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Abstract: COPD is a major cause of chronic morbidity and mortality throughout the world. 

Although tumor necrosis factor-α (TNF-α) has a critical role in the development of COPD, 

the role of different TNF receptors (TNFRs) in pulmonary emphysema has not been resolved. 

We aimed to clarify the role of TNFRs in the development of pulmonary emphysema. TNF-α 

transgenic mice, a murine model of COPD in which the mice spontaneously develop emphysema 

with a large increase in lung volume and pulmonary hypertension, were crossed with either 

TNFR1-deficient mice or TNFR2-deficient mice. After 6 months, the gross appearance of the 

lung, lung histology, and pulmonary and cardiac physiology were determined. In addition, the 

relationship between apoptosis and emphysema was investigated. Pulmonary emphysema-like 

changes disappeared with deletion of TNFR1. However, slight improvements were attained 

with deletion of TNFR2. Apoptotic cells in the interstitium of the lung were observed in TNF-α 

transgenic mice. The apoptotic signals through TNFR1 appear critical for the pathogenesis of 

pulmonary emphysema. In contrast, the inflammatory process has a less important role for the 

development of emphysema.

Keywords: TNF-α, receptor, emphysema, apoptosis

Introduction
COPD is a major cause of chronic morbidity and mortality throughout the world. It 

is characterized by airflow limitation that is not fully reversible and is an umbrella 

term for the commonly associated manifestations of pulmonary emphysema, alveoli 

destruction, and chronic bronchitis. Pulmonary emphysema is characterized by reduced 

maximal expiratory flow, increased lung volume, and alveolar wall destruction.1,2 The 

disease has a strong relationship with tobacco smoking, and as many as 2 million 

people in the US suffer from pulmonary emphysema. However, only 10%–20% of 

smokers develop clinically significant COPD, and a precise understanding of COPD 

pathogenesis remains elusive. Moreover, there is no proven clinically effective treat-

ment that promotes recovery from established emphysema,3–6 and despite extensive 

research, the clinical management of patients with pulmonary emphysema remains 

mostly supportive.

Despite the suggestion that COPD might be an autoimmune disease,7 the current 

paradigm for COPD pathogenesis is that a chronic airflow limitation results from an 

abnormal inflammatory response to inhaled particles and gases in the lung, resulting in 

alveoli and bronchial inflammation in susceptible smokers. Inflammation in the periph-

eral airspaces at different stages of disease severity has been investigated.8 Furthermore, 
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a protease–antiprotease imbalance has been shown to be a 

major contributor to COPD,9 and emphysema development 

may involve alveolar cell loss through apoptosis.10 There-

fore, several important processes appear to contribute to 

COPD development.11 In addition to these factors, chronic 

inflammation affects lung morphogenesis and causes several 

pathological involvements, including COPD.12

Tumor necrosis factor-α (TNF-α) is a pleiotropic 

cytokine critical for controlling a vast array of immunologi-

cal responses, including host defense. TNF-α binds to one 

of the two receptors (TNF receptor [TNFR] 1 and TNFR2), 

which are found on almost all cell types,13,14 evoking numer-

ous reactions, such as apoptosis, tumor cell lysis in vitro, 

hemorrhagic necrosis of tumors, shock, tissue damage, bone 

resorption, fever, T-cell proliferation, dermal necrosis, and 

insulin resistance.15 We have investigated the relationship 

between TNF-α and respiratory diseases using TNF-α 

transgenic (TNF-tg) mice. These mice overexpress TNF-α 

mainly in the lungs and develop emphysematous changes that 

are similar to COPD.16,17 There are several lines of clinical 

evidence suggesting that TNF-α appears to be important in 

COPD,18–20 with loss of body mass associated with higher 

levels of serum TNF-α18 and high levels of TNF-α present 

in sputum from COPD patients.19 Several studies also suggest 

that TNF-α appears to contribute to COPD pathogenesis in 

animal studies.8,20 Although TNF-α has a critical role in the 

development of COPD, the role of different TNFRs in pul-

monary emphysema has not been resolved. Recently, D’hulst 

et al21 reported that TNFR2 played a more significant role in 

cigarette-induced pulmonary inflammation and pulmonary 

emphysema. Here, we clarify the role of TNFRs in the devel-

opment of COPD using TNF-α-overexpressing mice.

Materials and methods
animals
SP-C/TNF-tg mice, TNFR1-knockout mice (TNFR1−/−), and 

TNFR2-knockout mice (TNFR2−/−) on a C57BL/6 back-

ground were used in this study. Both TNFR1−/− mice22 and 

TNFR2−/− mice23 were purchased from Jackson Laboratory. 

