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Abstract: Randomized clinical trials are the gold standard for testing efficacy of treatment 

interventions. However, although randomization protects against deliberately biased samples, it 

does not guarantee random imbalances will not occur. Methods of intentional allocation that can 

overcome such deficiency of randomization have been developed, but are less frequently applied 

than randomization. Initially, we introduce a fictitious case example to revise and discuss the 

reasons of researchers’ resistance to intentionally allocate instead of simply randomizing. We 

then introduce a real case example to evaluate the performance of an intentional protocol for 

allocation based on compositional data balance. A real case of allocation of 50 patients in two 

arms was compared with an optimal allocation of global instead of sequential arrivals. Perfor-

mance was measured by a weighted average of Aitchison distances, between arms, of prognostic 

factors. To compare the intentional allocation with simple random allocation, 50,000 arrival 

orderings of 50 patients were simulated. To each one of the orders, both kinds of allocations 

into two arms were considered. Intentional allocation performed as well as optimal allocation 

in the case considered. In addition, out of the 50,000 simulated orders, 61% of them performed 

better with intentional allocation than random allocation. Hence, we conclude that intentional 

allocation should be encouraged in the design of future interventional clinical trials as a way to 

prevent unbalanced samples. Our sequential method is a viable alternative to overcome technical 

difficulties for study designs that require sequential inclusion of patients as it does not require 

prior knowledge about the total sample composition.

Keywords: randomization, intentional allocation, clinical trials, current trends, biostatistics

Introduction
Research controlled experiments often rely on the comparison of end-point responses 

of two treatments to investigate the efficacy of an intervention. For the experiment to be 

fruitful, the samples ought to be comparable. The researcher should aim for samples that 

differ – up to his knowledge – solely on the respective allocated treatments. Differences 

on the responses therefore shall be (tentatively) attributed exclusively to the effect of 

treatments. For decades, the preferential method for selecting samples that should be 

balanced for clinical trials has been based on different methods of randomization.

The introduction of randomization as a method of allocation was a benchmark 

in the evolution of modern clinical trials and became a gold standard for testing the 

efficacy of treatment interventions.1 However, despite its undisputed importance, 

randomization is not flawless.2 Given that any sample can result from randomization, 

it may generate samples that are not balanced regarding baseline characteristics and 

putative prognostic factors. Therefore, randomization does not necessarily generate 
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samples that are suitable for determining the comparative 

efficacy of interventions.

Postponing or even totally avoiding randomization is not 

a new idea in Statistical Design of Experiments. It started as 

early as 1971 and was contemplated by different authors. For 

more information, see Basu,3–5 Brewer,6 Berry and Kadane,7 

DasGupta,8 Kadane and Seidenfeld,9 and Ware.10

The attempts to control for the imbalances that may be 

produced by randomization are also known as minimization 

methods. For a complete review on these methodologies, 

please see Scott et al.11 The alternative methods of allocation 

including minimization procedures that can avoid randomiza-

tion shortcomings12–14 are, however, rarely used. The infre-

quent application of such methods in current clinical trials 

may be related to the misconceptions regarding the risks of 

abandoning randomization.

In this article, we use a fictitious case example to illus-

trate the randomization paradox. We revise and discuss the 

putative reasons for favoring randomization and evaluate an 

alternative method of allocation that does not require prior 

knowledge of the total or any partial sample composition 

and, therefore, is named sequential allocation.

Figure 1 depicts ancient devices of random allocation.

