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Background and objective: Airflow limitation in chronic obstructive pulmonary disease 

(COPD) results in a decrease in oxygen transport to the brain. The aim of the present study 

was to explore the alteration of spontaneous brain activity induced by hypoxia in patients with 

COPD.

Patients and methods: Twenty-five stable patients with COPD and 25 matching healthy 

volunteers were investigated. Amplitude of low-frequency fluctuation (ALFF) of blood oxy-

genation level-dependent signal at resting state in the brain was analyzed using functional 

magnetic resonance imaging.

Results: Whole-brain analysis using functional magnetic resonance imaging revealed significant 

decreases in ALFF in the bilateral posterior cingulate gyri and right lingual gyrus and an increase 

in ALFF in the left postcentral gyrus of patients with COPD. After controlling for SaO
2
, patients 

with COPD only showed an increase in ALFF in the left postcentral gyrus. Region of interest 

analysis showed a decrease in ALFF in the left precentral gyrus and an increase in ALFF in 

the left caudate nucleus of patients with COPD. In all subjects, ALFF in the bilateral posterior 

cingulate gyri and right lingual gyrus showed positive correlations with visual reproduction.

Conclusion: We demonstrated abnormal spontaneous brain activity of patients with COPD, 

which may have a pathophysiologic meaning.

Keywords: chronic obstructive pulmonary disease, hypoxia, low-frequency fluctuation, neu-

ronal activity, resting-state fMRI

Introduction
The brain maintains a high level of spontaneous neuronal activity, which is relevant for 

human behavior.1–4 Low-frequency fluctuation (0.01–0.08 Hz) of blood oxygenation level-

dependent (BOLD) signal in the brain has been proven to be highly correlated with this 

spontaneous activity.5 Synchronous low-frequency fluctuation between motor cortices 

was first observed by Biswal et al.6 Afterward, an analysis of amplitude of low-frequency 

fluctuation (ALFF) was done by Zang et al7 and ALFF examination has been widely used 

in studies of various mental disorders, including attention deficit hyperactivity disorder,7 

schizophrenia,8,9 posttraumatic stress disorder,10 and mood disorder.11 Recently, abnormal 

ALFF at resting state has been linked with cognitive impairments.12–15

Chronic obstructive pulmonary disease (COPD) is a syndrome of chronic pro-

gressive airflow limitation, which results in decrease in oxygen transport to the brain. 

Spontaneous neuronal activity is thought to consume the majority of total brain 

energy,16,17 and thus the spontaneous neuronal activity is inevitably influenced by a 

reduction in the supply of energy supply caused by hypoxia. Hypoxia has been proven 

to change the microenvironment around neurons,18,19 inhibit synaptic transmission,20,21 

and impair spontaneous and task-stimulated neuronal activity.22–26 Taken together, we 
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hypothesized that hypoxia could suppress spontaneous neu-

ronal activity in the brain of patients with COPD.

In the present study, 25 stable patients with COPD were 

recruited for examining ALFF in the brain. Changes of 

resting-state neuronal networks in the brain of patients with 

COPD were identified by independent component analysis 

(ICA).27 However, although ICA can measure BOLD signal 

synchrony, it is difficult to pinpoint which area is responsible 

for the observed abnormality in connectivity. Useful informa-

tion about neural process may be present in the oscillatory 

amplitude envelope.7,28 Therefore, an alternative way of 

measuring regional brain activity during the resting state is to 

examine the ALFF of the BOLD signal. Furthermore, ALFF 

has high levels of reliability and consistency in terms of the 

spatial pattern generated.28 Such technique may therefore 

be a useful complement to ICA of interregional coherences 

between multiple BOLD signals.29

Materials and methods
subjects
Twenty-five patients were included in this study from 

Zhongshan Hospital of Xiamen University (Xiamen, 

People’s Republic of China). Patients received treatment for 

30–45 days and were in a stable condition. The controls were 

25 healthy volunteers, with matched age, sex, and education. 

All subjects were free from a history of neurological, cerebro-

vascular, pulmonary, or metabolic diseases that are known to 

affect cognition. None of the subjects were current smokers. 

Patients were provided with therapy, including the inhalation 

of Bricanyl, Ventolin, ipratropium bromide, or budesonide. 

All subjects were right handed. Demographic characteristics 

of subjects are shown in Table 1. The procedure was fully 

explained to all subjects, and written informed consent 

obtained. The experimental protocol was approved by the 

Research Ethics Review Board of Xiamen University.

