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Abstract: Emerging evidence has assigned an important role to sleep as a modulator of meta-

bolic homeostasis. The impact of variations in sleep duration, sleep-disordered breathing, and 

chronotype to cardiometabolic function encompasses a wide array of perturbations spanning 

from obesity, insulin resistance, type 2 diabetes, the metabolic syndrome, and cardiovascular 

disease risk and mortality in both adults and children. Here, we critically and extensively review 

the published literature on such important issues and provide a comprehensive overview of the 

most salient pathophysiologic pathways underlying the links between sleep, sleep disorders, 

and cardiometabolic functioning.
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Introduction
Obesity has reached epidemic proportions worldwide – in the US, 17% of children 

are now overweight or obese.1–3 In parallel, there has been a rise in the prevalence of 

obesity-related comorbidities, such as insulin resistance (IR), type 2 diabetes mellitus 

(T2DM), and the metabolic syndrome (MetS), collectively referred to as cardio-

metabolic risk.4,5 The MetS is a cluster of metabolic disorders encompassing central 

obesity, impaired fasting glucose, dyslipidemia (specifically, triglyceride elevation 

and/or low levels of high-density lipoprotein [HDL] cholesterol), and hypertension 

and is associated with an increased risk of T2DM and, in adulthood, cardiovascular 

disease (CVD) and overall mortality.6,7 The underlying pathophysiology of MetS is 

thought to include IR and/or an inflammatory state, which accompanies obesity.8,9 The 

specific criteria for the MetS in adults have been defined by the National Cholesterol 

Education Program or Adult Treatment Panel III and the World Health Organization. 

The MetS is now endemic in the US – 35% of all adults and 50% of those older than 

60 years suffer from this condition.10 The prevalence of the MetS phenotype in chil-

dren has also increased, doubling between 1988 and 2006, from 4% to 8.6%.11,12 The 

prevalence of the MetS in obese children and adolescents varies somewhat depending 

on ethnicity and on which specific pediatric diagnostic criteria are used (as there is 

no specific consensus on the definition of the MetS in children) but ranges between 

30% and 50%, with higher prevalence in those with more severe obesity.13–18 The 

underlying etiology of the rise in the frequency of these conditions is multifactorial, 

with well-recognized contributions from diet (large portion sizes, nutrient-dense foods, 

and others) and physical inactivity;19 however, such factors alone do not explain the 

significant epidemic of obesity and the MetS.
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There is increasing recognition that disturbances of 

sleep, including chronic sleep restriction and alterations 

in sleep architecture, such as obstructive sleep apnea, and 

other causes of sleep disruption and fragmentation, are also 

the risk factors for obesity and cardiometabolic risk in both 

adults and children. Most recently, a body of data has begun 

to emerge on the links between chronotype and circadian 

rhythm disorders and obesity and the MetS. In this review, 

we focus on the contributions of disturbances of sleep and 

circadian biology to the development of obesity, IR, and the 

MetS in adults, prepubertal children, and adolescents, with 

a special emphasis on the potential mechanisms underlying 

these links, as these serve as potential targets for preventing 

the MetS and its complications.

Sleep restriction and sleep 
architecture: impact on the MetS 
and cardiometabolic risk in adults 
and children
Chronic sleep restriction
Chronically insufficient sleep is endemic and has been declared 

as a public health problem by the Centers for Disease Control.20 

Recent data from the 2014 Behavioral Risk Factor Surveillance 

System poll found that 41.3% of the 44,306 adults polled 

reported ≤6 hours (11.8% ≤5 hours) of sleep, 29.5% reported 

7 hours, 27.7% reported 8 hours, 4.4% reported 9 hours, and 

3.6% reported ≥10 hours; taking into account the sleep dura-

tions of 7–9 hours recommended for age, only 65.2% reported 

obtaining the recommended healthy sleep duration.21 In studies 

of children and adolescents, ~27% of school-aged children and 

45% of adolescents report sleeping less than recommended for 

age,22,23 with lower levels of parental education, lack of regular 

enforcement of rules about caffeine, and presence of electron-

ics in the child’s bedroom overnight being the most predictive 

of age-adjusted insufficient sleep duration.24

In adult and pediatric populations, chronic sleep restric-

tion and poor sleep quality are associated with an increased 

risk of obesity, IR, and the MetS or components thereof.25–33 

Epidemiological adult studies have also found associations 

between insufficient sleep, and in some cases, long sleep 

duration and T2DM risk, T2DM severity, and CVD incidence 

and mortality.34–39 Epidemiological reports cannot ascertain 

causality; however, numerous laboratory sleep restriction 

studies have now demonstrated the causal nature of the 

relationship between behavioral sleep restriction and obesity, 

IR, and changes in other metabolic functions that together 

lead to MetS. These data and recent updates are discussed 

in greater detail in the following sections.

Epidemiological data
Adults
A large body of evidence has emerged over the last 50 years 

implicating insufficient and/or excessive sleep duration in all-

cause mortality and in CVD and cardiometabolic risk factors, 

including the MetS, a cluster of interrelated CVD risk factors 

(central obesity, elevated triglycerides, low HDL, hyperten-

sion, and elevated fasting glucose). Later, we examine the 

associations between sleep duration and elements comprising 

cardiometabolic risk, as well as all-cause mortality.

Sleep duration and all-cause mortality
The first study to report an association between insufficient 

sleep and mortality was a study of 1,064,004 adults aged <30 

to >80 years published in 1964, which found that those report-

ing a sleep duration of 7 hours had the lowest mortality rate.40 

Similarly, in 1983, the Alameda County Study found that 

men sleeping for <6 hours or >9 hours exhibited a  1.7-fold 

greater total age-adjusted death rate vs men sleeping for 

7–9 hours per night and that women with shorter vs normal 

sleep durations had a 1.6-fold greater relative mortality risk.41 

A number of prospective cohort studies conducted since these 

early landmark studies have also found an inverse relation-

ship between sleep duration and all-cause mortality risk in 

a number of different populations, and a 2010 meta-analysis 

of all relevant prospective cohort studies of >3 years dura-

tion found that both short sleep durations (variably defined 

as <4 hours to <7 hours) and long sleep durations (variably 

defined as >8 hours  to >12 hours) were associated with 

greater all-cause mortality risk (short sleep: relative risk [RR] 

1.12, 95% confidence interval [CI] 1.06–1.18; long sleep: RR 

1.30, CI 1.22–1.38).42 A more recent meta-analysis found a 

J-shaped relationship between all-cause mortality and sleep 

duration, with greatest RR seen in long sleepers rather than 

short sleepers; subgroup analyses showed that short sleep 

duration (<7 h/night) increased the RR of all-cause mortality 

in women but not in men.43

Thus, a number of prospective cohort studies have now 

found that insufficient and/or long sleep is associated with 

an increased all-cause mortality over time, with a variable 

degree of risk. Alterations of sleep duration associate with a 

number of different conditions, which could increase the risk 

of all-cause mortality; while an entire enumeration is outside 

the scope of this review, many of these are examined later.

Sleep duration and obesity
The secular trends of chronic sleep restriction have paralleled 

those of obesity in recent years, suggesting epidemiological 
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links between the two. Indeed, hundreds of studies in adult 

and pediatric populations have now been published examin-

ing the associations between insufficient sleep and obesity 

risk. The plurality of such studies in adults and the majority 

of the studies in children have found that insufficient sleep 

is associated with an increased risk of obesity. A 2008 

meta-analysis of epidemiological studies that encompassed 

634,511 participants (30,002 children and 604,509 adults) 

aged from 2 years to 102 years found a pooled odds ratio 

(OR) for short sleep duration (usually defined as ≤5 hours 

in adults and ≤10 hours in children) and obesity of 1.55 

(range 1.43–1.68) in adults and 1.89 (range 1.46–2.43) in 

children.25 Since then, the majority of cross-sectional or 

longitudinal studies have reported significant associations 

between short sleep duration and overall obesity risk and/

or central adiposity,44–46 although it should be stressed that 

some of the studies did not find significant associations after 

adjusting for other variables.47 Interestingly, the relationship 

between sleep duration and obesity is not necessarily lin-

ear; the Wisconsin Sleep Cohort Study found an U-shaped 

association between sleep duration and obesity, wherein 

both short and long sleep durations link to an increased risk 

for the presence of a higher body mass index (BMI); the 

lowest BMI was seen in individuals sleeping for an average 

of 7.7 h/ night.48 Similarly, a longitudinal follow-up cohort 

study with ~6 years average follow-up found that both short 

sleepers (≤6 hours) and long sleepers (>9 hours) are more 

likely to accumulate visceral adipose tissue (assessed by 

computerized tomography) than those sleeping 7–8 hours 

and that those who switched from sleeping ≤6 hours to sleep-

ing 7–8 hours accumulated less visceral adipose tissue.46 

In contrast, analysis of data from 13,742 participants aged 

≥20 years from the 2005–2010 National Health and Nutrition 

Examination Survey (NHANES) examining associations 

between sleep duration and obesity risk did not find such an 

U-shaped relationship. In this cohort, in which participants 

were categorized as short sleepers (≤6 h/night), average 

sleepers (7–9 h/night), or long sleepers (≥10 h/night), a 

negative linear association was found between sleep duration 

and both BMI and waist circumference among participants 

without depression or a diagnosed sleep disorder and with-

out notable differences by race or sex, but with regression 

coefficients that were notably stronger among adults aged 

20–39 years. In other words, short sleepers were more 

likely to be overall obese and to have abdominal adiposity, 

especially in the young-middle age adult groups.49 While 

this study did not find that the sleep–obesity risk differed by 

race or ethnicity, other studies have found variations in the 

relationship between short sleep and obesity in other ethnic 

groups,50,51 including one large study that found that the risk 

of obesity with short sleep duration was significantly greater 

in African Americans than in Caucasians.52 Variations in the 

associations between short sleep and obesity by ethnicity 

have also been noted in other studies.

Thus, the preponderance of the epidemiological evidence 

suggests that insufficient sleep increases the OR of being or 

becoming obese. As discussed in subsequent sections, the 

risk of obesity-related comorbidities is also increased by 

insufficient sleep.