A fictitious case example to 
illustrate an everyday paradox in 
medical research
A clinician named Ed wants to test the benefits of a new 

dietary supplement advertised as an antiobesity medica-

tion in his patients who are overweight. He has 12 patients 

scheduled for next week in his clinic. He decides to offer the 

new supplement to six of the patients who happen to also 

be his friends and leave the other patients with treatment-

as-usual. But before running his experiment, Ed consults 

Joe, his supervisor, who is highly specialized in the field of 

clinical trials. Joe tells Ed that the idea of dividing his sample 

in groups of friends and of ordinary patients is unwise and 

will preclude comparisons between supplements. Joe sug-

gests to Ed that he uses a simple randomization procedure 

to allocate his patients. Ed agrees and immediately prints 

the list of all his 12 patients in alphabetical order. Then he 

gets 12 marbles (numbered from 1 to 12) from the Bingo 

toy he bought for his son. He and Joe agree that the first six 

drawn numbers will correspond to the patients receiving the 

new treatment. It so happens that all his six friend patients 

are selected (by the Bingo globe) for the new supplement, 

while the remaining patients will obtain treatment-as-usual, 

as before. This fictitious case illustrates a paradox: a sample 

otherwise considered inadequate for an experiment can be 

the result of a procedure of simple randomization. If Joe 

deems friendship with Ed a relevant prognostic factor (as, say, 

friends tend to better comply with treatments prescribed by a 

buddy-doctor), it is illogical of him not to demand that – prior 

to any randomization – friends of Ed are equally distributed 

between interventional groups.

Most researchers will come up with a number of relevant 

prognostic variables (stratification variables) that will end up 

dismissing any randomization whatsoever, especially with 

small total sample numbers (eg, suppose that both friends and 

nonfriends groups have four male and two female patients 

who need to be equally distributed between interventional 

groups to control for the effect of sex, and so on). If, when 

bias is perceived, randomization is not guaranteed to avoid 

it, why is one so prone to embrace it?

We consider several objections raised by tradition against 

the clear and straightforward idea of using intentional alloca-

tion in the conduction of real-life clinical trials to achieve 

more balanced, and therefore comparable, groups.

Figure 1 Primitive randomization devices.
Notes: (A) Ovine astragalus bone used for gambling (circa 300 BC). (B) Astragalus monument in Kyrgyzstan. (B) Reproduced from wikimedia.org (http://
creativecommons.org/licenses/by-sa/3.0/).40
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Overviewing the reasons for 
randomization held by tradition
Reason A: every sample unit must have 
the same chance of being selected
According to reason A, bad (unbalanced) and good (balanced) 

samples should have the same chances of being selected. 

This very democratic fact about randomization creates the 

problems that justify restricted randomization. It is exactly 

because any sample allocation is possible with randomization 

that poorly balanced and biased samples can often result from 

endless randomizations. In biased samples, the characteristics 

that are unbalanced between interventional groups can act as 

confounding factors, once they may interfere with the result 

of the study regardless of the intervention being tested.

Some researchers argue that, in the face of a bad sample 

generated by randomization, it is possible to correct the effect 

of confounding factors (characteristics that are unbalanced 

between groups and that could interfere with the results) 

in posterior analysis. However, to control for confound-

ers, information on the effect of the confounder has to be 

available. If, as in Ed and Joe’s case, there is no information 

on the effect of being a friend of the doctor promoting the 

experiment (because all friends participated only in one arm 

of the study), reason A becomes untenable. Moreover, if we 

can diminish the chance of a bad sample, why would we rely 

on posterior analysis to correct for a problem that could have 

been easily prevented?

To increase the problem further, the fact that every sample 

has the same chance of being selected makes it impossible to 

trace if an unbalanced sample was generated randomly (by 

accident) or not (eg, in the case of intentional bias). Of note, 

even when using a method of intentional allocation that is not 

totally deterministic, it is possible to confirm if one specific 

allocation result is among the possible results produced by 

that allocation procedure.

Moreover, when randomizing, scientists create an addi-

tional paradox: the paradox of posterior hypothesis testing. 

Hypothesis testing tells you the probability of a result having 

occurred by chance. Hence, if it is already known that a dif-

ference is the consequence of randomization (pure chance), 

why should we test whether it has occurred by chance? As a 

matter of fact, the urge to compare interventional groups to 

test for “good” balance of prognostic factors points to the fact 

that ideal allocations should not be strictly random, as many 

randomized options need to be avoided even if produced by 

some unbiased randomization device.

