylation was significantly higher in ER positive BC than in ER negative BC. Therefore, RUNX3 methylation could contribute to the development of BC by modulating ER signaling pathway.

RUNX3 mRNA expression might be due to the RUNX3 hypermethylation status in BC patients. Thus, we further assessed the prognostic value of high RUNX3 mRNA expression in a patient survival analysis using an online database containing the expression of 22,277 genes and 20-year survival information of 3,455 BC patients. High RUNX3 mRNA expression was found to be correlated with better OS for all BC patients followed for 20 years, hazard ratio 0.78, P = 0.037. In addition, high RUNX3 mRNA expression was also found to be correlated with better RFS for all BC patients followed for 20 years, hazard ratio 0.8, P = 0.00013.

Conclusion
This meta-analysis showed that RUNX3 methylation is significantly increased in DCIS and IDC. The frequency of RUNX3 methylation is associated with ER status in patients with BC. In addition, high RUNX3 mRNA expression was found to be correlated with better OS and RFS for all BC patients. Our results strongly support that RUNX3 hypermethylation may play an important role in BC incidence. RUNX3 methylation is a valuable early biomarker for the diagnosis of BC. Further large-scale studies will provide more insight into the role of RUNX3 in the carcinogenesis and clinical diagnosis of BC patients.

Disclosure
The authors have no financial involvement with any organization or entity with a financial interest in the subject matter or materials discussed in the paper. The authors report no conflicts of interest in this work.

References