Sleep duration and hypertension
Hypertension, a component of the MetS, is a well-known 

cardiovascular risk factor; alterations in sleep duration 

have been associated with an increased risk of developing 

this condition. The Sleep Heart Health Study, a long-term 

longitudinal multicenter cohort study of sequelae of sleep 

and sleep-disordered breathing, examined 2,815 men and 

2,097 women aged 30–100 years and found that hazard 

ratios (HRs) for hypertension increased with insufficient 

sleep duration (<6 hours, HR 1.66, CI 1.35–2.04; 6 hours  

to <7 hours, HR 1.19, CI 1.02–1.39) and with prolonged 

sleep duration (8 hours  to <9 hours, HR 1.19, CI 1.04–1.37; 

>9 hours, HR 1.30, CI 1.04–1.62).53 In the same year, data 

from the first NHANES survey of 4,810 men and women, 

aged 32–59 years at baseline who were followed for nearly 

four decades, showed that sleep duration of ≤5 h/night was 

associated with a significantly increased risk of incident 

hypertension (HR 2.10, CI 1.58–2.79), an association that 

held up after adjusting for confounders.54 Other studies have 

also found associations between risk of hypertension and 

both short sleep duration and long sleep duration.45,55 Age 

may modulate the relationship between sleep duration and 

hypertension; several studies suggested that the association 

between short sleep duration and/or long sleep duration is 

stronger in younger and middle-aged adults than in older 

adults; indeed, several studies have found no association 

between sleep duration and risk of hypertension in adults 

older than 58 years, 60 years, or 65 years, possibly because 

other risk factors for hypertension mask such association.55–58 

Other studies have found that the association between insuf-

ficient sleep and high blood pressure is greater in premeno-

pausal women vs postmenopausal women.59 Interestingly, 

the association between sleep duration and hypertension risk 

may differ in degree and in directionality between men and 

women: the Whitehall II study of 10,308 English men and 

women aged 35–55 years at baseline, who were followed for 
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an average of 15 years, found that the association between 

short sleep and hypertension risk was detectable in women 

but not in men.60 Other studies in different populations have 

also found that the associations between insufficient sleep 

duration and hypertension are stronger in women than in 

men.59 At the other end of the sleep duration spectrum, at 

least one study reported that the association between long 

sleep duration and hypertension risk is detectable in men but 

not in women.61 These findings suggest that in adults, there 

may be age- and sex-specific sensitivity to the detrimental 

effects of chronic sleep deprivation.

Sleep duration, IR, and T2DM
In the past 25 years, there has been an explosion of stud-

ies linking insufficient sleep with the risk of IR, incident 

type 2 diabetes, and poorer glycemic control in adults 

with T2DM;35,62–64 long sleep duration (≥9 hours) has also 

been associated with an increased risk of IR and incident 

T2DM.62,65,66 The association between sleep duration and 

incident T2DM risk in multiethnic cohorts may be modulated 

by ethnicity, although the relationship is unclear: one study 

found that non-Hispanic whites and Hispanic adults sleeping 

for ≤7 hours vs 8 hours were predisposed to T2DM, while 

African American participants were not,67 while another 

study that used data from a nationally representative sample 

of >130,000 Caucasian and African American NHANES 

participants found a U-shaped rather than a linear relation-

ship between sleep duration and likelihood of T2DM (both 

sleeping for <7 hours and >8 hours associated with the risk 

of T2DM), which was stronger in the Caucasian participants, 

but found that the ethnic disparities were significantly attenu-

ated after adjusting for socioeconomic status, suggesting 

that societal rather than biological factors might be partially 

responsible for ethnic disparities in these relationships.68 

Interestingly, a recently published study of a multiethnic 

cohort found that the associations between short sleep dura-

tion (<7 h/night) and obesity, T2DM risk, and cardiovascular 

risk factors varied between the different cohorts examined.51 

Thus, chronic sleep restriction and potentially excessive 

sleep duration appear to increase the risk of IR and T2DM, 

this relationship being modulated by age, race, and ethnicity, 

although the degree to which these differences have under-

lying biological rather than socioeconomic underpinnings 

remains uncertain.

Sleep duration, the MetS, and CVD
A number of studies in a wide variety of cohorts of different 

ethnic backgrounds and in both men and women have now 

shown that sleep duration is a risk factor for the MetS.69–74 

In a cohort of 1,214 adults participating in the Adult Health 

and Behavior Project registry, being a short or a long sleeper 

increased the OR of having the MetS by 45%.33 While the 

association between insufficient sleep and risk of the MetS 

is detected in most studies, the association between longer 

sleep and MetS is less consistent.72,75 Interestingly, one study 

found that after adjusting for confounders, long (≥9 hours) 

but not short (<6 hours) sleep duration was associated with 

an increased risk of the MetS.76 A recent meta-analysis of 18 

studies encompassing 75,657 participants and using adults 

sleeping for 7–8 hours as a reference group found a dose–

response relationship between sleep duration and the MetS, 

with increasing risk of the MetS in sleep categories all the 

way up to a 1.5-fold OR (95% CI 1.1–2.08, P=0.01) among 

those sleeping for <5 h/night; however, they did not find a 

significant association between long sleep duration and the 

MetS – OR 1.13 (95% CI, 0.97–1.32; P=0.10).71 The question 

of causality is difficult to assess in cross-sectional studies; 

however, a prospective cohort study of 2,579 adults aged 

40–70 years without MetS at baseline, who were followed 

for an average of 2.6 years, found a significantly higher risk 

of incident MetS for those sleeping for <6 hours – adjusted 

OR (95% CI) 1.41 (1.06–1.88). Breaking the MetS down to 

its components, short sleepers had higher OR (95% CI) for 

elevated waist circumference (1.30 [0.98–1.69]), low HDL 

cholesterol (0.75 [0.56–0.97]), elevated triglycerides (0.82 

[0.60–1.11]), high blood pressure (1.56 [1.19–2.03]), and 

high fasting glucose (1.31 [0.96–1.79]).77

Given the associations between insufficient or prolonged 

sleep duration and the many cardiovascular risk factors enu-

merated in the sections examining associations between sleep 

duration and all-cause mortality, hypertension, and T2DM 

above, it is, therefore, unsurprising that an association exists 

between sleep duration and CVD. Several large prospective 

cohort studies published in recent decades have indicated that 

insufficient sleep duration and long sleep duration are associ-

ated with an increased risk of coronary heart disease (CHD) 

and its predisposing risk factors. The Whitehall II study of 

10,308 adult English men and women aged 35–55 years 

at baseline, who were followed for an average of 15 years, 

found that participants with short sleep duration (≤6 hours) 

and restless, disturbed sleep had the highest hazard ratios 

of CHD (RR: 1.55, 95% CI: 1.33–1.81).78 Similarly, in the 

Nurses’ Health Cohort of 71,617 US female health profes-

sionals, aged 45–65 years and after 10 years of follow-up, 

the adjusted RR values (95% CIs) of CHD for individuals 

reporting 5 or fewer, 6, and 7 hours of sleep per night on 
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average were 1.45 (1.10–1.92), 1.18 (0.98–1.42), and 1.09 

(0.91–1.30), respectively. The RR for ≥9 hours of sleep was 

1.38 (1.03–1.86).79 A number of other studies have found 

similar results in a variety of different adult populations 

of varying ages and ethnic backgrounds: some have found 

associations only between insufficient sleep (with or without 

poor sleep quality) and CHD risk and/or mortality,37 while 

others have found U-shaped associations, with both short 

sleep and excessive sleep being associated with an increased 

risk of CHD.80,81 In particular, a 2011 meta-analysis found 

that short sleep duration was associated with a greater risk 

of incident CHD and CHD mortality (RR 1.48, 95% CI 

1.22–1.80) and incident stroke (RR 1.15, 95% CI 1.00–1.31), 

while long sleep duration was associated with a greater risk 

of incident CHD (RR 1.38, 95% CI 1.15–1.66), stroke (RR 

1.65, 95% CI 1.45–1.87), and total CVD (RR 1.41, 95% CI 

1.19–1.68).39 More recently, a prospective cohort study of 

8,128 Dutch men and 9,579 Dutch women aged 20–65 years, 

free of CVD at baseline and followed for 10–14 years, found 

that in the context of eating a healthy diet, maintaining a 

moderate level of physical activity, nonsmoking status, and 

moderate alcohol consumption, sleeping sufficiently (defined 

as >7 years) lowered composite CVD risk by 65% (HR 0.35, 

95% CI 0.23–0.52) and lowered the risk of fatal CVD by 83% 

(HR 0.17, 95% CI 0.07–0.43).82 Additionally, several studies 

have found that the risk between sleep duration and CHD is 

modulated by sex, with some studies showing higher risk of 

incident myocardial infarction in women vs men who were 

short or long sleepers83,84 and others showing no difference 

in risk by sex.39 Age may also modify the association, as 

one study reported an U-shaped association between sleep 

duration and cardiovascular mortality risk, an association that 

was stronger in females than in males and stronger in older 

adults than in younger adults.

In summary, a large number of cross-sectional and 

prospective epidemiological studies have demonstrated that 

restricted sleep and, less consistently, longer sleep duration 

predispose to obesity, IR, T2DM, MetS, CVD, and all-cause 

mortality.

Children and adolescents
Normal sleep in childhood
Normal sleep duration varies across the lifespan. Recently, 

the National Sleep Foundation convened an 18-member 

multidisciplinary expert panel and issued an expert set of 

guidelines reflecting sufficient sleep duration across the 

lifespan: 14–17 hours for newborns, 12–15 hours for infants, 

11–14 hours for toddlers, 10–13 hours for preschoolers, 

9–11 hours for school-aged children (aged 6–13 years), and 

8–10 hours for adolescents (aged 14–18 years), as compared 

to 7–9 hours in young adults and middle-aged adults.85

Epidemiology of insufficient sleep
Insufficient sleep is widespread. The 2014 Sleep in America 

Poll found that 30% of school-age children aged 6–11 years 

(as reported by their parents) sleep less than the recom-

mended 9 hours.86 However, the prevalence of behavioral 

sleep restriction increases substantially in adolescents: the 

2006 National Sleep Foundation Sleep in America poll found 

that 45% of children aged 11–17 years and 75% of twelfth 

graders surveyed reported <8 h/night of sleep,87 and in the 

2009 United States Youth Risk Behavior Survey, only 31% 

of adolescents polled (28% of females and 33% of males, 

with some variability across ethnic groups) reported ≥8 h/

night of sleep.88 Sleep durations may vary in children of dif-

ferent ethnic and/or socioeconomic backgrounds: one study 

that objectively measured sleep using actigraphy in African 

American and Caucasian 14–18-year olds in the US found 

that sleep insufficiency was even more prevalent among 

African American than Caucasian adolescents,89 and a recent 

study of 9–10-year-old children in the UK found that white 

European children slept longer than South Asian and Black 

African children.90 The preponderance of epidemiological 

data, thus, clearly shows that chronic short sleep is a problem 

that has its roots in childhood and adolescence.

