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Abstract: Myoelectric signals (MES) have been used in various applications, in particular, for 

identification of user intention to potentially control assistive devices for amputees, orthotic 

devices, and exoskeleton in order to augment capability of the user. MES are also used to 

estimate force and, hence, torque to actuate the assistive device. The application of MES is not 

limited to assistive devices, and they also find potential applications in teleoperation of robots, 

haptic devices, virtual reality, and so on. The myoelectric control-based prosthetic hand aids to 

restore activities of daily living of amputees in order to improve the self-esteem of the user. All 

myoelectric control-based prosthetic hands may not have similar operations and exhibit variation 

in sensing input, deciphering the signals, and actuating prosthetic hand. Researchers are focus-

ing on improving the functionality of prosthetic hand in order to suit the user requirement with 

the different operating features. The myoelectric control differs in operation to accommodate 

various external factors. This article reviews the state of the art of myoelectric prosthetic hand, 

giving description of each control strategy.

Keywords: EMG, assistive device, amputee, myoelectric control, electric powered, body 

 powered, bioelectric signal control

Introduction
Today, the development of science and technology has led to prosthetic devices with 

promising functional capabilities and esthetic appearance in research domain in favor of 

commercialization. The design of prosthetic hand is multidisciplinary, compelling knowl-

edge of physiology, anatomy, electrical and electronics, mechanical design, software, 

and so on, depending on the nature of control. Still, most of the research is in the labora-

tory and the issue is lack of integration with the technology due to its multidisciplinary 

nature and the non availability of funds. There have been different types of prosthetic 

hands ranging from body-powered prosthetic hand to neural interface-based prosthetic 

hand, which are being manufactured and attempted in the market and for the purpose of 

research. The choice of prosthetic hand is based on the requirement of the user.

In general, the prosthetic devices could be body powered, pneumatic powered, or 

electric powered.1 The body-powered devices harness energy from muscles to oper-

ate the cable through a link. The advantages of body-powered devices are that they 

are of low cost and are less expensive to repair. However, these devices are not cos-

metically appealing and are difficult to operate with body power by some users. The 

electric-powered prosthetic devices that are operated with battery are desired by most 

of the users due to their cosmetic appearance. However, these devices are expensive, 
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Figure 1 (A) Body-powered prosthetic hand; (B) myoelectric controlled prosthetic hand.
Note: Copyright © 2002 Otto Bock HealthCare. Reproduced from: http://www.ottobock.com. Duderstadt (DE).2

heavy, and expensive to repair. Nevertheless, there has been 

a major breakthrough in the operation of electric-powered 

prosthetic devices. These externally powered devices may 

be operated from pressure, switch, strain gauge, myoelectric 

signals (MES), and electroencephalogram signals. There is a 

 possibility of hybrid control strategy to improve the operation 

of the devices. Regardless of the operation of devices, typi-

cally, the prosthetic hands are available with the mechanical 

design of hooks, prehensors, artificial hands, and special type 

of terminal devices, depending on the user-specific activity.

Hooks are devices with good durability, less maintenance, 

low weight, and good gripping capability. The hooks are made 

out of metals such as aluminum, stainless steel, and titanium. 

Aluminum has less weight and lower strength, and stainless 

steel has more weight and strength. Titanium hooks have good 

strength with less weight. But hooks are not cosmetically 

appealing. They are used for body-powered control. Prehen-

sors are between hooks and artificial hands. Prehensors are 

available with/without tension feedback in the market. Similar 

to hooks, prehensors are not cosmetically appealing and are 

body powered. The special types of terminal devices made to 

suit user interest in recreational or sports activities like playing 

golf, climbing mountain, and so on are also body powered.

Artificial hands are cosmetically pleasing, but function-

ally inferior to hooks and prehensors. These artificial hands 

may be controlled using MES, reflecting the intention of the 

user. Attempts are being made to control the hand through 

restoration of function of the nerves of arm with targeted 

muscle reinnervation (TMR) surgery to actuate the hand 

and through the neural interface. Current state of the art is to 

control the prosthetic hand using MES with various control 

schemes to interpret the muscle signals. Figure 1 shows the 

commercially available body-powered prosthetic hand and 

myoelectric prosthetic hand from Otto Bock HealthCare 

GmbH (Duderstadt, Germany).2

Attempts are also being made to control the joints of 

fingers in order to improve the dexterity. The i-limb hand has 

been developed with the articulation of each finger separately 

or simultaneously, depending on the capability of the user. 

Therefore, this review focuses on the state of the art of control 

of myoelectric-controlled prosthetic hands, giving details of 

various control strategies and briefing about the mechanical 

design in commercial and research study.