Physiological and neuropsychological tests
Physiological and neuropsychological tests were conducted 

before a magnetic resonance imaging (MRI) scan. Physiologi-

cal tests included the arterial blood gas analysis and pulmo-

nary function measure. Neuropsychological tests included the 

visual reproduction test and figure memory test adopted from 

the Chinese revised version of Wechsler Memory Scale.30 

The detailed test information was described in our previous 

study.31 An independent t-test measured between-group dif-

ferences. Statistical significance was set at P,0.05.

MrI data acquisition
Resting-state functional MRI (fMRI) images were acquired 

on a Siemens Trio Tim 3.0T (Siemens, Erlangen, Germany) 

at Magnetic Resonance Center, Zhongshan Hospital, Xiamen 

University, using an echo-planar imaging sequence: TR/

TE =3,000 ms/30 ms, flip angle =90°, matrix =64×64, voxel 

size =3.4×3.4×3.75 mm3, FOV =24×24 cm2, slices =38, 

slice thickness =3 mm. All subjects lay in the scanner with 

their eyes closed, but awake. T1 and T2 images were also 

scanned for any incidental findings. Data analyses were 

conducted by two researchers who were blind to the status 

of the subjects.

alFF analysis
Image preprocessing was performed using data processing 

assistant for resting-state fMRI (Data Processing Assistant 

for Resting-State fMRI) implemented in SPM8 (http://www.

fil.ion.ucl.ac.uk/spm). The first four time points were dis-

carded for signal equilibrium. Then slice timing correction 

and realignment for head motion correction were performed 

for the remainder data. Finally, the images were spatially 

smoothed using a Gaussian kernel of 6 mm full-width at 

half-maximum.

ALFF was calculated with RESting-state fMRI data 

analysis Toolkit (REST) (http://restfmri.net). Before ALFF 

calculation, the linear trends of the time series were removed. 

A temporal band-pass filter (0.01–0.08 Hz) was used to 

remove low-frequency drifts and respiratory and cardiac 

high-frequency noise. Each filtered voxel’s time series was 

transformed into the frequency domain by the fast Fourier 

transform, and then the power spectrum was obtained. The 

square root was calculated at each frequency of the power 

spectrum and averaged across 0.01–0.08 Hz at each voxel. 

This averaged square root was taken as the ALFF. For the 

Table 1 Demographic characteristics of patients with COPD and 
healthy controls

Variables COPD patients Controls P-value

number of subjects 
(male:female)

25 (21:4) 25 (21:4)

age (years)  
(mean ± sD)

69.2±8.1 (58–84) 68.0±8.0 (57–86) 0.59

education (years) 
(mean ± sD)

6.7±3.9 7.5±5.0 0.53

Family history of 
COPD (%)

4 0

Disease duration 
(years)

7.0±5.7 0

smokers (%) 44 40 0.86

Abbreviations: COPD, chronic obstructive pulmonary disease; sD, standard deviation.
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purposes of standardization, the ALFF of each voxel was 

divided by the global mean ALFF. The global mean 

ALFF was calculated within a brain mask that excluded 

the background.

In addition, the regions that showed significant 

differences in the density of gray matter (GM) between 

patients with COPD and controls were selected for region 

of interest (ROI) analysis (Zhang et al31), which included 

the left precentral gyrus, bilateral anterior cingulate gyri, 

bilateral insula, bilateral thalamus, and head of left caudate 

nucleus.

Two-sample t-test was performed to assess the ALFF 

difference between groups, with age, sex, education, and 

pack-years smoking as covariates. Multiple comparisons 

were performed using Alphasim program determined by 

Monte Carlo simulation in REST. Statistical significance 

was set at P,0.05 (corrected). We further performed an 

additional group-level analysis that not only regressed 

out the aforementioned four nuisance variates but also 

controlled for SaO
2
 to observe the influence of SaO

2
 on the 

regional ALFF.

Correlation analysis
Average ALFF values of all voxels in the clusters that showed 

significant group differences were extracted using REST. 

Partial correlation was used to analyze the relationships 

of ALFF values with neuropsychological measurements. 

Statistical significance was set at P,0.05 (corrected for Bon-

ferroni multiple comparisons), with sex, age, and education 

as covariates.