Sleep duration and obesity
The epidemic of short sleep imposes health sequelae in child-

hood. While not every study has found an association between 

sleep duration and obesity,91 the majority of cross-sectional 

and longitudinal studies have shown that insufficient sleep 

duration in children associates with concurrent or long-term 

risk of obesity – in infancy,92 early childhood,93–95 school-

age years,94,96–98 and adolescence.97,99,100 A meta-analysis of 

13 pediatric studies that included >30,000 children found a 

pooled OR of 1.89 for obesity in children who were short 

sleepers.25 However, short sleep duration may not be the only 

factor in play: obese children were found to be less likely 

than their nonobese peers to experience catch-up sleep on 

the weekends.101 Interestingly, the same pattern may not 

hold true in adolescents, where high variability in sleep 

duration may predispose to higher energy intake and more 

snack consumption.102 Shorter sleep duration in childhood 

may also promote adult obesity independently of childhood 

BMI, parental BMI, and adult sleep duration.103 Some stud-

ies have shown associations in males but not in females,98,104 
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while other studies have shown similar associations in both 

sexes.105 Several studies have reported that short sleep in 

childhood and adolescence is associated with a higher waist 

circumference, a surrogate measure of visceral adiposity and 

one of the features of the MetS.96,106–108 In a UK study, sleep 

duration associated negatively not only with the ponderal 

index (a measure of adiposity) but also with fat mass – that 

is, school children who slept less had greater adipose tissue 

mass than children who slept more.90 Again, sleep deprivation 

may have adverse metabolic effects later in life: a recent pro-

spective cohort study of 3,964 Brazilian children assessed at 

the age of 11 years and 18 years found that in girls those with 

insufficient self-reported sleep duration at age 11 years but 

sufficient sleep duration at age 18 years, were more likely to 

have higher BMI and fat mass than their peers with adequate 

sleep at both time points.109 Thus, sleep restriction and lack 

of catch-up sleep on weekends in children and adolescents 

appear to associate with an increased risk of increased weight 

gain, central obesity, and increased fat mass that can possibly 

persist or become apparent several years later.

Sleep duration associations with the MetS and its 
components
A number of studies have now found associations of chronic 

short sleep duration in children and adolescents with ele-

ments of the MetS.

High blood pressure
Chronic sleep restriction has been found to associate with an 

increased blood pressure in children and adolescents.108,110–112 

Poor sleep quality is also associated with higher blood 

pressure in obese adolescents.113 This association may be 

primarily driven by the blunting of the usual nocturnal dip 

in blood pressure: insufficient actigraphically measured 

sleep duration was associated with elevated nocturnal blood 

pressures in African American and Caucasian adolescents 

independently of BMI.114 Interestingly, variability in sleep 

patterns and sleep duration may also have adverse effects: 

the Penn State Child Cohort study recently found that an 

increased sleep variability associated with a decreased heart 

rate variability,115 a marker of cardiovascular risk. Studies of 

younger children have been more equivocal than studies in 

adolescents regarding the association between sleep duration 

and blood pressure. One study found that this association 

was primarily mediated by BMI rather than sleep duration 

per se,116 and another study found that while short sleep 

duration was associated with lower sympathetic nervous 

system activation and higher cardiac activation under stress 

(both risk factors for high blood pressure), there was no 

association with blood pressure itself.117 Thus, while the 

association between insufficient sleep and hypertension risk 

in adolescents is similar to that data in adults, the impact in 

younger children is less obvious.

IR and T2DM risk
Although there are considerably less available data in 

 children examining these associations than in adults, several 

studies have shown that insufficient sleep is associated with 

IR in obese children (but not in normal-weight children) 

and normal-weight and obese adolescents independently 

of obesity.118–121 Lower sleep efficiency (the percentage of 

time in bed that is spent asleep) also predisposes to IR in 

overweight and obese adolescents.121 In one study, more 

variability in sleep duration was associated with higher 

insulin levels.101 In at least one study of adolescents, long 

sleep duration (>10 hours overnight) was also associated 

with greater IR,119 but these findings have not yet been 

replicated.

The majority of studies in children examining the asso-

ciation between sleep duration and insulin sensitivity have 

utilized either fasting insulin measures or the homeostasis 

model assessment of IR calculated from fasting insulin and 

glucose levels, but one recent study notably examined asso-

ciations between self-reported habitual sleep duration and 

insulin sensitivity as measured by the gold standard hyper-

insulinemic–euglycemic clamp in 615 obese adolescents 

and found that adolescents sleeping for <8 hours had lower 

insulin sensitivity even after controlling for age and sex.122

Few pediatric studies have examined associations between 

sleep duration and glycemic levels. A study of Chinese 

preschool-age children (aged 3–6 years) found that short 

sleep duration of <8 hours was associated with higher fasting 

glucose in obese but not in nonobese children.123 Duration of 

slow wave (nonrapid eye movement stage 3 slow wave sleep) 

sleep has also been found to associate positively with insulin 

sensitivity and insulin secretion, both of which are protective 

against the development of T2DM.124,125 Shorter sleep dura-

tion has also been found to associate with higher fasting and 

postglucose challenge (during oral glucose tolerance test) 

glucose levels in normal-weight and obese children.124,126 

One study in obese adolescents found U-shaped associations 

between sleep duration in the sleep lab and fasting glucose, 

postchallenge glucose levels, and hemoglobin A1C (HbA1C), 

with both short sleep (especially <6 hours) and long sleep 

durations being associated with greater levels.125 While 

these studies do suggest that insufficient (and perhaps long) 

sleep duration would increase the risk of developing T2DM 

in children older than 10 years (the age at which the risk 
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of developing diabetes rises to appreciable levels)127 and 

 adolescents, we are not aware of any pediatric data examining 

the associations between sleep duration and incident T2DM, 

or the impact of sleep on glycemic control in those children 

with existing T2DM.

Dyslipidemia
The data on associations between sleep duration and dyslip-

idemia in children and adolescents are conflicting. One study 

found that sleep duration in children is directly associated 

with HDL cholesterol levels (ie, longer sleepers had higher 

HDL levels),119 and another study found that sleep duration 

in children and adolescents is inversely associated with high 

total cholesterol/high low-density lipoprotein (LDL) levels 

(ie, longer sleepers had lower LDL and total cholesterol 

levels).98 In the National Longitudinal Study of Adolescent 

Health study, in which adolescents were followed up for an 

average of 7 years, a significant longitudinal association 

between insufficient sleep duration in adolescence and risk 

of being diagnosed with hypercholesterolemia emerged 

in females but not in males.128 Not all studies show linear 

associations between sleep duration and dyslipidemia; long 

sleep duration may be a risk factor for dyslipidemia as well, 

as one study of Korean adolescents found that long sleep 

duration but not short sleep duration was associated with 

hypertriglyceridemia,129 and a study of Iranian children and 

adolescents found that long sleep duration (>8 hours) was 

associated with higher LDL levels in females and higher 

total cholesterol levels in males.130 Additionally, several other 

studies found no significant associations between sleep dura-

tion and lipid levels in children and adolescents,131–133 and 

the 2007–2009 Canadian Health Measures Survey found 

that there were no significant associations between sleep 

duration and lipid levels after adjusting for body weight.97 

Thus, sleep duration (short and/or long) may associate with 

dyslipidemia in children and adolescents, but the association 

may be mediated by obesity.

MetS risk
Data in children regarding associations between sleep dura-

tion and MetS risk are sparse and mostly negative: one 

study of 723 8–11-year-old Danish children reported that 

insufficient sleep (among other risk factors) was associated 

with a number of elements comprising the MetS (a “MetS 

score”).134 Similarly, a recent study of 1,361 Malaysian 

adolescents aged 13 years found an U-shaped association 

between self-reported sleep duration and MetS risk, with the 

lowest risk seen in those sleeping for 7–9 hours.135 However, 

several other clinic and population-based studies in children 

and adolescents have failed to find an association between 

sleep duration and the MetS.129,131,133,136

In summary, insufficient sleep and, less consistently, long 

sleep in children and adolescents is associated with obesity 

and with several components of the MetS, including higher 

blood pressures (more consistently in adolescents and incon-

sistently in younger children), and with higher glucose levels 

in a few adolescents studies, the association of sleep duration 

and dyslipidemia is highly inconsistent; evidence regarding an 

association between sleep duration and the MetS in  children 

and adolescents is lacking. The obvious divergence from the 

findings in adults may be in part because there are several 

different competing definitions of the MetS in children or 

because the more chronic sequelae of sleep restriction may 

require time to develop and become manifest. IR is thought to 

be a central component of the pathophysiology of the MetS; 

it is interesting that the associations between sleep duration 

and IR are more consistently reported in adolescents, while in 

prepubertal children, these associations have been primarily 

reported in those who are obese and thus already predisposed 

to IR. Thus, future studies should focus on adolescents.

Experimental evidence and 
pathophysiology
Adults
Experimental sleep restriction, even in healthy and lean young 

adults, can lead to adverse metabolic consequences. Although 

no human studies have shown that experimental changes in 

sleep restriction induce the entirety of the MetS, experimental 

sleep restriction studies have examined the impact of sleep 

deprivation on weight gain and on individual components 

making up the MetS.

Alterations in sleep duration and obesity
As discussed above in the sleep duration and obesity sec-

tion, epidemiological studies show that insufficient sleep is 

independently associated with an increased risk of obesity; 

in fact, even a few days of experimental sleep restriction to 

4h/night can lead to a mean 1 kg weight gain in just 4 days,137 

despite increases seen in 24-hour energy expenditure in some 

studies (though not in others).137–141 These a priori paradoxi-

cal findings are at least partially explained by the increase 

in subjective hunger and in energy intake (at mealtimes and/

or as snacks, often late at night) in sleep-restricted adults 

allowed free access to food during experimental sleep 

restriction (although the increase in sleep deprivation-related 

caloric intake may be greater in men than in women139,142), 

exceeding the sleep restriction-induced increase in energy 

expenditure.137,139,141–144 In addition, a change in macronutrient 
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distribution of food intake favoring (variably) either more 

carbohydrates or more high-fat foods further accounts for 

the positive energy intake balance.141,142 Experimental sleep 

restriction has also been found to reduce physical activity in 

adults with T2DM.145 Conversely, a pilot study to extend sleep 

in ten overweight adults found that caloric intake decreased 

and that the participants expressed a decreased desire for 

sweet and salty foods.146 Alterations in the anorexigenic 

adipocyte-derived hormone leptin and the orexigenic gut 

hormone ghrelin may play a role: lower leptin and higher 

ghrelin in most though not all experimental sleep restriction 

studies in adults were reported.48,147,148 However, some studies 

find higher rather than lower leptin levels, suggesting leptin 

resistance,149 and other studies find no change in leptin or 

ghrelin;141,147 one study, intriguingly, found higher levels of 

ghrelin after sleep restriction in men but not in women,150 

paralleling some of the data on differences in weight gain 

in response to experimental sleep restriction. Elevated 

ghrelin levels may predict an increased food intake during 

experimental sleep restriction.151 Other changes induced 

by sleep restriction include blunting of the usual nocturnal 

decline in cortisol levels149,152,153 and increases in levels of 

peptide YY (which acts to inhibit food intake).154 Conversely, 

experimental sleep extension has been carried out, albeit by 

fewer investigators, and found to reduce leptin and peptide 

YY levels.155 These neuroendocrine alterations may underlie 

the observed changes in caloric intake which, along with 

decreased physical activity, appear to promote weight gain 

in sleep restriction (possibly more in men than in women) 

despite unchanged or even increased energy expenditure.