The TNF-tg is heterogeneous, so TNF-tg × TNFR1−/− mice 

were obtained by initially crossing TNF-tg mice with 

TNFR1−/− mice. Next, TNF-tg × TNFR1+/− mice crossed 

with TNFR1−/− mice as confirmed by polymerase chain 

reaction methods (Figure 1). TNF-tg × TNFR2−/− mice were 

obtained using similar methods. These mice were bred in 

an animal facility documented to be free of murine-specific 

pathogens. Additional detail on the method for making these 

measurements is provided in an online data supplement.

Figure 1 generation of TnF-tg × TnFr1−/−, TnF-tg × TnFr2−/−.
Notes: Mice were identified by DNA typing using PCR methods. (A) Identification 
of TNF-tg. Arrow indicates the TNF-tg band. (B) Identification of TNFR1 deletion. 
Left arrow (→) indicates wt mice, and right arrow (←) indicates TnFr1 
deletion. (C) Identification of TNFR2 deletion. Left arrow indicates wt mice. TNFR2 
deletion is documented by the loss of the bands, as indicated by the arrow. In the 
case of identification of TNF-tg × TnFr1−/−, DNA typing of both (A) and (B) was 
used. In the case of TnF-tg × TnFr2−/−, (A) and (C) were used.
Abbreviations: PCr, polymerase chain reaction; tg, transgene; TnF-α, tumor 
necrosis factor-α; TnF-tg, TnF-α transgene; TnFr, TnF receptor; wt, wild type.

This study was approved by the Institutional Animal 

Care and Use Committee (IACUC) of Fukuoka University, 

and followed the Guidelines for Animal Experimentation, 

Fukuoka University. The IACUC are charged with protect-

ing the safety and welfare of animals used in research at or 

in conjunction with Fukuoka University.

Pulmonary and cardiovascular physiology
Pulmonary physiological parameters were examined using 

previously described methods.16,24,25 After measurements, 

mice were sacrificed by intraperitoneal injection of sodium 

pentobarbital. Functional residual capacity was measured by 

saline displacement. The heart was then carefully dissected and 

divided into the right ventricular (RV) wall and left ventricular 

(LV) wall with septa (S), and each was weighed separately.

lung histology, morphometry, and Tdt 
nick-end labeling
Lungs were inflated at 25 cmH

2
O static pressure by 

intratracheal instillation of 4% paraformaldehyde in 
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phosphate-buffered saline before 4 μm-thick tissue sections 

were stained with hematoxylin and eosin. The mean linear 

intercept, an indicator of air space size, was calculated for 

each mouse as described previously.16,24 To detect apoptosis, 

lung specimens were stained using the In Situ Cell Death 

Detection Kit (Boehringer Mannheim, Indianapolis, IN, 

USA) according to the manufacturer’s protocol.26 In addition, 

apoptosis was confirmed by electron microscopy. Lungs were 

fixed with 2.5% glutaraldehyde for 18 hours. Next, lungs were 

refixed with 1% OsO
4
 and divided into small sections and 

embedded in epon. Finally, epon-embedded sections were cut 

using a glass knife and observed by electron microscopy.

Bronchoalveolar lavage fluids and TNF-α 
enzyme-linked immunosorbent assay
The lungs were lavaged five times with 1 mL aliquots of 

phosphate-buffered saline, and cells in the lavage fluid 

were counted with a hemocytometer. The level of TNF-α in 

bronchoalveolar lavage (BAL) fluids was determined using 

a mouse TNF-α enzyme-linked immunosorbent assay kit 

(R&D Systems. Inc., Minneapolis, MN, USA) according to 

the manufacturer’s protocol. For gelatin zymography, 40 μL 

of BAL fluid was electrophoresed in a sodium dodecyl sulfate 

polyacrylamide gel containing 1% gelatin under nonreducing 

conditions as described previously.16

statistics
The data were expressed as the mean ± standard error. 

A Mann–Whitney U test was used to compare the two groups. 

A P-value of ,0.05 was considered as significant difference. 

For comparing mortality, the Kaplan–Meier estimation for sur-

vival curves was used. The statistical analyses were performed 

using a StatView 5.0 (SAS Institute Inc., Cary, NC, USA).