Results
Physiological and neuropsychological tests
Compared with controls, patients with COPD had markedly 

lower pulmonary measurements in 1 second over forced vital 

capacity (P,0.001), forced expiratory volume (P,0.001), 

and forced expiratory volume in 1 second/forced vital capac-

ity (P,0.001), and had lower artery SaO
2
 (P=0.003) and 

higher PCO
2
 (P,0.001). COPD patients had significantly 

lower scores in visual reproduction (P=0.031) and figure 

memory (P=0.010).

regional alFF values
There was no significant difference in global mean ALFF 

between patients with COPD and controls across all 76 time 

points (F(1, 48) =0.654, P=0.457).

Compared with controls, patients with COPD showed 

significant decreases in ALFF in bilateral posterior cingu-

late cortex (PCC) and right lingual gyrus and an increase in 

ALFF in the left postcentral gyrus. After controlling for SaO
2
, 

patients with COPD only showed an increase in ALFF in the 

left postcentral gyrus (Figure 1; Table 2).

Figure 1 Changes of alFF in patients with COPD compared with controls.
Notes: (A) Uncontrolling for saO2, (B) controlling for saO2. P,0.05 (corrected). red to yellow indicates an increase, blue indicates a decrease.
Abbreviations: ALFF, amplitude of low-frequency fluctuation; COPD, chronic obstructive pulmonary disease; L, left; R, right.
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ROI analysis showed that ALFF was decreased in the left 

precentral gyrus (P=0.021) and increased in the left caudate 

nucleus (P,0.001) in patients with COPD compared with 

controls (Figure 2). There were no significant differences 

between groups in the bilateral anterior cingulate gyri, insula, 

and thalamus.

Correlations of regional alFF
In patients with COPD and controls, ALFF in the bilateral 

PCC and right lingual gyrus had positive correlations with 

visual reproduction score (Figure 3).

Discussion
In the present study, based on whole-brain and ROI analysis, 

abnormal spontaneous neuronal activities were detected in 

several brain regions of patients with COPD. Among these 

regions, the ALFF in bilateral PCC and right lingual gyrus 

showed significant correlations with the poor performance 

in visual reproduction.

After controlling for SaO
2
, the group differences in ALFF 

in bilateral PCC and right lingual gyrus did not exist, which 

suggested hypoxia-diminished basal BOLD signal. A number 

of studies support our finding. For example, acute hypoxia-

induced depression of neuronal activity was recorded in a 

hippocampal brain slice;24,32,33 chronic hypoxia has also been 

proven to reduce neuronal excitability;26 after exposure to 

high altitude for 5 weeks, the magnitude of BOLD response 

to visual stimulation was significantly decreased;22 in rats, 

after inspiration of low O
2
 concentration, forepaw-stimulated 

increase of BOLD signal was significantly smaller.23 Previous 

studies have shown that cognitive impairments in patients with 

COPD can be reversed by oxygen therapy.34,35 We therefore 

suggested that cognitive impairments in patients with COPD 

may be attributed to hypoxia-reduced neuronal activity.

Patients with COPD in our study developed hypercapnia. 

In vivo electrophysiological studies have shown that hyper-

capnia directly increased discharge frequencies and decreased 

modal interspike intervals for medullary respiratory neurons 

Table 2 regional information of changed alFF in patients with COPD

Areas Volume 
(mm3)

Brodmann 
areas

MNI coordinate P-value  
(peak)x y z

no controlling for saO2

Bilateral posterior cingulate cortex 1,755 23 -3 -39 24 -4.04

right lingual gyrus 2,214 18 18 -78 -12 -4.34

left postcentral gyrus 1,161 3/40 -33 -39 63 4.28

Controlling for saO2

left postcentral gyrus 1,539 3/40 -45 -30 54 4.18

Abbreviations: ALFF, amplitude of low-frequency fluctuation; COPD, chronic obstructive pulmonary disease.
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Figure 2 regional alFF in the brain of patients with COPD compared with controls by rOI analysis.
Notes: *P,0.05; ***P,0.001. error bars represent standard deviation.
Abbreviations: ALFF, amplitude of low-frequency fluctuation; COPD, chronic obstructive pulmonary disease; PCC, posterior cingulate cortex; ROI, region of interest.
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in decerebrate cats36 and reduced postsynaptic potentials 