Impact on insulin and glucose homeostasis
Experimental sleep restriction has also been shown in a large 

number of studies in adults to induce IR (fasting and/or post-

prandial), with variable impact on insulin secretion.30,153,156,157 

Endogenous glucose production is increased and impairment 

of glucose tolerance occurs even in healthy lean adults, espe-

cially when combined with circadian disruption.24,153,158 The 

metabolic changes accompanying experimental alterations 

in sleep duration are thought to be partially mediated by the 

same neuroendocrine perturbations discussed above in the 

alterations in sleep duration and obesity section, including 

higher evening cortisol levels (in some though not all studies) 

and increased sympathetic nervous system activity and cat-

echolamine production in the sleep debt-condition.152,153,157,159 

Sleep restriction can also increase free fatty acid (FFA) levels, 

another contributor to IR, and induce a proinflammatory 

state by elevating the levels of cytokines, such as interleukin 

(IL)-1β, IL-6, IL-17, and C-reactive protein (CRP), which 

can in turn promote IR.158–160 The proinflammatory effect of 

sleep deprivation may be persistent; data from the Whitehall 

II study showed that each hour decrease in sleep duration 

per night was associated with higher levels of CRP (8.1%) 

and IL-6 (4.5%) averaged across measures both at baseline 

and after an average of 5 years of follow-up.161 Decreased 

levels of glucagon-like peptide-1, which augments glucose-

induced insulin secretion in response to ingestion of nutrients, 

were seen in experimentally sleep-restricted women150 and 

could be one of the mechanisms by which sleep restriction 

increases IR. Interestingly, the metabolic alterations of sleep 

deprivation are not just seen at the systemic level – compared 

to normal sleep conditions, partial sleep deprivation leads to 

impairment of phosphorylation in adipocytes of the serine/

threonine kinase Akt (part of the insulin signaling pathway), 

indicating insulin resistance at the cellular level.162 Recent 

findings suggest that experimental sleep restriction can lead 

to tissue-specific epigenetic changes in the expression of 

circadian clock genes and the transcriptome affecting a wide 

variety of biological processes, including chromatin modifi-

cation, gene expression regulation, macromolecular metabo-

lism, and inflammatory, immune, and stress responses, 

providing yet another link between sleep deprivation and 

tissue responses.163,164

If sleep restriction exerts a causal impact on insulin 

and glucose homeostasis, then sleep extension should 

exert the opposite impact. Fewer experimental sleep exten-

sion studies have been conducted, but the results of those 

few studies that have been carried out are encouraging. 

Experiment sleep extension has been found to improve 

insulin sensitivity and reduce cortisol levels.155,165,166 The 

experimental sleep restriction and extension data point to 

the causal impact exerted by acute changes in sleep duration 

on IR and glycemia and may help explain the associations 

between insufficient sleep duration and T2DM risk in epi-

demiological studies.

Hypertension
Experimental sleep restriction in adults raises blood pres-

sure, especially nocturnal blood pressure, likely related 

to blunting of the nocturnal blood pressure dipping that 

normally occurs during sleep.167–170 Possible mechanisms 

include elevations in cortisol and increased catecholamine 

production (as discussed above in the sections on alterations 

in sleep duration and obesity, insulin resistance and glucose 

homeostasis) leading to an increased sympathetic nervous 

system activity systemically, in combination with a decreased 
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parasympathetic activity, an increased muscle sympathetic 

nerve activity and resetting of the arterial baroreflex (with 

decreased sensitivity), an induced endothelial dysfunction, 

and impaired vasodilatation.167,168,171–173 Acute sleep  restriction 

also reduces heart rate variability.174 More recently, acute 

sleep restriction has been found to promote arterial stiffness 

as measured by pulse wave velocity (PWV) (a marker of 

CVD risk) and to lead to subclinical left ventricular diastolic 

functional changes, with increases seen in myocardial perfor-

mance index, isovolumetric relaxation time, and deceleration 

time values.175,176

Dyslipidemia
The impact of acute sleep restriction on serum lipids has been 

somewhat inconsistent across studies, with one study showing 

no impact of experimental sleep restriction on lipids in healthy 

normal-weight adults aged 30–45 years (in the setting of con-

trolled caloric intake),177 one study showing improvement in 

triglyceride levels in normal-weight young adult men follow-

ing sleep restriction,178 and another study showing increase in 

total cholesterol and LDL levels (as well as neutrophil levels) 

in healthy postmenopausal women receiving hormone replace-

ment therapy following sleep restriction,179 while yet another 

study of normal-weight young men (aged 22–29 years) showed 

a postsleep restriction rise in the levels of myeloperoxidase-

modified LDL,180 a substance that accumulates in macrophages 

to form foam cells and is thought to be atherogenic.181 Very 

recently, an experimental partial sleep restriction study of 14 

subjects vs seven controls found that sleep restriction decreased 

the expression of genes encoding cholesterol transporters and 

increased expression in pathways involved in inflammatory 

responses, although circulating LDL decreased rather than 

increased in the sleep-restricted subjects.182 Metabolomic analy-

ses in 2,739 adults also found that those reporting chronically 

insufficient sleep had lower circulating large LDL.182 These 

findings suggest that while the impact on lipids is not neces-

sarily apparent in acute sleep restriction, prolonged or chronic 

sleep deprivation can modify inflammatory and cholesterol 

pathways at the level of gene expression and serum lipoproteins, 

inducing changes that increase cardiometabolic risk.

Notwithstanding the limitations inherent to short-term 

rather than prolonged manipulation of sleep, the experimental 

sleep restriction and the few experimental sleep extension 

studies discussed above in the experimental evidence/

pathophysiology sections examining sleep duration impact 

on obesity, insulin resistance and T2DM risk confirm the 

causal role of sleep restriction (though not the risk of long 

sleep) in the adverse metabolic changes, which predispose 

to the MetS and CVD.

Children and adolescents
Compared with the relatively more abundant body of adult 

data, very few experimental sleep restriction studies examin-

ing metabolic sequelae have been performed in school-age 

children, preadolescents, or even adolescents. The few 

published studies are discussed in the sections below are 

discussed in the sections below.

Prepubertal children
A recent study of mild experimental sleep restriction in 

25 typically developing 8–12-year-old children found that 

attention-deficit hyperactivity symptoms increased, but there 

was no difference in overall activity levels, though the vari-

ability in activity increased.183 A crossover sleep restriction/

sleep extension study by 1.5 h/night ×1 week each in a cohort 

of 37 8–11-year-old children found that leptin levels were 

lower and children consumed ~134 kcal/d less and weighed 

0.22 kg less in the sleep-extended condition than in the sleep-

restricted condition.184

Adolescents
Adolescents with shorter actigraphically measured sleep 

duration (<8 hours) consume more calories than their longer-

sleeping peers, and a higher percentage of calories derives 

from fat and a lower percentage from carbohydrates.185 Beebe 

et al186 restricted 41 typically developing adolescents, aged 

14–16 years, to sleeping 6.5 h/night for five nights vs sleeping 

10 h/night and found that their diets had a higher glycemic 

index and glycemic load and a trend toward more calories 

and carbohydrates, with no differences in fat or protein con-

sumption. Another crossover sleep restriction/sleep extension 

study in 31 adolescents similarly found that after mild (6.5 h/

night) experimental sleep restriction, the participants found 

sweet foods and desserts were more appealing, although their 

subjective hunger ratings did not change.187 A pilot study of 

nine obese adolescents found that 1 hour of sleep restriction 

per night for 1 week mildly raised insulin and glucose levels 

and, unlike the adult data, led to a higher rather than lower 

leptin levels; participants also gained a mean of 0.8 kg.188 In a 

more intensive sleep restriction study, 21 lean adolescent boys 

were restricted to sleeping 4 hours for three nights, leading to 

a significant increase in fasting and nonfasting insulin levels, 

but without any changes in fasting or postchallenge glucose 

levels, awakening cortisol response, daytime or 24-hour sym-

pathovagal balance, and glucagon or norepinephrine levels; 

24-hour epinephrine levels were lower in the sleep-restricted 

stage vs sleep recovery stage.189 These limited studies com-

pellingly reinforce the need for more experimental data in 

children prior to drawing any conclusions.
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Obstructive sleep apnea and 
cardiometabolic risk
Obstructive sleep apnea
Obstructive sleep apnea (OSA) is a very common condition 

among obese adults and children.190,191 OSA consists of repeti-

tive upper airway collapse during sleep,192 leading to recur-

rent oxyhemoglobin desaturation, sleep fragmentation, and 

hypercapnia.193 A wide body of literature in adults now exists 

showing that OSA contributes to cardiometabolic risk inde-

pendently of or additively to obesity–IR,194,195 the MetS (pres-

ence or components thereof),196,197 incident T2DM risk,198,199 

poor glycemic control in T2DM,200–202 incident CVD,203 

stroke,204 and cardiovascular205 and all-cause206 mortality. 

However, the differences between pediatric and adult OSA 

showcase the fact that these conditions are related but not 

identical disorders, with possible differences in attendant 

metabolic risk. Pediatric data about the association between 

OSA and metabolic risk is more contradictory. In addition 

to epidemiological data, numerous interventional studies, 

with the gold standard continuous positive airway pressure 

(CPAP) in adults and adenotonsillectomy (T&A) in children, 

have now been performed to examine causality. These data 

are discussed in the following paragraphs, following some 

background information about OSA.

OSA frequency across the lifespan, sex 
differences, and the impact of androgens
The diagnostic criteria for OSA differ between adults and 

children. In adults, OSA is frequently defined as having an 

apnea hypopnea index (AHI; number of events of decreased 

and/or complete cessation of airflow) or a respiratory dis-

turbance index (RDI) >5 events/h total sleep time (TST),207 

while in children, the AHI cutoff for OSA has been variably 

defined >1 events/h, >1.5 events/h, or >2 events/h TST, but 

OSA is considered mild if AHI is <5 events/h TST.208 This 

difference further reinforces the motto that “children are not 

small adults”.

The prevalence of OSA across the lifespan differs among 

the sexes. In prepubertal children, OSA prevalence is nearly 

equal among the sexes,209 while in adolescence, a male-

predominant pattern becomes manifest.210 In adults, OSA is 

considerably more common in men than in premenopausal 

women, and OSA in women is more likely to be milder.203 

However, the prevalence and severity of OSA in women rises 

strikingly after menopause.211 These sex differences, which 

emerge in puberty and which are partially though not fully 

negated after menopause,212 may be in part mediated by the 

higher androgen levels in men and consequent effects on both 

airway structure and airway rigidity – testosterone increases 

upper airway collapsibility.213

For all of these reasons, it is important to examine the 

metabolic effects of OSA separately in prepubertal children 

vs adolescents and separately in adult men vs premenopausal 

women.