Furthermore, somewhat ironically, very well-balanced 

allocations intentionally chosen could have been produced 

by simple randomization. Therefore, even if a statistical test 

is based on the assumption that the sample is a randomly 

selected subgroup of a population, it is still adequate to ana-

lyze intentionally produced samples; given that intentionally 

produced samples are part of the universe of possibilities of 

randomly chosen samples.

In conclusion, reason A does not hold in face of the 

advantages of intentional allocation. Intentional allocation 

decreases the chance of producing bad random samples, and 

makes it possible to trace if a specific method was employed 

for that specific result of allocation. Since intentional alloca-

tion does not rely on the availability of information on the 

effect of unbalanced factors as posterior analyses do, careful 

balancing promoted by methods of intentional allocation 

seems much more appropriate than randomization to prevent 

the effect of confounding factors. In addition, as a bonus, it 

makes the controversial posterior testing of homogeneity of 

baseline characteristics of interventional groups unnecessary, 

undoing the posterior hypothesis testing paradox.

Reason B: randomization avoids human 
interference in the allocation of patients 
(while any other form of allocation 
does not)
Personal interference from scientists is a matter of concern 

in the design of experiments. In fact, avoidance of “non-

random” interference in the design is the most voiced and 

traditional reason for randomizing: even unintentionally, 

a scientist might “give an artificial (dis)advantage” to some 

experimental procedure. For example, a physician may 

submit his new procedure mostly to healthier patients while 

leaving treatment-as-usual to unhealthier ones, increasing the 

chances of the new procedure being proved more effective 

than the traditional one.

The application of not completely random (more deter-

ministic) methods of allocation raises the concern that 

researchers may gain control over the allocation in order for 

a specific subject to receive a more desired intervention. That 

concern is built on the assumption that knowledge of the prog-

nostic factors included in the process enables a researcher 

to accurately guess the allocation of each subject. Indeed, in 

some specific minimization methods, it is possible to guess 

correctly where a subject will be allocated having prior 

knowledge of the characteristics of the previously allocated 

subjects.11 In the time-sequential purposive allocation pro-

tocol to be described in the section on Evaluating sequential 

methods as alternatives to randomization, however, it is not 

the case. In addition, even for the minimization procedures 
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where accurate guesses are indeed possible, there are ways 

to prevent the certainty about allocation without significant 

prejudice of the efficiency of the method.15

In the allocation method described in Section 3, for the 

first arriving patients, the decision is random and therefore 

unpredictable. Once there are sufficient (two, usually) 

sample units to start balancing the baseline character-

istics of patients among groups, the next step allocation 

is decided upon a complex calculation that uses several 

putative prognostic factors and all the information on pre-

viously included patients. Moreover, if allocation in any of 

the groups produces the same difference between groups, 

the decision will, once again, be random. The randomness 

kept in the process and the complexity of the calculations 

make it practically impossible to guess to which group a 

patient will be allocated. Therefore, well-built methods 

of allocation such as the one from Section 3 can make 

it almost impossible for the researcher to manipulate its 

results.

Reason C: nonrandom allocation 
procedures implicate great technical 
difficulties while providing negligible gains 
regarding balance between interventional 
groups
The technical difficulties implied by the application of inten-

tional allocation procedures vary according to the method of 

allocation. In the method described in Section 3, once the 

prognostic factors are chosen, the weight for each factor is 

determined and the calculation of the compositional distance 

between groups is set, allocating each subject is as simple as 

it would be in the case of using any process of randomization 

and much simpler than applying stratification or block proce-

dures. Therefore, with the recent computational developments 

and the use of a sequential method that does not require prior 

knowledge about the total or partial sample composition, the 

argument that intentional allocation implicates great technical 

difficulties does not hold.