The myoelectric prosthetic hand is based on electromyo-

graphic (EMG) signals generated in skeletal muscles, which 

reflect the intention of the user. The EMG signals generated 

by the intention are used to control the prosthetic hand using 

various deciphering schemes such as proportional control, 

on–off control, finite state machine, pattern recognition, and 

postural control. Researchers are attempting to decipher more 

information from EMG to improve the dexterity of prosthetic 

hand. On the other hand, some researchers are attempting on 

EMG signal interfacing techniques to improve the dexterity. 

Nevertheless, the prosthetic hand control depends on the 

mode of sensing the signals as well as deciphering the inten-

tion from EMG signals. This section presents an overview of 

literature pertaining to improving myoelectric hand control.

Detection of EMG signals
The body-powered prosthetic hand does not mimic the natural 

human hand movement. The user intention-controlled devices 

mimic the natural human movement. The user intention for 

the control of hand may be obtained from physiological con-

trol signals acquired through sensors. The sensor technology 

interfaces the human control signals to the artificial hand. 

Modern prosthetic hands incorporate surface electrode to 
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interface artificial hand through myoelectric control signals 

to human. The surface EMG signals for artificial hand control 

are sensed from the surface of the skin and are preferred due 

to their ease of access and the procedure being noninvasive. 

The dexterity of prosthetic hand is less in surface EMG due 

to limitation in identifying the locations to acquire signals. 

Using surface electrodes, it is possible to identify three to four 

possible locations from the residual limb to acquire signals 

for sequential control. However, collecting the intramuscular 

EMG signals3–5 is an invasive technique and requires surgical 

skill for using the implantable myoelectric sensor. But the 

intramuscular EMG signals provide access for collection 

of EMG signals from multiple locations to offer multiple 

degrees of control to prosthetic hand. It could be possible 

to achieve simultaneous control of prosthetic hand with 

the intramuscular EMG signals using an implantable sensor.

TMR6 surgical procedure has been recently used to rewire 

the nerves to different muscle sets which can be measured 

from the surface for the control of artificial hand. The use 

of TMR is effective for transhumeral amputees, and this 

technique provides access to utilize user intention.

Myoelectric control schemes
The EMG signal has been used in prosthetic hand actuation 

since 1948.7,8 Producing commercial prosthetic hand using 

MES began in 1957 at the Central Prosthetic Research Insti-

tute, Moscow to drive stepper motor.9 This was later upgraded 

with permanent magnet DC motor and electromagnetic relays. 

Later, the myoelectric control strategy had been widely ana-

lyzed and a simple on–off control scheme was developed. In 

this myoelectric control scheme, the amplitude of EMG is used 

to decode the information in the acquired EMG signals to on/

off state of the motor. The command to actuate the prosthetic 

device is determined by comparing the amplitude calculated 

using the root mean square or mean absolute value (MAV) with 

the preset threshold. A wide variety of control schemes have 

been developed to translate the information in the EMG and are 

typically classified based on the nature of control as sequential 

control and simultaneous control. Most of the control schemes 

employed in user’s prosthetic hand are of sequential control, 

and research is now being conducted to employ simultaneous 

control of the hand. In sequential control schemes, the EMG 

signals are translated using the following schemes: 1) on–off 

control, 2) proportional control, 3) direct control, 4) finite 

state machine control, 5) pattern recognition-based control, 6) 

posture control schemes, and 7) regression control schemes.

The flowchart for implementation of different types of 

typical myoelectric scheme with the signal processing stages 

is presented in Figure 2. Furthermore, proportional control is 

used in combination with direct control, finite state machine, 

and posture control for effective decoding of information 

from the MES. The MES signals acquired from the surface 

of the skin in these schemes are amplified and preprocessed 

before analog-to-digital conversion. The acquired EMG data 

are processed to decipher the user intention and communicate 

with the motor controller in order to actuate the appropriate 

motor to achieve the user-intended activity. Signal processing 

of the various modules is described subsequently.

On–off myoelectric control
The conventional on–off control is appropriate for maximum 

of two degrees of freedom. In on–off/crisp/binary/bang–bang 

control, the prosthetic hand is operated with a constant speed 

in clockwise and counterclockwise directions with a full 

stop. There are various control schemes for on–off control. 

The simplest on–off control is based on a threshold of EMG 

to make a choice of direction of control of the hand. In this 

control scheme, the hand is operated at a constant speed that 

is independent of the level of contraction. The simultaneous 

motion control is possible with motors turned on and off and 

run at a constant speed.10

Proportional myoelectric control
In proportional control scheme, the voltage applied to the 

motor is proportional to the contraction level/intensity of 

EMG signals.11,12 This enables fast grasping for gross move-

ment, and the suitability of the control in upper limb is still 

under study. Researchers have been focusing on simultaneous 

proportional control recently.