Epidemiological data
Adults
OSA and obesity
OSA prevalence is estimated to be ~26% in all US adults 

aged 30–70 years and as high as 45% in obese adults.214,215 

Conversely, >70% of adults with OSA are obese.216 Thus, 

obesity, in particular central obesity, clearly predisposes to 

the development of OSA.203,217 Numerous studies have shown 

the development or worsening of OSA with increasing weight 

and, conversely, substantial improvement in OSA with weight 

reduction. Supporting the causal role of obesity in OSA, 

weight loss (especially in the context of bariatric surgery) 

ameliorates OSA, though such surgical interventions do 

not necessarily lead to full OSA resolution.218 However, the 

relationship between OSA and obesity is not unidirectional 

– OSA itself may cause further weight gain and predispose 

to visceral adiposity.215,219,220 A randomized controlled trial 

testing the impact of CPAP vs sham CPAP on weight in 1,105 

adults with OSA found that those treated with CPAP gained 

an average of 0.35±5.01 kg, with the degree of weight gain 

proportional to the degree of CPAP adherence, while those 

treated with sham CPAP lost a mean of 0.70±4.03 kg.221 The 

weight increase may be due to a treatment-related decrease in 

sleep-related energy expenditure, which is typically elevated 

in OSA.222

OSA associations with the MetS
Having OSA increases risk of having the MetS and its various 

components;196,197 with increasing OSA severity, the number 

of MetS features increases independently of BMI.223

OSA and insulin sensitivity, beta cell function, and T2DM
An extensive body of literature has now demonstrated that 

OSA is associated with an increased IR in adults independently 

of obesity.194–196,223,224 OSA has also been found to associ-

ate with impairment of beta cell function (having a lower 

disposition index on intravenous glucose tolerance test).225 

Similarly, the Sleep Heart Health Study, a multicenter cohort 

study examining the cardiovascular and other consequences 

of sleep-disordered breathing, also found that increasing OSA 
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severity associated with incrementally greater OR of glucose 

intolerance.196 These data suggest that OSA may increase the 

risk of T2DM incidence; indeed, several cross-sectional stud-

ies have reported that OSA associates with increased OR of 

having T2DM independently of obesity.226,227 The Wisconsin 

Sleep Cohort Study (a longitudinal study of 1,387 adult partici-

pants followed for more than two decades) found a significant 

association between moderate–severe OSA presence and OR 

of T2DM even adjusting for obesity (OR 2.3).228 Several addi-

tional longitudinal studies have also shown that having OSA at 

baseline increases the likelihood of incident T2DM over time 

independently of other risk factors,224,228–230 an effect found to 

be more notable in women than in men in at least one study.231 

The Sleep Heart Health Study also found that the association 

between OSA severity and likelihood of having T2DM was 

more prominent in younger adults rather than in older adults,203 

possibly because other T2DM risk factors may play a larger 

role in diabetes prevalence in the latter. A recent population-

based study examining the OSA–T2DM association in 8,678 

adults with OSA followed for a mean of 67 months found a 

cumulative T2DM 5-year incidence rate of 9.1% (95% CI 

8.4%–9.8%) over 5 years in the cohort (n=1,017), with a 30% 

higher risk in those with severe OSA (AHI >30 events/h TST) 

vs those without OSA (AHI <5 events/h TST).232 Addition-

ally, those with T2DM and OSA usually had poorer glycemic 

control than those without OSA.200–202

The converse relationship between OSA and T2DM 

has also been observed – ie, the prevalence of OSA among 

adults with known T2DM ranges between 58 and 86%,233 

substantially higher than recent estimates from a community-

based cohort without T2DM of 17% in women and 34% in 

men.214 As these two conditions are so frequently comorbid, 

the International Diabetes Federation recommends that a 

patient who presents with one condition should be screened 

for the other.234

Despite the epidemiological data described earlier in the 

Epidemiology of OSA segment of this review, the metabolic, 

the metabolic impact of OSA treatment is somewhat variable. 

CPAP therapy in adults has been shown to improve insulin 

sensitivity in many studies,235,236 although some studies show 

no impact on insulin sensitivity,237 and one recent study even 

found an increase in IR following initiation of CPAP treat-

ment (which appeared to be primarily due to CPAP-associated 

weight gain).238 Recently, a randomized, parallel-group 

6-month trial of CPAP, weight loss, or both CPAP and weight 

loss in obese adults with OSA found that IR decreased only 

in response to weight loss; there was no independent impact 

of CPAP therapy on insulin sensitivity.237

Data regarding the impact of CPAP therapy on lowering 

blood glucose levels and HbA1C have also been somewhat 

unpredictable,239,240 though a recent study found lowering of 

HbA1C in adults with T2DM and OSA who received CPAP 

therapy when compared to those who did not receive CPAP 

therapy.241

In summary, although epidemiological data associating 

OSA with IR and T2DM risk in adults are substantially and 

relatively consistent, the impact of OSA treatment on insulin 

sensitivity and glycemia in adults is more contradictory, and it 

appears that the CPAP-associated weight gain may confound 

the impact of treatment on insulin and glucose metabolism.

Hypertension
A number of cross-sectional and longitudinal studies have 

found that OSA associates with an increased risk of hyperten-

sion (both systolic and diastolic) independently of BMI.242–245 

The Wisconsin Sleep Cohort Study found a linear relation-

ship between 24-hour blood pressure and AHI, independent 

of potential confounders, including the degree of obesity.246 

However, at least one study found no association between 

OSA and hypertension independent of other risk factors.247 

One of the ways in which OSA may affect blood pressure 

may relate to a blunting of the normal nocturnal blood pres-

sure dipping, which can be seen in adults with OSA who are 

otherwise normotensive as well as in those with OSA and frank 

hypertension.248–250 The lack of blood pressure dipping does not 

seem to be solely mediated by poor sleep quality250 but appears 

to preferentially relate to the RDI, a measure of respiratory 

disturbance in sleep, or more specifically to the intermittent 

hypoxia (IH) that results from the respiratory disturbances.248

As might be expected given the abovementioned data, 

there is a high prevalence of OSA in adults with drug-resistant 

hypertension, with prevalence being reported as high as 

83%.251 Indeed, OSA has been deemed the most common 

cause of secondary hypertension in adults with drug-resistant 

hypertension.252

A number of studies have examined the impact of CPAP 

therapy on blood pressure (BP); several meta-analyses con-

cluded that CPAP had significant but modest effects on blood 

pressure, with more significant improvements seen in those 

with more severe OSA.253–255 CPAP therapy for 12 weeks 

in adults with drug-resistant hypertension and OSA led to 

a significant decline in 24-hour mean BP and diastolic BP 

and to improved nocturnal BP pattern.256 Interestingly recent 

meta-analysis found that intraoral appliance devices (which 

are generally better tolerated than CPAP) may be as effective 

in improving BP in adults with OSA.257
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These data suggest that adults with OSA should be 

regularly screened for hypertension and, conversely, that 

adults with drug-resistant hypertension should be screened 

for OSA.

Dyslipidemia
OSA is associated with an increased risk of atherogenic 

dyslipidemia in adults. A number of cross-sectional studies 

in different populations have found higher total cholesterol 

and LDL cholesterol levels, higher triglycerides levels, lower 

HDL levels, or all of the above in adults with vs without 

OSA.258–262 The Sleep Heart Health Study found an inverse 

association between the RDI and HDL levels in all partici-

pants and a positive association between the RDI and tri-

glycerides in younger men and women only.203 There is some 

evidence that both sleep fragmentation and IH contribute to 

dyslipidemia: a recent cross-sectional study in the People’s 

Republic of China found that the associations between OSA 

and high LDL levels were driven by sleep fragmentation,259 

while two other studies have recently found that the AHI 

associates with dyslipidemia.260,263

MetS
Multiple cross-sectional studies have reported an epidemio-

logical association between OSA and the MetS261,264 and that 

greater OSA severity increases the OR of having the MetS.265 

These associations have since been found in a number of 

other cohorts.266 The frequency of MetS in adults with OSA 

is quite high, with estimates ranging from 43% in those with 

mild–moderate OSA to 81% in those patients with severe 

OSA.267 Conversely, OSA is quite frequent in those patients 

with MetS: in a cohort of 228 obese adults, the frequency of 

OSA in the MetS was 60%.197

Atherosclerosis, arterial stiffness, CVD, stroke, and 
cardiovascular and all-cause mortality
OSA has been associated with an increased risk of atheroscle-

rosis, independently of the degree of obesity. Several adult 

studies have now identified increased carotid intima media 

thickness (cIMT; a surrogate measure of atherosclerosis) 

in adults with OSA, and duration of hypoxemia has been 

strongly associated with cIMT.268 Even in the context of 

existing dyslipidemia, having OSA was associated with an 

increased risk of the presence of atherosclerosis.263

OSA is also associated with an increased arterial stiff-

ness, a consequence of decreased vascular compliance which 

occurs as a result of a combination of structural changes in 

arterial walls and endothelial dysfunction.269–271

Given the associations between OSA and a multitude of risk 

factors, it should come as no surprise that OSA also increases 

the risk of cardiovascular and cerebrovascular diseases. The 

Sleep Heart Health study found that OSA is a significant, 

independent risk factor for CHD and heart failure in men aged 

40–70 years but not in older men and women,272 that significant 

increases in all-cause mortality and CHD-related mortality are 

attributable to OSA (especially in men aged 40–70 years),273 

and that OSA (specifically, obstructive AHI) associated sig-

nificantly with incident ischemic stroke; the increased stroke 

risk in men was seen even in those with very mild OSA (AHI 

5 events/h sleep and wake-up), while in women, an increased 

risk of incident stroke was seen only in those with fairly severe 

OSA (AHI >25 events/h TST).274 The hypoxemia associated 

with OSA also increases the risk of sudden cardiac death.275

In summary, epidemiological evidence in adults shows 

that OSA increases the risk of cardiometabolic morbidities 

in the context of obesity, but that it also contributes inde-

pendently toward the risk of hypertension, IR, and T2DM, 

variably to dyslipidemia, overt MetS, arterial stiffness, ath-

erosclerosis, incident CVD, stroke risk, and CVD-related 

mortality and all-cause mortality.