Results
SP-C/TNF-tg overexpresses TNF-α in the lung, which 

results in chronic inflammation, the destruction of lung tis-

sue and alveolar enlargement, similar to the changes seen 

in pulmonary emphysema.16 As described previously,16 

physiological assessment indicated a decrease in elastic recoil 

and an increase in lung capacity consistent with pulmonary 

emphysema. Although these findings were found at high 

altitude (1,600 m), a similar phenotype has been attained in 

Fukuoka city, at sea level.27 After establishment of the mice, 

TNF-α levels in BAL fluids were determined by enzyme-

linked immunosorbent assay. Similar levels of TNF-α were 

produced by all three mice, with higher levels compared 

with wild-type (wt) mice (wt, 9.69+0.62 pg/mL; TNF-tg, 

74.8+2.2 pg/mL; TNF-tg × TNFR1−/−, 84.0+1.8 pg/mL; 

TNF-tg × TNFR2−/−, 85.8+9.3 pg/mL).

Previous studies have shown that the lungs of TNF-tg mice 

had a characteristic phenotype: larger with orange-colored 

pleural surfaces compared with wt mice.16,27 In contrast 

to these findings, the lungs from TNF-tg × TNFR1−/− 

mice were similar to wt mice at the macrolevel, while 

TNF-tg × TNFR2−/− mice exhibited smaller lungs than those 

from TNF-tg mice but were larger and orange in color when 

compared with wt mice (Figure 2). The lung weight is con-

sistent with the macrolevel findings of the lungs (Table 1).

Histological analysis of the lungs from TNF-tg mice 

showed evidence of inflammatory cell (mainly lymphocyte) 

infiltration and alveolar enlargement, whereas these fea-

tures were attenuated in the lungs of TNF-tg × TNFR2−/−. 

Significantly, there was no significant histological dif-

ference between wt mice and TNF-tg × TNFR1−/− 

mice, suggesting that the inflammation was completely 

abrogated (Figure 3). These histological findings were 

confirmed by a morphometric study using the mean linear 

intercept, which showed significant alveolar enlargement in 

TNF-tg and TNF-tg × TNFR2−/−, compared with wt and 

TNF-tg × TNFR1−/− (Figure 4A), and TNF-tg compared 

with TNF-tg × TNFR2−/−.

Physiological studies of TNF-tg mice bred in Fukuoka 

revealed an increase in TLC and functional residual capacity, 

similar to the phenotype of emphysema but not fibrosis. 

Figure 2 Macroscopic lung findings.
Notes: Lungs containing the bronchus were excised from sacrificed mice en bloc.  
1: wild-type mice (C57BL/6), 2: TNF-tg, 3: TNF-tg × TnFr1−/−, 4: TnF-tg × 
TnFr2−/−. Overexpression of TnF-α leads to the development of large 
emphysematous lungs. Deletion of TnFr2 attenuated the emphysematous changes. 
Deletion of TnFr1 completely diminished the emphysematous changes.
Abbreviations: TnF-α, tumor necrosis factor-α; TnF-tg, TnF-α transgene; 
TnFr, TnF receptor.
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Table 1 Mice used in this experiment

Wild-type  
mice

TNF-tg P-value TNFR1−/− TNF-tg ×  
TNFR1−/−

P-value TNFR2−/− TNF-tg ×  
TNFR2−/−

P-value

number 3 4 5 3 3 4
Body weight (g) 23.7±1.38 23.3±2.51 ns 23.9±0.60 26.0±0.08 ns 27.7±1.04 26.6±0.98 ns
Lung volume (mL) 0.32±0.08 0.87±0.05 * 0.29±0.03 0.32±0.05 ns 0.31±0.06 0.59±0.03 *
rV/lV + s 0.18±0.00 0.27±0.02 * 0.18±0.01 0.18±0.00 ns 0.17±0.00 0.21±0.01 ns

Notes: *Significant differences between TNF-tg-positive mice and transgene-negative mice. Data presented as mean ± standard deviation.
Abbreviations: LV, left ventricular; NS, no significance; RV, right ventricular; S, septa; TNF-α, tumor necrosis factor-α; TnF-tg, TnF-α transgene; TnFr, TnF receptor.

Figure 3 histology of the lungs.
Notes: Lung sections from the mice were stained with hematoxylin–eosin (H–E). All panels are at the same magnification. Original magnification, 40×. The lungs from wild-
type mice (C57BL/6), TNFR1−/−, TnFr2−/−, TnF-tg, TnF-tg × TnFr1−/−, and TnF-tg × TnFr2−/−. There is no histological difference between wild-type mice (C57BL/6), 
TnFr1−/−, and TnFr2−/− (top panel). TNF-tg showed alveolar enlargement and interstitial inflammation. The degree of involvement was consistent with the macroscopic 
findings. The histology of lungs from TNF-tg × TnFr1−/− mice was similar to that of wild-type mice (C57BL/6) and TNFR1−/−.
Abbreviations: TnF-α, tumor necrosis factor-α; TnF-tg, TnF-α transgene; TnFr, TnF receptor.