This simultaneous control is against sequential control 

schemes such as state machine. Other control schemes are 

used along with proportional control13–16 to improve the 

dexterity in myoelectric control schemes.

Direct myoelectric control
Direct control17 is similar to proportional control and involves 

independent EMG sites to achieve individual control of finger 

movements. However, it is difficult to achieve independent 

control of hand due to crosstalk in EMG signals. This may be 

possible with intramuscular EMG signals using an implant-

able myoelectric sensor.9

Finite state machine control
In case of finite state machine control, the postures of the 

hands are predefined as states and transition among states 

is also predefined or decoded from the inputs.18,19 This is 
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Figure 2 Type of myoelectric control schemes.
Abbreviations: EMG, electromyographic; FSM, finite state machine; PR, pattern recognition.

 suitable for a fixed number of postures and may not be suit-

able for multifunctionality. Furthermore, the state change 

occurs from the EMG command till the desired posture/

function is selected.

These limitations can be overcome using pattern recog-

nition approach. Many researchers have developed various 

algorithms for identification of information from the signals 

using pattern recognition approach.

Pattern recognition-based myoelectric 
control
Pattern recognition-based myoelectric control typically 

consists of feature extraction and feature classification of 

segmented data in signal processing to command to the 

motor controller. Some signal processing may include  feature 

reduction or feature selection (FS) between extraction and 

classification, depending on the number of features. In 

general, various features are extracted in time, frequency, 

and time–frequency to identify the information content of 

the MES.

Pattern-based recognition for myoelectric control 

involves an effective method of identification of information 

from the extracted features. Researchers widely used time 

domain features due to their simplicity. Sardis and Gootee20 

identified patterns of prespecified motion of the feature 

space of variance and zero crossing (ZC). Later, Lee and 

Sardis21 used integral absolute value, also known as MAV, 

along with variance and ZC for the myoelectric control of the 

arm. Hudgins et al22 investigated the information content in 

the transient burst of myoelectric activity using MAV, MAV 
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slope, number of ZCs, number of slope sign changes, and 

waveform length. Because of the stochastic and nonlinear 

nature of EMG signals, a considerable amount of research 

has been carried out using autoregressive (AR) models23–28 

in order to describe feature sets to represent nonstationary 

nature of EMG signals. Liu et al28 studied the classifica-

tion accuracy is increasing more rapidly for AR model less 

than five. The increase in accuracy is low and attains satura-

tion for AR model of five and more. Kang et al29 and Chang 

et al30 took advantage of the cepstral coefficients of EMG 

signal as the control command of man–machine interface. 

Many time domain features have been investigated and 

compared for their effectiveness in pattern recognition for 

myoelectric control.

In the frequency domain, the fast Fourier transform 

(FFT)31–33 has been applied to the EMG signals for determin-

ing the frequency spectrum of the EMG signal. Farry et al31 

used the FFT in teleoperation of prosthetic hand. Sueaseenak 

et al33 utilized FFT to extract the features from EMG signals 

of different hand and wrist motions.

More recently, time–frequency and time–space analysis 

methods have attracted the researchers, but lead to higher 

dimensional feature vectors and necessitate the use of feature 

reduction and FS methods to reduce the feature dimension. 

The short-time Fourier transform,34 wavelet transform,35–41 

and wavelet packet transform36,42,43 yield a high dimensional 

feature vector, and it is essential to employ dimensionality 

reduction techniques to reduce the burden to the classifier.

Other features such as zero moment, first moment, second 

moment, and spectral magnitude average from short-time 

Thompson transform and short-time Fourier transform 

are used as the features for classification and compared with 

the performance with temporal features, namely, the integral 

square, multiple Hamming windows, and multiple trapezoi-

dal windows, for classification of EMG signals.44 Feature 

extraction from EMG using moving approximate entropy,45 

hidden Markov model (HMM),46 HMM-multivariate AR net-

work,47 fractal modeling,48,49 statistical features about fractal 

dimensions for classification,50 and higher order statistics51 

are some of the feature vectors that were attempted in pat-

tern recognition.