Children and adolescents
Pediatric OSA appears to have two different phenotypic vari-

ants, which we have previously termed as OSA Type I and 

OSA Type II.276 OSA Type I, which predominates in younger 

children and affects males and females near-equally, relates 

predominantly to the presence of lymphadenoidal hypertrophy 

leading to airway obstruction rather than to obesity. In con-

trast, OSA Type II predominates in obese prepubertal  children, 

adolescents, and adults, is seen much more commonly in 

males than in females, primarily develops in the context of 

obesity, and bears a greater resemblance to the OSA clini-

cal phenotype seen in adults, even though lymphadenoidal 

hypertrophy is still an important part of the pathophysiology 

of OSA.277 A recent publication from the Cleveland  Children’s 

Sleep and Health Study found that a majority of cases of 

childhood OSA remit and that most cases of OSA in ado-

lescents represent incident cases, supporting the hypothesis 

of phenotypically different childhood OSA variants.278 It is 

possible that OSA type may confer a different underlying 

predisposition to metabolic sequelae.

Pediatric OSA and obesity
As in adults, obese children are at increased risk of OSA,279 

with higher risk in obese African American vs Caucasian 

children;280,281 a recent community-based study of OSA 
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prevalence in obese Spanish children aged 3–14 years found 

a prevalence of 21.5%,282 considerably higher than the esti-

mate in all children of 7.5%. However, the obesity-related 

increased risk of OSA may differ in prepubertal children vs 

adolescents.283 Also, several studies have found that obe-

sity increases OSA risk significantly more in adolescents 

compared to younger children,284,285 that having OSA may 

be associated with visceral adiposity in adolescents,283 and 

that bariatric surgery in extremely obese adolescents leads 

to significant improvement in sleep-disordered breathing.286

IR and glucose metabolism
In opposition to the adult data, the relationship between OSA 

and IR in children is more inconsistent. Several pediatric 

studies have shown no association between OSA and IR or 

MetS risk,287–294 while others found associations between the 

presence or severity of OSA and IR and between OSA com-

ponents (RDI, mean oxyhemoglobin saturation, and duration 

of hypoxemia) and insulin sensitivity or glycemia independent 

of BMI.291,293–296 Another study did not find an association 

between OSA and IR overall but did report that in children 

with OSA, there was an association between hypoxemia and 

IR.297 Yet another study noted an association between OSA 

and IR only in obese pubertal children (ie, adolescents) and 

not in nonobese or prepubertal children.295 In the largest study 

published to date (n=459) examining these associations in 

children and preadolescents, we found that sleep fragmenta-

tion was significantly associated with IR and that in the con-

text of obesity, OSA was associated with an increased IR.126 

Treatment of OSA via adenotonsillectomy has been found to 

improve IR in some but not all studies; however, the majority 

of treatment studies have focused on prepubertal children, in 

whom IR is seldom manifesting at baseline.289,298,299

OSA has been associated with higher fasting glucose lev-

els in adolescents.300 The data on OSA and T2DM in children 

are quite scarce, with only one study having examined this 

particular question to date: Shalitin et al compared the rate 

of OSA among adolescents and young adults with obesity, 

impaired glucose tolerance, and T2DM and found frequencies 

of OSA (defined as AHI >5 events/h TST) of 18%, 25%, and 

46% respectively, although the differences did not achieve 

statistical significance due to the small sample size.301 Further 

studies are needed to assess the association between OSA 

and risk of T2DM in the pediatric population.

Hypertension
Many (though not all302) studies have shown that OSA asso-

ciates with elevated daytime and nocturnal BP in children 

independently of obesity,303,304 and the community-based 

Tucson Children’s Assessment of Sleep Apnea found that 

in preadolescents, systolic BP and diastolic BP (DBP) 

were associated with poor sleep quality and the RDI and, 

for DBP only, obesity.305 Even in the absence of OSA, poor 

sleep quality in adolescents associates with higher blood 

pressure and prehypertension.112 OSA has also been shown 

to be an independent predictor of nocturnal hypertension in 

children,306 which relates to oxyhemoglobin desaturation.304 

Diastolic BP may be more impacted than systolic BP.307 Oxy-

hemoglobin desaturation has also been shown to correlate 

with a decreased nocturnal BP dipping.303

Treatment of OSA with T&A has been shown to improve 

BP in children in some but not all studies;308,309 the multi-

center randomized study on adenotonsillectomy for OSA 

in children aged 5–9 years (Childhood Adenotonsillectomy 

Trial) did not find any improvements in BP after T&A,310 

although it should be stressed that these were prepubertal 

children with relatively mild OSA. Thus, the data on OSA 

and hypertension in children are somewhat mixed, and further 

studies are needed.

Dyslipidemia
Children with OSA are more likely to have abnormal lipids 

than children without OSA in some studies,311,312 though 

other studies have found that obesity rather than OSA was 

the primary mediator of dyslipidemia.288 The impact of T&A 

on lipids in children has been variable – some studies have 

shown increased HDL,298 lower both LDL and apolipoprotein 

B,289 and/or total cholesterol,299 while others have shown no 

impact of T&A on lipid levels.313

MetS
OSA has been associated with the MetS in children and even 

more strongly in adolescents:314 in adolescents, the MetS was 

seen in 16% of those without OSA and in 59% of those with 

OSA, a 6.5-fold increased risk after adjusting for confounders, 

and similarly, that 25% of those with OSA had the MetS.293 

This study also found that the frequency of respiratory 

events, the degree of oxyhemoglobin saturation, and sleep 

efficiency were all associated with an increased MetS risk. 

A more recent case–control study of obese children found 

that OSA was more common in those with vs without the 

MetS.315 A study of 104 obese children and adolescents, of 

whom 58% were prepubertal, found an association between 

oxyhemoglobin desaturation measures and MetS risk.314 A 

recent meta-analysis found that OSA associated with a 2.3-

fold increased RR of the MetS.316 However, not all studies 
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are consistent: at least one study in obese prepubertal as well 

as pubertal children found no association between obesity 

and the MetS.317 Finally, no studies to our knowledge have 

examined the impact of treating OSA on MetS frequency or 

risk in children. Most likely because of the long nature of 

follow-up that would be required. However, the cross-sectional 

data suggest an interaction between pediatric MetS and OSA, 

particularly in adolescents, in which one increases the risk for 

the other, and suggest that in adolescents diagnosed with either 

the MetS or OSA, screening for the other may be warranted.

Endothelial dysfunction, atherosclerosis, and arterial 
stiffness
While adult CVD likely has its roots in childhood,318 overt 

cardiovascular or cerebrovascular disease is extremely rare 

during early life. However, antecedents of CVD, such as 

endothelial dysfunction, subclinical atherosclerosis, and arte-

rial stiffness, have been reported in childhood.319–323 Similar 

to adults, OSA is associated with all such predisposing risk 

factors, but in children, the relationships are not as overtly 

established. Our group has published extensively on the 

obesity-independent association between OSA in childhood 

and endothelial dysfunction, a risk factor for atherogenesis: 

blunting of postocclusive hyperemia has been reported in 

both nonobese and obese school-age children with OSA.324–326 

Pediatric data regarding endothelial dysfunction have been 

gathered in prepubertal school-age children; no study of 

which we are aware has examined endothelial dysfunction in 

association with OSA in adolescents. Early arterial alterations 

with impaired flow-mediated dilation have also been reported 

in children with OSA and severe obesity.327

The data about OSA and reversible endothelial dysfunc-

tion would seem to support a role for pediatric OSA as a 

contributor to the pediatric roots of adult CVD; however, 

the more overt measures of CVD (atherosclerosis and arte-

rial stiffness), which are associated with OSA in adults, do 

not necessarily exhibit the same associations in children. 

Very few pediatric studies have examined the associations 

between OSA and these more overt cardiovascular risk 

factors, with somewhat contradictory results. Two pediatric 

studies (including a mixed child–adolescent cohort and 

an adolescent-only cohort) found no association between 

OSA and cIMT as a surrogate measure of atherosclerosis 

independently of obesity,328,329 but a more recent study of 40 

children with adenotonsillar hypertrophy aged 5–10 years 

and 36 age- and BMI-matched controls found a higher 

cIMT in the adenotonsillar hypertrophy group.330 One study 

of 30 children and adolescents with primary snoring vs 

BMI-, age-, and sex-matched controls found a greater degree 

of peripheral arterial stiffness as measured by brachial–ankle 

PWV in those with primary snoring,329 but two subsequent 

studies found no association between OSA and central arte-

rial stiffness and carotid–femoral PWV.330,331 Finally, one 

study of preschool-aged and school-aged children with OSA 

found a reduced left ventricular ejection fraction (although 

no clinical signs of heart failure) and that in some of the 

subjects, treatment of OSA improved left ventricular ejec-

tion fraction.332

These data illustrate that while OSA in children may be 

associated with early measures of CVD risk, such as obesity, 

IR, hypertension, dyslipidemia, the MetS, and endothelial 

dysfunction, which are variably reversible upon treatment 

of OSA (generally less reversible in the obese), there is 

not necessarily a consistent progression to an association 

between OSA and vascular changes prior to adulthood. Future 

 longitudinal and interventional studies are needed to examine 

these associations in larger pediatric cohorts, separating out 

children and adolescents.

Experimental data and pathophysiology
Adults
OSA has been associated with sympathetic/adrenomedullary 

activation as well as (more variably) with activation of the 

hypothalamic–pituitary–adrenal (HPA) axis.333,334 OSA is 

also a well-recognized proinflammatory state, accompanied 

by increased levels of CRP and other inflammatory cyto-

kines.335–338 In addition, activation of macrophages is seen in 

OSA; these activated macrophages in turn reduce the activity of 

peroxisome proliferator-activated receptor-gamma (a negative 

regulator of inflammation and regulator of lipid and glucose 

metabolism) in alveolar macrophages even in the absence of 

overt lung disease, to a greater degree than seen in obesity 

alone.339 There is also an improvement seen in a number of 

inflammatory factors upon OSA treatment with CPAP.340,341

As described earlier in the OSA epidemiology section 

of this review, OSA is also associated with a number of car-

diometabolic sequelae independently of obesity in adults, to 

which the sympathetic activation, HPA axis activation, and 

inflammation variably contribute.