The gains obtained with the use intentional allocation 

depend on several factors. The most straightforward factor 

is the sample size. Smaller sample sizes will be the ones to 

achieve greater benefit given the higher chance of random 

imbalance. In addition, the existence of well-known prog-

nostic factors with great effect over outcome also will result 

in greater benefits since the controlled variable during the 

process of allocation will be a variable of great relevance. 

Therefore, the gains of intentional allocation have to be 

determined on an individual basis.

Reason d: if samples are not completely 
random, classical statistical analysis 
cannot be performed
Randomization, in combination with blinding of interven-

tions being administered, has been a time-honored antidote 

against unfair trials. However, as Ed and Joe have shown us, 

it is an antidote which does not avoid unbalance. In other 

words, it is not a completely effective antidote.

Even in a trial in which the scientists control all prognostic 

factors that they believe are relevant, it can happen that they 

ignore the possible influence of other factors. This could be a 

reason for – at last – randomizing. If, however, there are other 

factors which the scientists judge irrelevant, but nevertheless 

call their attention, it is safer to equally distribute them than 

to randomize. Randomization, therefore, does not guarantee 

balan ced samples; it only guarantees that if one factor which the 

scientists never took into consideration turns out to be unequally 

distributed among arms and influences the trial results, it is not 

the responsibility of the scientists, even if the unbalance had been 

perfectly possible to happen due to the very randomization.

A scientist who, despite the arguments above, decides to 

randomize must be warned that the sampling distribution derived 

from a randomized design can never be used at the inference 

stage once the observations are recorded. The rationale of this 

(adherence to the likelihood principle16) is the absolute divorce 

between the object of the study and selection probabilities.

Intentional allocation by an expert not only attains better 

balance of prognostic factors between groups, but indeed 

keeps the uncertainty about treatment effects as the exclusive 

source of randomness in the experiment. Randomization 

entails another source of randomness that is divorced from 

the objectives of the research. Such addition of auxiliary ran-

domness, if preserved until the statistical inference stage of 

the experiment, comes down to a violation of the paramount 

likelihood principle.16 Intentional designs prophylactically 

aborts probability due to simple randomization from the 

beginning. Probability then describes the updating of uncer-

tainty exclusively about the effects of treatments. Given the 

complexity of the discussion over statistical analyses of stud-

ies using restricted methods of randomization, we believe a 

thorough discussion over the matter should be explicated in 

other manuscript with that specific aim and scope.

Evaluating sequential methods as 
alternatives to randomization
In 2009, Fossaluza et al12 described a method of inten-

tional allocation based on compositional data balance.17 

This procedure allocates every new patient to the arm that 
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minimizes his (suitably weighted) distance between treatment 

arms. At least two clinical trials that employed this method 

have been completed and published. In both, there was 

good balance between groups despite a small number of 

participants.18,19

To evaluate the performance of this intentional alloca-

tion procedure in comparison with simple randomization 

controlled exclusively for group sizes, we will use the infor-

mation from 50 patients who participated in a different trial 

(unpublished) that required allocation into two alternative 

arms, that is our real case example. According to the method 

developed by Fossaluza et al,12 given only two possibilities of 

intervention, when a new patient arrives, the mathematical 

suitable distance between the two arms is calculated in both 

alternative provisional situations: new patient in Arm
1
 and, 

alternatively, new patient in Arm
2
. The situation in which 

the distance is smallest is entailed, that is, the new patient 

is actually allocated to the arm that produces the smallest 

distance between arms.

In other words, by assuming the patient who could be 

allocated to each of the two treatment groups, every arriving 

patient had two overall distances between arms calculated. 

For each prognostic factor, the two compositional Aitchison 

distances between arms were obtained (see Supplementary 

material and also Aitchison20 for a thorough discussion of 

compositional data analysis). The overall distance is the 

weighted mean of the four distances (relative sample sizes 

was also considered as a factor). The patient is then allocated 

to the arm that produced the smallest distance. The procedure 

is repeated for the next incoming patient and so forth until 

the sample is exhausted.