of neocortical and spinal neurons.37 Based on resting-state 

fMRI, Marshall et al38 found significantly decreased brain 

functional connectivity in almost all brain lobes induced by 

mild carbon dioxide. In another aspect, elevated blood CO
2
 

can relax arteriolar smooth muscle, leading to an increase in 

cerebral blood flow. Increasing blood flow then via vasoac-

tive stimuli increases venous oxygen saturation due to the 

deoxyhemoglobin removal, causing a concurrent increase in 

the BOLD signal. For example, hypercapnia was found to be 

associated with widespread BOLD signal increases, predomi-

nantly within the gray matter;39 BOLD signals increased after 

rats was subjected to 5%–10% CO
2
;23 BOLD signal response 

to increasing arterial PaCO
2
 showed a sigmoidal model.40

Inflammation exists in stable COPD and is enhanced dur-

ing exacerbations.41 In stable patients with COPD, increased 

levels of inflammatory factors such as C-reactive protein, 

fibrinogen, leukocytes, interleukin (IL)-6, IL-8, and tumor 

necrosis factor-α were found to be associated with reduced 

lung function.42 Unfortunately, our study did not measure 

serum inflammatory factors in patients with COPD. Many 

studies have shown that these proinflammatory cytokines 

play a key role in the regulation of synaptic transmission 

and plasticity in the absence and presence of acute hypoxia.21 

An fMRI study revealed that IL-β and tumor necrosis factor 

receptor-II were positively associated with ventral prefrontal 

activation.43 Endotoxin has been proven to enhance neural 

activity in a number of regions in response to positive and 

negative feedbacks.44,45 Taken together, these data suggest 

changes of functional activity in the brain of patients with 

COPD may be attributed to inflammatory factors.

Voluntary hyperpnea has been shown to be associated 

with significant neural activity in a number of regions of the 

brain, including the primary sensory cortex.46 Consequently, 

in our study, the increased neuronal activity in the left post-

central gyrus and left caudate nucleus of patients with COPD 

may be driven in large part by hyperpnea.31

Similar to our findings in patients with COPD, abnormal 

neuronal activities in PCC and lingual gyrus have been found 

in hypoxic patients. For example, increases in activity of 

alpha 2 frequency band in bilateral PCC were detected in 

patients with obstructive sleep apnea;47 increases in regional 

homogeneity in the PCC and lingual gyrus were found in 

high-altitude residents;48 impairment of functional connec-

tivity in PCC was detected in patients with asymptomatic 

carotid stenosis.49 Our previous study had shown a marked 

decrease in white matter fractional anisotropy in the right lin-

gual gyrus, decreases in the density of GM in the left caudate 

nucleus and left precentral gyrus, and decrease in the volume 

of GM in the right PCC of patients with COPD,31,50 suggest-

ing that the impairments of white matter fiber integrity and 

GM structure could contribute to reduced neuronal activity. 

Previous multimodal neuroimaging studies have shed light 

on this function–structure association underlining cognition, 

aging, disease, and behavior.51

The PCC and lingual gyrus have direct anatomical con-

nectivity with the visual striate cortices.52 The PCC lies in 

the path of the parieto-medial temporal visual stream, which 

provides spatial information to the medial temporal lobe.53 

It is activated by visual perception, attention, and motion.54–56 

In addition, the PCC, connected with the inferior parietal cor-

tex and lateral and medial superior frontal lobes, constitutes 

the attention network57 and visual search network.58 These 

two networks were activated by visuoconstructive test59 and 

visual attention task.60 An animal study showed that a lesion 

in the PCC produced impairment in visual discrimination 

learning.61 Decrease of resting-state functional connectivity 

in the PCC was exhibited in high myopia.62

Figure 3 Correlation of regional alFF with cognitive ability in patients with COPD and controls.
Abbreviations: ALFF, amplitude of low-frequency fluctuation; COPD, chronic obstructive pulmonary disease; PCC, posterior cingulate cortex.

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


International Journal of COPD 2016:11submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

1718

Zhang et al

The lingual gyrus is a part of the occipitotemporal 

pathway that is engaged in object discrimination63 and 

drawing.64 The bilateral lingual gyri were activated by 

visuospatial navigation,65 angle discrimination task,66 and 

tactile-guided draw.67 Volume of GM in the right lingual 

cortex has been proven to have a positive correlation with 

visual reproduction,68 and atrophy of GM in this area was 

associated with visual hallucination.69 Early clinicopathologic 

study of superior altitudinal hemianopia revealed the lingual 

gyrus was related to visual processing.70

The limitation of our present study is that the drugs used 

for COPD therapy could have neurological effects. However, 

up to now, there are no definite evidences showing a deleteri-

ous effect of these drugs on the brain.71

Conclusion
Our present study revealed abnormal spontaneous functional 

activity in the brain in patients with COPD, which could be 

the combined effect of hypoxia, hypercapnia, and inflam-

mation. The changed regional spontaneous neuronal activity 

may be related to deficit in visual cognition.
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