Obesity
It is well-recognized that obesity predisposes to OSA 

development, and in fact, specific fat depots (upper airway, 

tongue, and abdominal adipose deposition) appear to pre-

dispose to OSA.342–344 However, OSA may also predispose 

to obesity due to daytime somnolence, decreased activity, 
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and decreased sleep duration, as well as due to neurohu-

moral changes seen in OSA, including elevation in the 

orexigenic hormones ghrelin and orexin and suppression of 

the anorexigenic hormone leptin (seen in many though not 

all studies of adults with OSA).343,345–347 As discussed in the 

OSA epidemiology section above, although there is a strong 

association between OSA and obesity, treatment of OSA in 

adults may result in weight gain, possibly due to a decrease 

in resting energy expenditure (which has been found to be 

proportional to the decrease in AHI and in urinary catechol-

amine production and also to CPAP adherence),348 suggesting 

that decreased sympathetic activation promoted the weight 

gain with CPAP therapy. However, CPAP-induced weight 

gain in adults with OSA may not be due to fat mass gain: 

lean body mass has been found to increase in both sexes 

with CPAP treatment, which in the male participants may 

have been mediated by increased growth hormone levels, as 

levels of insulin-like growth factor-1 (produced in response 

to growth hormone) increased in the men treated with 

OSA.349 Regardless of effect on total body weight, OSA 

treatment with CPAP may lead to a reduction in visceral fat 

even in the absence of significant weight loss.220 Treatment 

of OSA may also induce neurohumoral changes, which can 

predispose to changes in weight, such as lower leptin and/or 

ghrelin levels.220,238 However, whether these findings translate 

to behavioral differences is uncertain; a recent study found 

no change in diet (or in physical activity patterns) in adults 

with OSA treated with CPAP.350

OSA and the MetS
When examining the pathophysiology of the association of 

OSA with the MetS, this process essentially entails examining 

the impact of OSA on MetS components: IR, dysglycemia, 

hypertension, and dyslipidemia.

OSA, IR, and T2DM
Classically, OSA is thought to adversely impact glucose 

metabolism via a combination of IH and sleep fragmen-

tation.225,351,352 Potential underlying mechanisms for the 

OSA–IR association include onset and propagation of oxida-

tive stress and inflammation with the elevation of inflamma-

tory mediators, such as CRP and proinflammatory cytokines, 

increased corticosteroid levels, sympathetic activation, cat-

echolamine elevations, and/or alterations in adipokines.353–356 

Some of the putative relationships between OSA and IR (as 

well as its sequelae) are illustrated in Figure 1.

Evidence for causality is supported by an experimental 

study in which hypoxia was induced in healthy adult vol-

unteers by decreasing oxygen saturation to 75% (vs 96% 

in control subjects) for 30 minutes while undergoing a 

euglycemic clamp; the acute hypoxia induced an increase in 

plasma epinephrine concentration, heart rate, and symptoms 

of anxiety – signs of sympathetic activation – and also a 

decreased rate of dextrose infusion, suggesting acute IR.357 

Also supporting the causality of the link between OSA and 

IR, several studies have shown that CPAP therapy improves 

IR,358 including IR as measured by the gold standard hyper-
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Figure 1 Putative relationships between OSA and obesity, insulin resistance, the metabolic syndrome, and cardiovascular disease.
Abbreviation: OSA, obstructive sleep apnea.
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insulinemic–euglycemic clamp,235 although the improvement 

in IR may take several months to manifest.235 The improve-

ment in insulin sensitivity and glycemia may be mediated 

by changes in plasma leptin,200 adiponectin (an insulin-

sensitizing adipokine),359 or by improvements in sympathetic 

activation and/or HPA activation as as described earlier in 

the OSA epidemiology section.

As discussed in the OSA epidemiology section above, 

results of studies examining the impact of CPAP therapy on 

glycemia and T2DM in adults are somewhat contradictory: 

while many studies show improvement in HbA1C and in 

postchallenge glucose levels in adults with OSA after CPAP 

therapy, some show no effect.199,200,240,360–362 The impact of 

OSA treatment on glycemia may relate to the degree of 

underlying metabolic derangement, as a recent study found 

no improvement in HbA1C following CPAP therapy in 

298 adults with relatively well-controlled T2DM (HbA1C 

<8.5%).363 Some of the differences in study results may also 

be related to the adherence to CPAP therapy: suboptimal 

adherence (<4 h/night) may not be sufficient to improve 

glycemia, as it would not sufficiently impact the AHI in rapid 

eye movement sleep, which is an independent predictor of 

HbA1C in adults with T2DM.201

Hypertension
The connection between OSA and hypertension has a 

number of potential mediators. OSA is well-known to lead 

to chronic IH, which can be severe, and to sympathetic ner-

vous system activation, with elevations in catecholamines 

and increased sympathetic nerve activity as measured 

by microneurography.222,364,365 Sleep fragmentation with 

recurring overnight arousals is also associated with pul-

satile and increased cortisol release.333 Nocturnal IH can 

also be associated with a disruption of the autonomic and 

hemodynamic changes seen during normal sleep,366 includ-

ing increased sympathetic activity in peripheral blood 

vessels leading to vasoconstriction and acute increases in 

blood pressure.367 The OSA–hypertension link may also 

be mediated in part by the renin–angiotensin–aldosterone 

axis; primary hyperaldosteronism may be more common 

in adults with OSA and hypertension.368 The causality of 

the association between hypoxia and blood pressure is 

supported by experimental studies in human volunteers, 

which showed that chronic hypoxia induced by altitude 

changes increases sympathetic activation and norepineph-

rine levels369 and that even an acute 6-hour exposure to 

IH elevates high blood pressures in normotensive adults, 

an elevation which was blocked by the type I angiotensin 

receptor antagonist losartan.370

Treatment of OSA with CPAP has been shown to improve 

BP,255,363,371 restore normal nocturnal BP patterns, and pre-

vent nocturnal blood pressure surges in many but not all 

studies.254,372,373 A placebo-controlled CPAP vs sham-CPAP 

trial found that CPAP was especially effective at improving 

nocturnal BP in those using CPAP for >3.5 h/night and those 

with more frequent oxyhemoglobin desaturations,374 support-

ing the causal role of hypoxemia in addition to sympathetic 

activation and the renin–angiotensin–aldosterone axis in 

causing OSA-related hypertension.

Hyperlipidemia
OSA-related dyslipidemia is thought to be mediated by 

chronic IH; evidence from murine models shows that 

experimental IH leads to hyperlipidemia, upregulation of the 

expression of genes promoting hepatic lipid synthesis, and in 

the presence of diet-induced dyslipidemia, chronic IH leads 

to the development of atherosclerosis.375–378

The increased cardiovascular risk of OSA has been 

attributed, at least in part, to the lipid abnormalities induced 

by IH.378 The mechanism for the impact of IH on lipids may 

be due to the IH-mediated increases in gene expression of 

the hypoxia inducible factor family, generation of reactive 

oxygen species, stearoyl-coenzyme A desaturase-1, altered 

lipid peroxidation, and sympathetic system dysfunction.379,380 

Catecholamines, whose levels are elevated in OSA, modulate 

the activity of adipocyte hormone-sensitive lipase via their 

counter-regulatory effects of antagonizing insulin, leading 

to the lipolysis and consequent breakdown of triglycerides 

into free fatty acids (FFA) and glycerol, which then will be 

resynthesized in the liver to form very low density lipoprotein 

(VLDL).381 Supporting this putative mechanism, adults with 

OSA have elevated levels of FFA;382 these nocturnal surges in 

hepatic FFA production in adults with OSA may accelerate 

CVD progression and concomitant cardiac dysfunction.383 

Additionally, LDL clearance may be impacted on OSA, 

so that LDL-B (a LDL form that is more resistant to being 

cleared from the circulation) can stay in the circulation for an 

extended period of time, increasing the risk that LDL could be 

oxidized and subsequently lead to vascular damage.383 Finally, 

acute hypoxia decreases the transcription of lipoprotein lipase 

and peroxisome proliferator-activated receptor-gamma lead-

ing to increased triglyceride levels in mice.384 However, the 

pathophysiology of dyslipidemia is multifactorial, and the 

connections with OSA do not necessarily translate to treat-

ment effects: several studies have found no impact of CPAP 

therapy on lipids independent of weight loss.237,385 Thus, the 

ramifications of OSA interactions with lipids in the context 

of obesity remain to be fully elucidated.
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MetS
A randomized crossover trial of OSA with CPAP vs sham 

CPAP was conducted in 86 adults, 87% of whom had the 

MetS; CPAP treatment was associated with significant 

decreases in systolic and diastolic BP, total cholesterol, LDL, 

triglycerides, and HbA1C, and the MetS resolved in 13% of 

patients undergoing CPAP therapy vs 1% of those undergoing 

sham therapy.386 Other studies have shown that CPAP therapy 

improves the MetS,386 likely via the mechanisms discussed 

earlier for individual MetS components.

OSA and CVD risk
There may be a number of different routes by which OSA 

contributes to CVD risk, in addition to the associations with 

obesity, IR, T2DM, hypertension, dyslipidemia, and the 

MetS. One such connection may reside in the presence of 

endothelial dysfunction, a state of impairment of endothe-

lial vasodilatation, which promotes atherogenesis. Several 

studies have shown that OSA is associated with endothelial 

dysfunction independently of obesity387,388 and that OSA 

treatment with CPAP improves endothelial function;389,390 

the beneficial effects of CPAP therapy on endothelial func-

tion are quickly reversed if CPAP therapy is withdrawn.391 

Similarly, as previously discussed, OSA can increase the 

risk of atherosclerosis as well as lymphocyte activation,392 

increase circulating endothelial microparticles, and reduce 

endothelial progenitor cells among other mechanisms.393 

Long-term CPAP therapy can reverse atherosclerosis.394 

OSA also increases the risk of arterial stiffness, mediated by 

hypertension, respiratory events, and desaturation,395 sug-

gesting a role for IH in its pathophysiology. CPAP therapy 

can improve cIMT and PWV, correlating with reductions 

in urinary catecholamines and in CRP, respectively; these 

results suggest that sympathetic activation is a significant 

contributor to the association of OSA with atherosclerosis, 

while inflammation plays more of a role in arterial stiff-

ness.396 Other studies have since shown improvements in 

arterial stiffness with CPAP therapy independently of age, 

BMI, and other risk factors,397–399 with one study identify-

ing an association with changes in sympathovagal balance 

(reduced sympathetic activity) but not with CRP.400

Thus, OSA increases the risk of incident CVD,401 

increases the risk of secondary CV events,402 and decreases 

the OR of survival of cardiovascular and cerebrovascular 

events;403 however, effective CPAP therapy can significantly 

reduce the OR of incident and secondary CVD and reduce 

cardiovascular mortality.401,402

The preponderance of evidence in adults suggests that 

OSA is a significant and independent cardiometabolic risk 

factor operating through a variety of mechanisms related to 

sympathetic activation, hypoxemia, inflammation, neuroen-

docrine changes, and endothelial and vascular dysfunction. 

Although CPAP therapy may be associated with weight gain 

rather than weight loss, effective OSA treatment with CPAP 

(only with adequate adherence and if used for least 4 h/night) 

may reverse some of these adverse cardiometabolic changes 

caused by OSA.

Children and adolescents
Studies examining the impact of OSA treatment upon 

metabolic derangements in children have been somewhat 

contradictory, with some showing improvements and oth-

ers showing no effects. One possible explanation for the 

contradictory findings in the pediatric literature is that the 

associations between OSA and metabolism change dur-

ing puberty: the majority of pediatric studies have either 

focused on prepubertal children or studied a mixture of 

prepubertal children and adolescents, thereby not allowing 

for the differential phenotypes to manifest more clearly. As 

experimental studies inducing hypoxia cannot ethically be 

performed in children, the majority of pathophysiologi-

cal data derive from cross-sectional studies and pre–post 

interventional studies.