In this real case example, the researchers provided three 

baseline characteristics from patients that they believed could 

interfere with the results of the intervention: age, sex, and 

baseline disease severity measured by a well-known instru-

ment, the Yale-Brown Obsessive Compulsive Scale. Age 

and initial severity were further categorized in three groups 

(young, adult, and old for age; and low, medium, and high 

for severity). Baseline data for allocation are presented in 

Tables 1 and 2 (as a technical matter, a fourth nonclinical 

factor was used in allocation: relative arms sample sizes, aim-

ing to not have final sample sizes too different). The weights 

of each measure for the process of allocation were defined 

according to the clinician judgment about the relevance of 

each measure as a prognostic factor.

We believe that the selection of prognostic factors and 

weights for each factor has to be based on the better infor-

mation available under the perspective of the researcher in 

Table 1 Results of two different allocation procedures for 50 patients with known parameters for sex, age, and initial severity

Order Sex Severity Age ISA OGA Order Sex Severity Age ISA OGA

1 F h O Arm1 Arm1 26 F l y Arm1 Arm2

2 F h O Arm2 Arm2 27 F h O Arm1 Arm1

3 F M y Arm2 Arm2 28 M l O Arm1 Arm2

4 M l y Arm1 Arm2 29 F h O Arm1 Arm2

5 F M A Arm1 Arm1 30 F M O Arm1 Arm1

6 F h A Arm2 Arm2 31 M h A Arm2 Arm1

7 M M A Arm1 Arm2 32 F h O Arm1 Arm1

8 F h A Arm1 Arm1 33 M l A Arm2 Arm2

9 M h y Arm2 Arm2 34 F h y Arm2 Arm1

10 F M O Arm2 Arm1 35 F M O Arm2 Arm1

11 F M O Arm1 Arm2 36 F l y Arm1 Arm1

12 M l y Arm2 Arm1 37 M M y Arm1 Arm2

13 M M A Arm2 Arm1 38 M M O Arm1 Arm2

14 M h A Arm1 Arm2 39 F l A Arm2 Arm1

15 F h O Arm1 Arm2 40 M M y Arm1 Arm1

16 F M A Arm2 Arm2 41 F h O Arm2 Arm2

17 M M y Arm2 Arm1 42 F h A Arm1 Arm2

18 M M O Arm2 Arm1 43 F h A Arm1 Arm1

19 F h O Arm2 Arm1 44 F l O Arm2 Arm1

20 F M O Arm2 Arm2 45 M h O Arm2 Arm1

21 F h y Arm2 Arm2 46 F M A Arm1 Arm2

22 M M y Arm1 Arm1 47 F M y Arm2 Arm1

23 M l O Arm2 Arm1 48 M M y Arm1 Arm2

24 F l A Arm1 Arm2 49 F M O Arm1 Arm2

25 F h A Arm2 Arm1 50 F M y Arm2 Arm2

Abbreviations: A, adult; F, female; h, high (severity); ISA, intentional sequential allocation; l, low; M, male (sex); M, medium; O, old; OgA, optimal global allocation; 
y, young.
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charge. Therefore, we advise researchers to select variables 

according to the published literature and also from their 

experience in the field. The question they have to answer 

is: which subjects’ characteristics would cripple your study 

results if they were unbalanced between intervention groups? 

It is common that prognostic factors are highly correlated 

between each other. Therefore, if the number of factors 

becomes exceedingly high, we can use prior knowledge on 

correlation and choose one factor that may represent a greater 

number of variables. For example, in our specific real case 

example, severity of symptoms was chosen as a prognostic 

factor and it is known to be highly correlated with other 

prognostic factors such as number and type of comorbid 

diagnoses and degree of functional impairment. Therefore, 

even with no prior knowledge about the comorbidity pattern 

or functional level of our sample, we will indirectly control 

for such characteristics through its relationship with symp-

toms’ severity.