Due to the multichannel approach used for acquisition of 

signals, the extracted feature vector dimension can become 

large. Also, wavelet transforms generate many coefficients 

to represent time scale features. Thus, dimensionality reduc-

tion can be achieved using either FS or feature projection 

(FP) method. FS requires a search strategy that selects a 

 candidate subset and an objective function that evaluates 

these candidates. There are many search strategies for FS 

such as Davies–Bouldin,52–54 genetic algorithm,55,56 Kohonen’s 

self-organizing map,57 particle swarm optimization (PSO),58 

mixture of PSO and the concept of mutual information,59 

mutual information,60 rough set theory,61 and multivariate 

analysis of variances62 for selection of features. An important 

factor that limits the applicability of FS methods to EMG 

classification problems is the large variance of EMG signals.63 

Increased number of features can also be reduced by channel 

selection as proposed by the researchers. The FS algorithms 

cannot provide powerful performance when the features are 

dispersed. On the other hand, projection-based methods are 

more effective than selection-based methods.64

Several methods of FP such as principal component 

analysis (PCA),32,65–67 a linear–nonlinear FP composed of 

PCA and a self-organizing feature map,68 simple Fisher linear 

discriminant analysis (LDA),69 LDA-based FP,63 uncorrelated 

LDA,70 combination of Fisher LDA, fuzzy logic, and differen-

tial evolution,71 orthogonal fuzzy neighborhood discriminant 

analysis,72 supervised discretization coupled with PCA,73 

and individual PCA74 have been attempted to compress a 

number of features.

The pattern recognition (classification) maps the fea-

ture vectors from extracted features into specific classes 

of motion. Many literature reports highlight the success of 

neural networks (NNs) and their ability to learn the distinc-

tion between different conditions in pattern recognition. The 

advantage of NN is its ability to learn linear and nonlinear 

relationships directly from the data being modeled. As pio-

neers in developing real-time pattern recognition-based myo-

electric control, Kelly et al75 used Hopfield NN to calculate 

the time series parameter and perceptron network to classify 

the MES signals. Several researchers used a multilayer per-

ceptron (MLP) NN and various NNs are reported in the lit-

erature to classify time domain EMG features for myoelectric 

control33,48,76–82 to classify time domain features.33,48,76–82 Wang 

et al67 applied back-propagation NN with AR coefficients. 

Zhao et al78 applied Levenberg–Marquardt-based NN with 

parametric AR model and integral of EMG. Tsuji et al79 pro-

posed an NN that combines a common back-propagation NN 

with recurrent neural filter in order to classify EMG. Other 

classification techniques are support vector machine,83–85 

 Bayesian classifier,86 evidence accumulation,87 fuzzy logic,88–90  

Gaussian mixture model classifier,63 Morse code-based 

classification,91 canonical discriminations,92 directed acrylic 

graph support vector machine  classification,93,94 simple 

logistic regression,95 k nearest neighbor,96 LDA,35,83 and so 

on. Furthermore, hybrid classification techniques such as 
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HMM–MLP,97 HMM–genetic algorithm–MLP,98 and neuro-

fuzzy,99,100 were attempted to improve the performance of 

myoelectric control. It is essential to perform signal process-

ing in order to maintain the optimal delay in the controller.101 

The performance of the pattern recognition method is studied 

in real time with virtual myoelectric hand control.102

But the pattern recognition methods need training to iden-

tify the intention of the user, and also, proportional control is 

deficient. Most of the pattern recognition control strategies 

are of sequential control. Researchers are now attempting to 

simultaneously control using pattern recognition method.103,104

Posture myoelectric control
In posture myoelectric control, the EMG signals are mapped 

to control parameters in the principal component domain.105 

The principal component domain coordinates are linearly 

transformed into the joint angle to represent target postures. 

This posture myoelectric control provides simultaneous 

myoelectric control of prosthetic hand.

Regression myoelectric control
Regression strategy is one of the control strategies developed 

recently to provide simultaneous as well as proportional 

control. In this control scheme, simultaneous control signals 

such as various joint angles would be obtained. Researchers 

attempted using nonnegative matrix factorization,13,14 NN,15 

and other techniques.

Discussion and conclusion
In this paper, various myoelectric control schemes related 

to sequential and open loop control in research and not 

developed as a product have been reviewed. It is essential to 

develop products based on these schemes. Another milestone 

in myoelectric control is providing good gripping capabil-

ity with the joints of digits actuated using motor to mimic 

human hand gripping.106 Furthermore, closed loop control 

with integration of sensory motor is another thrusting area 

of research, in addition to simultaneous and proportional 

control. Researchers are attempting with tactile feedback to 

close the loop of myoelectric control.107 Closed loop control 

is one of the areas that need to be addressed vehemently. 

Furthermore, research on implantable myoelectric sensor 

and TMR is progressing well in developed countries. But 

these studies should also start in developing countries in 

order to fill the gap.

Considerable research has been conducted in various parts 

of the world and it is necessary to measure the viability of 

myoelectric control strategies from the clinical perspective. In 

addition to control, other strategies such as mechanical design 

of hand to improve the dexterity, and providing battery with 

long life. This also necessitates the integration of experts from 

various disciplines to make the research clinically viable.

Disclosure
The author reports no conflicts of interest in this work.
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