Figure 4 Investigation of emphysema by morphometry and physiologic study.
Notes: (A) lm between TnF-tg- and tg-negative mice; *P,0.05. TNF-tg also have a significantly higher Lm compared with TNF-tg × TnFr2−/−. however, there is no 
difference in lm between TnF-tg × TnFr1−/− and TnFr1−/−. Each group consisted of eight mice. (B) P–V curves from mice. The P–V curve documented hyperinflation of 
the lung, consistent with the macroscopic findings and histology. Emphysematous changes in the mice are as follows: TNF-tg . TnF-tg × TnFr2−/− . all other mice. The 
curve indicates the expiratory phase of the P–V curve. each group consisted of three to four mice. *P,0.05.
Abbreviations: Lm, mean linear intercept; NS, no significance; P–V, pressure–volume; tg, transgene; TnF-α, tumor necrosis factor-α; TnF-tg, TnF-α transgene; TnFr, 
TnF receptor.
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TNF-tg × TNFR2−/− mice demonstrated an intermedi-

ate pressure–volume curve between wt and TNF-tg mice, 

whereas the pressure–volume curve for TNF-tg × TNFR1−/− 

mice was similar to that of wt mice (Figure 4B). In the present 

study, we investigated RV/LV + S and demonstrated that 

TNF-tg mice also demonstrated RV hypertrophy compared 

with wt mice. TNF-tg × TNFR2−/− mice showed a slight but 

not significant increase in RV/LV + S, while the RV/LV + S 

of TNF-tg × TNFR1−/− was similar to wt mice (Table 1). 

This indicates that the RV hypertrophy is associated with the 

involvement of the lung.

Analysis of the cellular infiltrate of the BAL fluids showed 

that there was an accumulation of neutrophils in TNF-tg 

mice (~60% macrophages, ~30% neutrophils, and ~10% 

lymphocytes) but not in TNF-tg × TNFR1−/− mice (~95% 

macrophages, ~3% neutrophils, and ~2% lymphocytes). 

Interestingly, TNF-tg × TNFR2−/− mice demonstrated a 

severe neutrophil accumulation (~20% macrophages, ~75% 

neutrophils, and ~5% lymphocytes) (Figure 5A). We have 

previously shown that matrix metalloproteinase (MMP) acti-

vation was observed in TNF-tg mice.16 In the present study, 

a 200 kDa gelatinase was observed in BAL fluids from both 

TNF-tg and TNF-tg × TNFR2−/− but not in BAL fluids from 

wt mice or TNF-tg × TNFR1−/− mice (Figure 5B).

Tdt nick-end labeling staining clearly demonstrated Tdt 

nick-end labeling-positive signals in the interstitium of the 

lung in TNF-tg mice, while wt mice and TNF-tg × TNFR1−/− 

did not show positive signals (Figure 6A and B). Electron 

microscopy revealed that the apoptotic cells, showing char-

acteristic condensed-nuclear material, were phagocytosed by 

macrophages (Figure 6C). These data indicated that apoptosis 

had occurred in TNF-tg mice.

Discussion
TNF-α has been considered to be an important factor for the 

pathogenesis of pulmonary fibrosis.28,29 Although TNF-tg 

mice were originally reported as a pulmonary fibrosis 

model,30 we have demonstrated that TNF-α-overexpressing 

mice have a phenotype that more closely resembles the physi-

ological features of pulmonary emphysema.16 Others have 

demonstrated the critical role of TNF-α in the pathogenesis 

of COPD.17–20 Presently, TNF-α is considered to play a 

Figure 5 Analysis of BAL fluids.
Notes: (A) The cell counts were determined in the BAL fluids from mice. A substantial neutrophil accumulation was observed in the mice. This accumulation was significantly 
smaller in the TnF-tg and TnF-tg × TnFr2−/− than in the wild-type mice (C57BL/6) and TNF-tg × TnFr1−/−. Each group consisted of eight mice. *A significant difference 
compared with the wild-type mice (C57BL/6). (B) BAL fluids from mice were analyzed by gelatin zymography. Gelatinolytic activity (clear bands) was observed in BAL fluids 
from TnF-tg and TnF-tg × TnFr2−/− but not in wild-type mice (C57BL/6), TNFR1−/−, TnF-tg × TnFr1−/−, and TnFr2−/−. This figure represents the data from one of 
the three experiments.
Abbreviations: Bal, bronchoalveolar lavage; TnF-α, tumor necrosis factor-α; TnF-tg, TnF-α transgene; TnFr, TnF receptor.
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central role in the pathogenesis of COPD. Interferon (IFN)-γ-

overexpressing mice demonstrated that chronic inflammation 

can lead to emphysema,31 similar to TNF-α-overexpressing 

mice, therefore implying that chronic inflammation is associ-

ated with emphysematous changes. However, the role of the 

TNFR in COPD remains undetermined. Only D’hulst et al21 

have reported that TNFR2 plays a certain role in a cigarette 

smoke-induced emphysema model.