A similar logic is applied for weights. We believe that the 

researcher is the one who is most capable of determining the 

importance of each factor. In our case, the researcher deemed 

adequate to attribute higher weight to what she believed was 

the most relevant factor regarding prognoses and smaller 

weight to what she believed were secondary factors that 

were desirably balanced but had no strong correlation with 

treatment outcome (sex and age). The weight attributed to 

groups’ sizes is a more controversial issue. In each experi-

ment, we have to evaluate if forcing groups of equal sizes 

is more relevant than treating imbalance. Giving too much 

weight to group sizes might have the undesirable effect of 

inducing higher imbalance regarding other characteristics. 

On the other hand, allowing group sizes being too different 

might bring consequences to analysis. In small samples, we 

have to guarantee a minimum number of observations for 

each intervention, otherwise it will be very hard to reach any 

conclusions about one specific intervention.

In conclusion, the matter of choosing prognostic fac-

tors and weights requires that we understand the best 

information available on prognoses, that we control for 

technical issues such as how feasible it is to have that 

information about a specific patient before inclusion in 

the trial, and that we consider how specific imbalances 

might reverberate in statistical analyses. Different weight 

attributions would certainly impact the results of alloca-

tion. To the best of our knowledge, the best way to deal 

with this issue is making informed decisions along with 

the researcher in charge.

Usually, treatment groups of approximately same size are 

preferred. Operational and financial reasons can, however, 

point to an experiment with (very) unequal sample sizes. In 

general, the method by Fossaluza et al12 may conduct the final 

group sizes to given values chosen by researchers, by treating 

relative sample sizes as a (pseudo) covariate having weight 2 

(which forces the assignment of weights for true covariates 

to be even more careful as relative sample sizes and clini-

cal prognostic factors are then elicited in a same scale. This 

procedure is entailed by measuring the Aitchison distance 

among the vector (½;½) and the common (to groups) vector 

m i

m i n i

n i

m i n i

( )
( ) + ( )

( )
( ) + ( )









;  after each (ith) arrival, with m(i) 

equal to the number of patients allocated to the first group 

after the ith arrival and n(i) equal to the number of patients 

allocated to the second group after the ith arrival; i=1, 2, 3, 

…, (m + n), where m and n are the two arms’ final sizes.

The two last columns of Table 1 shows the allocation 

results based on two different situations: intentional sequen-

tial allocation (ISA) developed by Fossaluza et al,12 in which 

every new patient is allocated as it arrives and there is no 

information about the next patients in line; or optimal global 

allocation (OGA), which means the whole sample is known a 

priori and the optimal allocation for the final sample can be 

calculated by purposely dividing patients in the same stratum. 

In our case, the OGA method is the equivalent of minimiza-

tion procedures. To obtain OGA results, we chose to divide 

each cell of the Table 2 and allocate half of the patients to 

each arm. If the number in the cell is odd, one of the patients 

will be allocated at the end together with the remaining of 

the other cells. The allocation of the remaining individuals 

of odd cells can be performed using (or not) randomization. 

In addition, once the two groups are divided and carefully 

Table 2 Contingency table with the observed frequencies of 
prognostic factors for 50 patients

Sex Severity Age Total

Y A O

Female low 2 2 1 5
Medium 3 3 6 12
high 2 5 8 15
Total 7 10 15 32

Male low 2 1 2 5
Medium 5 2 2 9
high 1 2 1 4
Total 8 5 5 18

Total 15 20 15 20

Abbreviations: A, adult; O, old; y, young.
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balanced, the whole group can be randomly assigned to one 

of two treatments.

