D3D augmented reality imaging system: proof of concept in mammography

David B Douglas1
Emanuel F Petricoin2
Lance Liotta2
Eugene Wilson3

1Department of Radiology, Stanford University, Palo Alto, CA, 2Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, 3Department of Radiology, Fort Benning, Columbus, GA, USA

Purpose: The purpose of this article is to present images from simulated breast microcalcifications and assess the pattern of the microcalcifications with a technical development called “depth 3-dimensional (D3D) augmented reality”.

Materials and methods: A computer, head display unit, joystick, D3D augmented reality software, and an in-house script of simulated data of breast microcalcifications in a ductal distribution were used. No patient data was used and no statistical analysis was performed.

Results: The D3D augmented reality system demonstrated stereoscopic depth perception by presenting a unique image to each eye, focal point convergence, head position tracking, 3D cursor, and joystick fly-through.

Conclusion: The D3D augmented reality imaging system offers image viewing with depth perception and focal point convergence. The D3D augmented reality system should be tested to determine its utility in clinical practice.

Keywords: augmented reality, 3D medical imaging, radiology, depth perception

Introduction

In recent years, the field of radiology has advanced from reviewing films on a view box to a digital era with viewing on a computer monitor. The digital environment has opened the doors to new image processing techniques that have capitalized on the three-dimensional (3D) datasets of computed tomography, magnetic resonance imaging (MRI), and positron emission tomography. For example, maximum intensity projection and volume rendering provide a two-dimensional representation of the 3D volume and can better define some complex anatomy; however, these techniques are limited by overlapping structures1,2 (Figure 1).

While D3D technology can be applied to multiple types of radiological imaging, the specific focus in the article will be related to viewing of microcalcifications in mammography.
Microcalcifications are often classified according to location, morphology, and distribution. A linear and branching distribution of microcalcifications is suspicious for ductal carcinoma in situ (DCIS). Standard mammographic views may not reveal the true linear and branching distribution due to a suboptimal viewpoint. From the wrong viewpoint, a linear distribution of calcifications can appear as an amorphous aggregate, leading to false negatives. On the other hand, depending on the angle of view, a cluster of calcifications can be wrongly interpreted to follow a linear pattern, causing false positives. Consequently, full 3D viewing of a group of calcifications has the potential advantage of reducing both false negatives and false positives. To test this hypothesis, in the present study, we generated image sets from a simulated dataset of microcalcifications and evaluated the discrimination of a branched or linear pattern when viewed with D3D.

Materials and methods

Subjects

No subjects were used in this study.

Procedures

A simulated 3D dataset of microcalcifications in a linear, branching pattern was created using a total of 34 voxels in a 64×64×64 matrix by an in-house script, with each microcalcification being of the same size. Using a Cartesian coordinate system, the simulated 3D dataset was uploaded such that each microcalcification was assigned to a unique (x, y, z) voxel within the volume of interest and a total of 262,144 (64^3) voxels were created of which 34 were assigned the value of “1” to represent calcification displayed as a white pixel. All other voxels within the volume of interest were assigned the value of “0” to represent noncalcified tissue. An initial left eye viewing perspective was assigned an (x, y, z) position outside the volume of interest. From the left eye viewing perspective, a series of cones, each being defined by the cone angle θ and the trajectory angles α and β, were sent into the volume of interest to record the highest voxel in its path, either a “0” or a “1” (Figure 2). A similar process was performed for the right eye viewing perspective. Finally, the values recorded for each cone were displayed in the head display unit with a unique image sent to each eye such that binocular disparity and depth perception are achieved (Figure 3). The number of cones for each eye viewing perspective is determined by factors including: size of the pixel array in the head display unit, acceptable latency time for the user, and the computer processor speed. After the initial left and right eye images are established (Figure 4A), a new image is provided to each eye display each time any of the following occurs: changing the interocular distance to provide greater binocular disparity (Figure 4B); changing the angular field of view (Figure 4C); volume of interest is translated or rotated (Figure 4D); user rotates their head with roll, pitch, or yaw maneuvers, by translation or combination thereof (Figure 4E).

Terms and measures

Depth perception is the ability to distinguish the relative distance of an object in one’s visual field. Depth perception requires binocular disparity, which is the difference in image location seen by the left and right eyes.