TNF-α binds to two kinds of receptors (TNFR1 and 

TNFR2), present on virtually all cells throughout the body, 

and evokes a variety of reactions.13–15 The role of TNF-α 

and its receptors has been vigorously investigated in the 

field of infection and immunity. TNFR1 is known to have 

a major role in host immunity against pathogens,32,33 while 

the role of TNFR2 remains uncertain. In contrast to TNFR1, 

TNFR2 does not have a death domain, a signaling element 

that induces apoptosis.34

In the present study, it is surprising that the offspring 

from crossing TNF-tg mice with TNFR1-deleted mice 

(TNF-tg × TNFR1−/−) demonstrated a complete abrogation 

of the emphysematous changes that are present in TNF-tg 

mice. In contrast, TNF-tg × TNFR2−/− mice showed only  

a slight attenuation of the emphysematous changes. Since 

the TNF-α production was similar in all these mice, the 

change in lung phenotype could be attributed to the differ-

ent receptors. It has previously been shown that emphysema 

was attenuated in TNFR-deficient (both TNFR1 and TNFR2) 

mice in cigarette smoke-induced emphysema.35 A previous 

report demonstrated that TNFR2 plays more important roles 

compared with TNFR1 in emphysema,21 and it is difficult to 

explain this difference compared with our data. However, it 

is likely that cigarette smoking induces a more complex array 

of signaling pathways than TNF-α alone.

The main difference between TNFR1 and TNFR2 is 

the transduction of apoptotic signals, whereby TNFR1 

can transduce a death signal.34 There is a large body of 

evidence describing a relationship between apoptosis and 

emphysema. One study has also shown that apoptosis in 

lung tissue is inversely correlated with the surface area.10 

The model used a single intratracheal injection of active 

caspase-3 to induce emphysematous changes.36 This study 

provides direct evidence that alveolar wall apoptosis is 

sufficient to cause pulmonary emphysema, even without 

the accumulation of inflammatory cells. Taking these data 

Figure 6 apoptosis in COPD pathogenesis.
Notes: (A) There were no signals in wild-type mice. (B) TUNEL staining revealed positive signals in the lung from TNF-tg mice as indicated by arrows. This figure represents 
data from one of two experiments. (C) Electron microscopy showed that apoptotic cells were phagocytosed by macrophages, as indicated the arrow. Magnification ×80.
Abbreviations: TnF-α, tumor necrosis factor-α; TnF-tg, TnF-α transgene; TUnel, Tdt nick-end labeling.
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into consideration, we hypothesize that apoptosis has a 

critical role in the pathogenesis of COPD. In the present 

study, apoptosis has been shown in TNF-tg mice. Another 

chronic inflammation model using IFN-γ-overexpressing 

mice also demonstrated the association of apoptosis and 

emphysematous changes.37 Our data are consistent with the 

recent hypothesis that apoptosis plays a critical role in the 

pathogenesis of emphysema.

Although the present data indicated a critical role for 

TNFR1 in the pathogenesis of COPD, TNFR2−/− mice also 

demonstrated a slight attenuation in COPD development. Tak-

ing this into consideration, the signals through TNFR2 may 

also play a partial role in COPD pathogenesis. TNF-α induced 

the expression of MMPs, factors known to be involved in 

COPD pathogenesis. This activation is thought to be induced 

by NF-κB,38,39 and it is possible that NF-κB activation through 

TNFR2 partially contributes to COPD development. We 

investigated the possible role of MMPs in our model, focusing 

particularly on gelatinase. We found that TNF-tg mice pro-

duced gelatinase, but this was absent in TNF-tg × TNFR−/−. 

It is clear that many factors, not just TNF-α, contribute to the 

development of emphysema,34 and it is important to clarify 

the more precise role of TNFR2 in future studies.

Conclusion
Signals through TNFR1 have critical roles for the pathogen-

esis in this model. At the present time, there is no effective 

treatment for pulmonary emphysema, but this study indicated 

that the blockade of signals through TNFR1 could be a 

therapeutic target for pulmonary emphysema.
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