With the observed arrival sequential order in this experi-

ment, we obtained the smallest possible distance between 

arms (0.0759) with both ISA and OGA procedures. Of note, 

although with equal distances, the results of allocation were 

not identical for ISA and OGA as shown in Table 3. Different 

orders of arrival, however, can produce suboptimal results 

for ISA in comparison with OGA. OGA represents the best 

allocation possible once the whole sample characteristics are 

known. ISA also aims optimality and it does not require that 

the whole sample is known beforehand. Therefore, ISA is a 

way to reach the best allocations possible in clinical trials 

that recruit and allocate patients sequentially with no prior 

knowledge of the next patients to be included.

At this point, we will introduce a digression and quote 

the Indian statistician Debabrata Basu4:

The choice of a purposive plan will make a scientist vulner-

able to all kinds of open and veiled criticisms. A way out 

of the dilemma is to make the plan very purposive, but to 

leave a tiny bit of randomization in the plan.4

As suggested by Basu, in the method described in 

Section 3, a tiny bit of randomization may be kept in the 

process of intentional allocation when no information is 

available or useful. There is as well another reason for just 

a bit randomization. In the situation in which (after several 

rounds of stratification) there is absolute equipoise in two 

groups, the allocation of remaining patients might be again 

randomized within their final joint stratum: such remaining 

patients (if any) are absolutely comparable with respect to 

every prognostic variable that the physician thought of. In 

other words, there is no information on prognostic factors 

that might be helpful to improve the balance of allocation. 

Furthermore, the effect of relevant differences that were not 

envisaged by the physician will be not his responsibility, and 

will be subjected to randomization (as they would anyway 

in a simple randomization procedure).

In the field of clinical trials, the hypothetical situation of 

total absence of useful information agreeable to all parts is 

unrealistic. Even in the total absence of prognostic informa-

tion, at least baseline characteristics such as sex and age can 

be used for determining allocation as they might be associated 

with other variables of unknown and undisputed prognostic 

value. Even so, random decisions are kept in the process of 

intentional allocation after equipoise is attained.

To test Basu’s recommendation of pouring a little ran-

domization, we calculated the effects of mixing up intentional 

allocation with simple randomization. We considered a mix-

ture of the distance obtained with intentional allocation and 

the distance obtained if the allocation were defined by ran-

domization: for a chosen small real number, ε, in the closed 

unit interval, the weighted average of the two distances, 

with weights (1–ε and ε), respectively. When ε equals 0, the 

allocation is completely intentional; when ε equals 0.1, the 

allocation is 90% intentional and 10% random; and so forth 

up to ε=1, which represents total randomization.

To compare procedures, we generated by simple 

simulation up to 50,000 ordered sequences of arrivals of 

the 50 patients in the current trial. There are N factorial 

(N! =N×(N−1)×… ×3×2=3.04×1064) possible arrival orders 

with N patients enrolled in the trial, this being the reason 

we considered a simulation of 50,000 of them for the con-

struction of Figures 2 and 3. To each of these sequences, 

we performed allocations using the following eleven values 

of ε, 0.00; 0.10; …; 0.90; 1.00.

Calculation particulars are fully explained by Fossaluza 

et al.12,21 Simulations were fixed in up to 50,000 samples; 

however, to be fair in our comparison, we did not consider the 

simulated observations with less than 20 patients in one arm. 

Figures 2 and 3 illustrate up to 50,000 final distances distribu-

tions and quantiles that resulted from each value of ε.

For fixed values of ε, Figure 2 shows the empirical 

distribution functions of distances relative to up to 50,000 

simulated orders of patient-arrival, illustrating the spread 

due to uncertainty that occurs. The highest curve is for ISA 

and the lowest is for full randomized allocation. Hence, ISA 

curve favors the smallest distance values when compared with 

all other curves. On the other hand, full randomization is the 

one that most favors higher distance values.

Figure 3 shows quantile curves of which ISA is the lowest 

and full randomization (ε=1) is highest. In other words, for 

all distance quantiles considered, ISA favors smaller values 

and again full randomization favors higher distance values. 