Pediatric OSA and obesity
As noted earlier in the OSA epidemiology section, obesity 

is strongly associated with the risk of OSA404 (especially in 

older children and adolescents), due to anatomical changes. 

However, OSA also predisposes to the worsening of obesity 

due to daytime sleepiness, decreased physical activity, and 

neuroendocrine changes, such as resistance to the anorexi-

genic hormone leptin;405–407 data regarding associations 

between OSA and levels of the orexigenic hormone ghrelin 

in children are inconsistent.406,407 Treatment of OSA (primar-

ily T&A, but CPAP in one study) may improve leptin and 

possibly ghrelin levels, although again, data are somewhat 

contradictory.407 However, despite these favorable changes, 

treatment of OSA in children does not necessarily lead to 

weight loss; as in adults, a number of studies have reported 

post-T&A weight gain in children and adolescents,408,409 likely 

due to a reduction in energy expenditure during sleep as well 

as other hormonal changes. However, despite the weight gain, 

treatment of OSA may have favorable metabolic implications.

Pediatric OSA and the MetS
IR in pediatric OSA associates with systemic inflammation,410 

oxidative stress,411 and (in adolescents but not in prepubertal 

children) with lower levels of the insulin-sensitizing hormone 

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy 2016:9submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

298

Koren et al

adiponectin.295 As in adults, OSA in children leads to sym-

pathetic nervous system activation, increased heart rate vari-

ability, and increased catecholamine production,295,355,405,412–414 

which likely underlie many of the associations between 

OSA and blood pressure in children.415 Oxidative stress in 

children with OSA relating to IH has been found to increase 

lipid peroxidation, which can accelerate atherosclerosis. We 

and others have found that in younger children, the gold 

standard therapy for OSA, T&A, has been associated with 

the modest improvements in lipid profiles,299,416 BP (more in 

nonobese children than in obese children),417 and improved 

fasting insulin levels and inflammatory biomarkers (includ-

ing CRP) even in the absence of obesity, suggesting a causal 

role for OSA.289,298,418–420 However, another study found no 

improvements in blood pressure following T&A,308 and a 

study of Greek children found no metabolic improvements 

following T&A.309 There are very limited data on the meta-

bolic effects of OSA treatment with CPAP in children; one 

study of 34 children and adolescents found an improvement 

in leptin levels but not in insulin levels.313

Pediatric OSA and CVD antecedents
In addition to the pathophysiological associations discussed 

earlier in the OSA epidemiology section and in the patho-

physiology of OSA connections with T2DM, hyperten-

sion and the metabolic syndrome, OSA is associated with 

endothelial dysfunction in children, possibly mediated by 

reduced circulating endothelial progenitor cells,421 altera-

tions in plasma-derived exosomes leading to disruption 

of the endothelial barrier,422 and alterations in exosomal 

microRNA.422 Endothelial dysfunction can deteriorate 

overnight,423 supporting the causal role of sleep-disordered 

breathing in the genesis of endothelial dysfunction. Treat-

ment data also support a causal role for OSA in endothelial 

dysfunction in children: the blunting of postocclusive hyper-

emia in prepubertal children can be reversed 4–6 months 

after adenotonsillectomy.325

In summary, many studies have focused on prepubertal 

children but have not separated out pubertal from prepubertal 

states; future studies should be undertaken to focus more 

specifically on adolescents, who are more metabolically 

vulnerable to the MetS and related outcomes.

Circadian rhythm and the MetS
Circadian rhythm
Most mammalian metabolic and behavioral processes are 

regulated by the circadian system, centrally controlled by 

the suprachiasmatic nucleus (SCN) of the hypothalamus 

as well as circadian oscillators in peripheral tissues; this 

system entrains to the 24-hour light/dark cycle but may also 

adjust its timing to external stimuli, such as light and food.424 

Circadian rhythms are regulated by core clock genes, such 

as Clock (circadian locomotor output cycles kaput), Bmal1 

(brain and muscle arnt-like protein-1), Cryptochrome (Cry1 

and Cry2), and Period (Per1, Per2, and Per3),425 which 

function in transcriptional feedback loops. Circadian mis-

alignment refers to the mismatch between circadian rhythms 

and lifestyle behaviors426 and may be caused by factors 

such as changes in sleep/wake cycles seen in shift workers 

or lack of light exposure interfering with light/dark cycle 

entrainment.427 The continuum of circadian misalignment 

includes blindness, shift work, social jet lag, chronotype (a 

behavioral preference in the timing of sleep or food intake 

or physiological manifestation of timing of body tempera-

ture nadir or hormonal release), and such sleep disorders as 

Advanced Sleep Phase Syndrome. Circadian misalignment 

has strong links to obesity, IR, and the MetS, which is briefly 

discussed here.

Epidemiological data
Adults
Epidemiological studies of circadian disruption have been 

conducted primarily in shift workers and indicate worsening 

of cardiometabolic function. One study found higher levels 

of triglycerides and obesity as measured by BMI and lower 

HDL cholesterol levels among Swedish shift workers when 

compared to daytime workers; of these, female shift workers 

more frequently had impaired glucose tolerance.428 Higher 

levels of postprandial glucose, insulin, and triglycerides were 

noted among British night shift workers when examining food 

intake schedules that were changed to accommodate work 

schedules.429 A study of Japanese male shift workers showed 

an increased age-adjusted incidence of T2DM, defined by 

HbA1c ≥6.1%, in shift workers compared to daytime work-

ers.430 Additionally, the Nurses’ Health Study II found a posi-

tive association between incidence of T2DM and night shift 

workers; however, this effect was mediated by body weight.431 

Increased CHD incidence rates in shift workers have also 

been linked to circadian misalignment.432 Furthermore, 

nonshift work studies specifically focused on chronotype 

show a positive association between evening chronotype and 

diagnosis of arterial hypertension, higher weight, and greater 

waist circumference.433 Evening chronotype is also associated 

with higher HbA1c levels and worsening glycemic control 

in adults with T2DM.434
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Children and adolescents
Adolescent population studies assessing for the disruption of 

glucose metabolism have shown that evening chronotype is 

associated with a higher BMI, increased meal portion sizes, 

reduced dietary restraint, and less healthy dietary habits,435–437 

but studies focused on risk of the MetS have not been done 

in children and adolescents.

In summary, the abovementioned findings from epide-

miological studies suggest that circadian misalignment is 

associated with increased risks of MetS, T2DM, and CVD 

in adults. More importantly, the evidence is very scarce 

and will require much greater attention in the future con-

sidering the 24-hour lifestyles that permeate our modern 

societies.

Experimental data
Animal models
Animal and human experimental models have been used to 

assess the impact of circadian misalignment on metabolic 

variables. Specifically, rodent studies demonstrate increases 

in body mass when subjected to work,438 feeding,439 and light 

exposure during the biological day (normal rest phase).440 

Additionally, studies in Clock mutant mice demonstrate the 

development of hyperglycemia, relative hypoinsulinemia, 

hyperlipidemia, and obesity due to changes in their diurnal 

feeding patterns subsequent to circadian disruption.441

Adults
In human adults, a study demonstrated increased glucose 

and insulin levels in response to a mixed meal given at 

the same clock time following a 9-hour circadian phase 

advance when the test meal was preceded by a high-fat but 

not low-fat meal.442 Furthermore, triglyceride levels were 

found to be elevated after the mixed meal following a 9-hour 

phase advance when a nonfat meal preceded the test meal 

in an extended study,443 indicating the macronutrient meal 

content before or during the phase advance may impact the 

subsequent metabolic changes and confound the contribu-

tion of circadian disruption alone. When healthy adults 

were subjected to a 28-hour “day” with four scheduled 

isocaloric meals, they were found to have elevated postpran-

dial glucose into the prediabetic range, decreased insulin 

sensitivity, elevated leptin levels, and elevated wake time BP 

independent of sleep efficiency,444 demonstrating the direct 

effect of circadian misalignment on metabolic outcomes.

Children and adolescents
Almost no studies have been carried out manipulating 

chronotype in a pediatric population. However, Beebe et al 

recently carried out a study of experimental sleep extension 

in adolescents and found that those with early chronotypes 

reduced their evening caloric intake during healthy sleep, 

while those with evening chronotype did not.445

Pathophysiology
Circadian misalignment/chronotype and MetS
The underlying mechanisms of the adverse effects of circa-

dian disruption on metabolic and hormonal factors remain 

undefined. These effects of circadian misalignment do not 

appear to be mediated by sleep efficiency or sleep quan-

tity.425,444 One potential mechanism is the dysregulation of 

hormones such as insulin and leptin, known to be under 

circadian control. A study protocol of 8-hour nocturnal sleep, 

28-hour extended wakefulness, and 8-hour nocturnal sleep 

in adults resulted in an increased glucose and insulin secre-

tion during the biological night,446 demonstrating circadian 

rhythmicity of these metabolic factors. Other studies have 

shown leptin elevation during nocturnal sleep.447,448 Fur-

thermore, lesions to the SCN in mice demonstrate circadian 

disruption in the secretion of insulin, glucose, and leptin.424 

Circadian rhythmicity has also been reported in BP.427 Thus, 

elevations in these endocrine and metabolic factors subse-

quent to circadian misalignment result in hyperglycemia, IR, 

obesity, and hypertension, well-known risk factors for the 

MetS.449 Another described possible mechanism underlying 

the effects of circadian disruption is the internal desynchrony 

due to shifted feeding patterns that may uncouple peripheral 

oscillators present in tissues such as the liver, pancreas, 

and heart from the SCN.427 The relationships between such 

internal desynchrony and its effects on metabolism have not 

been studied. Lastly, molecular clock genes contribute to the 

function of metabolic processes, as previously described in 

rodent studies. In addition to the aforementioned findings 

in Clock mutant mice, Cry mutant mice have elevated fast-

ing glucose levels,450 and pancreas-specific Bmal1 mutant 

mice have impaired glucose tolerance and reduced insulin 

 sensitivity.451 Thus, mutations in core clock genes responsible 

for circadian rhythmicity may induce the glucose/insulin 

dysregulation found in MetS.

Conclusion
We have presented a comprehensive overview of the causative 

and associative links between sleep, sleep-disordered breath-

ing, and MetS or its constitutive elements. The overwhelming 

majority of the data suggests that such sleep–metabolic inter-

actions not only exist but also are operational in specific set-

tings. Considering the adverse consequences associated with 

MetS, there is a great need for more accurate  identification 
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of mechanisms and personalized markers of risk. No time 

to sleep on these issues!
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