Data collection

The simulated data were viewed with the D3D system by the author (EW), who is a board-certified radiologist with 11 years of experience in evaluating the distribution of the microcalcifications. Using simulated data allows one to visualize differing orientations and gain an appreciation of the importance of 3D visualization from multiple viewing points in obtaining an accurate diagnosis.

Statistical tests

No statistical tests were performed.

Results

When the author visualized the microcalcifications with a single viewing perspective, the microcalcifications were classified as a cluster, which is indeterminate for cancer (Figure 5A). When the author visualized the microcalcifications with D3D, the system was rotated and the microcalcifications were classified as a linear pattern.
Detailed geometric diagram of \(C_{LPS} \) (not to scale):

- \(D \) = 64 x 64 x 64 matrix with a total of 262,144 voxels (64³) and volume of \(D^1 \)
- \(D^1 \) = volume outside the VOI, which is variable based on changing LEVP
- \(LEVP = \) point (32, \(-X\), 32)
- \(X \) = distance from the LEVP to the VOI
- \(V_{RPS} = \) voxel (64, 64, 64) at the left–posterior–superior of the VOI
- \(V_{MPS} = \) voxel (32, 64, 64) at the approximate midline–posterior–superior of the VOI
- \(V_{LPS} = \) voxel (1, 64, 64) at the right–posterior–superior of the VOI
- \(V_{RAI} = \) voxel (1, 1, 1) at the right–anterior–inferior of the VOI
- \(L \) = line from LEVP through center of volume of interest to \(V_{RPS} \) with length equal to \(X + D \)
- \(XY_{LPS} = x\text{-}y \) vector of cone LPS
- \(YZ_{LPS} = y\text{-}z \) vector of cone LPS
- \(\Theta_{LPS} = \) cone angle of \(C_{LPS} \)
- \(\beta_{LPS} = \) angle in x-y plane between L and \(XY_{LPS} \) where \(\tan(\beta_{LPS}) = \frac{D}{2X(D+X)} \)
- \(\alpha_{LPS} = \) angle in the y-z plane between \(YZ_{LPS} \) and the plane where \(\tan(\alpha_{LPS}) = \frac{D}{2X(D+X)} \)

Figure 2 Overview of the geometry of the D3D processing system for the LEVP.

Abbreviations: D3D, depth 3-dimensional; LEVP, left eye viewing perspective; VOI, volume of interest.
Figure 3 illustrates the correlation between the angles from the viewing perspective and the pixels in the HDU. A sample voxel (0, 64, 64) is shown. Note that the angles α and β from the LEVP to voxel (0, 64, 64) differ from the α and β angles from the REVP to the same voxel (0, 64, 64). Thus, the images to the left and right eyes will be different and true stereoscopic depth perception will be achieved.

Abbreviations: FOV, field of view; HDU, head display unit; LEVP, left eye viewing perspective; REVP, right eye viewing perspective; VOI, volume of interest.

![Diagram of viewing perspectives and HDU](image)

Key:
- $3 = 64 \times 64 \times 64$ matrix with a total of 262,144 voxels (643) and volume of D3
- Left = Left eye display showing pixels corresponding to α, β array from LEVP
- Right = Right eye display showing pixels corresponding to α, β array from LEVP
- Z = z-axis or superior–inferior direction
- Y = y-axis or anterior–posterior direction
- X = x-axis or transverse direction (or right–left direction)
- Voxel (0, 64, 64) = the most left–posterior–superior voxel in the VOI
- $\text{LEVP}_{\alpha=\pm 20, \beta=\pm 12.5}$ = cone from LEVP to voxel (0, 64, 64) assuming α field of view (FOV) of 40° and β FOV of 40°
- $\text{REVP}_{\alpha=\pm 20, \beta=\pm 20}$ = cone from LEVP to voxel (0, 64, 64) assuming α FOV of 40° and β FOV of 40°

Figure 4 Examples of viewing options with the D3D Technology

Notes: (A) Initial viewing angle into the volume of interest. (B) Illustrates increasing the interocular distance, which provides for increased binocular disparity. (C) Illustrates changing the angular FOV, so rather than an α FOV of 40°, it changes to an α FOV of 10° and rather than a β FOV of 40°, it changes to a β FOV of 10°. This serves to focus on a particular region within the volume. (D) Illustrates rotation of the VOI, so that the radiologist can have a different viewing perspective. (E) Illustrates rotation of the viewing perspective, which is similar to the radiologist turning the head to see new features of the image, allowing for improved HMI. Note that in (A–E), the center pixels (ie, $\alpha=0°$ and $\beta=0°$) for both LEVP and REVP converge at the center of the VOI (ie, voxel [32, 32, 32]), such that the VOI is optimally presented to the user.

Abbreviations: FOV, field of view; HMI, human machine interface; LEVP, left eye viewing perspective; REVP, right eye viewing perspective; VOI, volume of interest.
Beyond improving the display of microcalcifications, D3D holds promise for enhanced visualization and discrimination of malignant breast masses within a dense breast or behind areas of benign pathology or previous surgery. In addition, D3D can give the viewer the ability to “fly-around” a breast mass and highlight the change in the shape or volume of the mass before and after therapy, by comparing the current mass to a 3D “ghost” of the mass recalled from a pretreatment baseline. This can provide a new class of information for evaluating the effectiveness of therapy.

There is strong rationale to support the value of dynamic 3D view of a tumor mass throughout the course of therapy. While the efficacy of neoadjuvant chemotherapy (NACT) in advanced breast cancer is known to correlate to tumor shrinkage,16 data from the recent Investigation of Serial Studies to Predict Your Therapeutic Response With Imaging and Molecular Analysis (I-SPY) trial demonstrated the importance in breast tumor morphology. In this study, the particular phenotype of the breast tumor, such as “well-defined” margins or “multilobulated” appearance, correlated with the pathologic response to NACT and contributed to the clinical recommendation for breast conservation therapy instead of mastectomy.17 In fact, the MRI findings were a better predictor of pathological response to NACT compared with clinical assessment.18 In addition to enhanced visualization of the changing 3D morphology of the tumor, D3D can also help make an accurate volume and shape comparison of the tumor at two or more time points as a quantitative measure of effectiveness of NACT. In the current practice, shifts in patient position from scan to scan can change the position and orientation of a breast tumor, which obscures...
subtle differences between treatment cycles. D3D can register the image to a 3D grid that is tied to an anatomic reference point. Proper position and orientation of the ghost images representing prior states of the mass can permit color-coding of the regions of the tumor that are expanding or shrinking with an automatic calculation of the volume of change.

In addition to mammography, the D3D’s augmented reality technique can be applied to many of the radiological subspecialties. In neuroradiology, characterization of a cerebral aneurysm’s morphology, orientation, neck, and relationship to other vessels is extremely important in both follow-up and in surgical planning. D3D can facilitate understanding the interrelationship of comminuted fracture fragments to guide surgery and to accurately orient the placement of prosthetic joints. In pulmonary imaging, the depth perception by D3D may help to better identify, characterize, and follow-up pulmonary nodules. In virtual colonoscopy, the improved HMI may speed up the examination and offer improved lesion detection. For all of these applications, and others to be conceived, the fact that D3D technology can input conventional digital radiologic images will permit thorough and rapid side-by-side comparison with the current standards.

New radiological advances such as additional MRI sequences, new contrast agents, and thinner imaging planes are expanding the information presented to the radiologist. It is becoming impractical for the radiologist to scroll through hundreds of slices to evaluate each item on the checklist. There is a growing need to optimize presentation of radiological images in a practical manner, whereby the radiologist can view the whole volume of data at once. Not only does D3D of the future offer such an improved visual display, but also it will provide nonvisual sensory information to the user, including auditory and tactile feedback. For example, MR elastography provides information on the stiffness of tissue and D3D’s augmented reality presents this as a tactile response to the stiffness by a glove. D3D’s augmented reality provides new opportunity for enhanced visualization and improved HMI, creating the potential for improved diagnosis and response to therapy.

Conclusion

D3D is an augmented reality medical imaging system that provides stereoscopic 3D imaging with binocular disparity. This generates depth perception, focal point convergence, and head tracking. Furthermore, D3D provides HMI in the form of a gaming joystick to “fly inside” the image and view the 3D lesion from any angle. We have illustrated, using a simulated dataset of breast microcalcifications, how the D3D system can reveal a linear branching morphology that would have otherwise been invisible under conventional imaging. Future testing of the D3D should be performed to determine the utility of the system in mammography and other radiological subspecialties.

Disclosure

DBD has a family member with a financial interest. EFP and LL have a financial interest. The authors report no other conflicts of interest in this work.

References