In other words, high differences between groups regarding 

Table 3 Contingency table that shows the difference between 
allocation results obtained with intentional sequential allocation 
and optimal global allocation

Sequential allocation Global allocation Arm size

Arm1 Arm2

Arm1 10 15 25
Arm2 15 10 25
Arm size 25 25 50
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Figure 2 empirical distribution functions of the distances yield by the 50,000 simulated order arrivals for each of eleven epsilons.

predetermined factors are less likely with ISA than with 

random allocation.

The results illustrated in Figures 2 and 3 indicate that 

regarding uncertainty and balanced index (values of the 

distances), the optimal value of ε is zero and, therefore, no 

bit of randomization improves ISA. We also estimated the 

proportion of times ISA has performed better than any other 

mixing of randomization and ISA; ε=0.1;…;0.9;1. These 

results are described in Table 4. ISA performs better than 

any degree of randomization. As expected, ISA superiority 

is more evident when compared with the highest degrees of 

randomization (ε=1). The estimate 0.61 means that for 61% 

of the orders of arrival, ISA produced distances smaller than 

full random allocation.

Conclusion
In this article, we reviewed the reasons why researchers 

may withhold the implementation of methods of intentional 

allocation in clinical trials and evaluated the performance 

of a protocol for intentional allocation. We concluded that 

arguments in favor of randomization cannot be sustained 

in the face of the advantages of intentional allocation. In 

addition, the tested protocol of allocation achieved perfect 

or almost perfect joint balance of prognostic factors among 

treatment groups and their consequent comparability. It 

performed better than randomization in guaranteeing that 

unbalanced samples are not chosen. Using intentional 

allocation, it becomes less likely that the results of a study 

will be considered inconclusive due to the effect of a con-

founding factor, which is unbalanced between interventional 

groups. Therefore, the use of carefully designed methods 

of intentional allocation should be encouraged in future 

clinical trials.

Recommended reading
The effect of randomization in Medical Ethics has been 

described by Wajsbrot,22 Ware and Epstein,23 Worral,24 

and Berry.25 The conflict of ideas between advocates for 

randomization against intentional allocations is very old in 

the culture of statistics. It is hard to know where and when 

this methodological conflict started. We recommend the 

reading of some fundamental works of great scholars, such 

as Fisher,26 Kempthorne27 from the side of randomization, 

and Basu4 and Lindley28 from the opposite viewpoint. The 

complete works of Fisher and Basu can be found in Fisher,29 

DasGupta,8 and Basu.30
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Figure 3 epsilon curves of the distance quantiles for their P-levels.
Note: The x coordinate, abscissa, is the level of the quantile and the y coordinate, ordinate, is the value of the quantile.

Table 4 Proportions of cases in which intentional allocation performed better than randomized mixed with ISA

Frequencies ε=0.1 ε=0.2 ε=0.3 ε=0.4 ε=0.5 ε=0.6 ε=0.7 ε=0.8 ε=0.9 ε=1

ISA , M_RA (ε) 25.860 26.140 26.087 25.582 25.158 24.773 24.278 23.871 24.016 23.569
Samples 47.805 46.512 44.931 43.591 42.360 41.506 40.523 39.661 39.391 38.686
lB 95% 0.5365 0.5575 0.5760 0.5822 0.5892 0.5921 0.5943 0.5971 0.6049 0.6044
estimate 0.5409 0.5620 0.5806 0.5869 0.5939 0.5969 0.5991 0.6019 0.6097 0.6092
UB 95% 0.8269 0.8388 0.8488 0.8521 0.8557 0.8572 0.8584 0.8598 0.8637 0.8634

Notes: lB 95% and UB 95% are the lower bound and upper bound of intervals with 95% of credibility.
Abbreviations: ISA, intentional sequential allocation; M_RA, mixed intentional and random allocation.

An important paper by Bruhn and McKenzie31 compares 

the power of balanced and random designs using methods 

pioneered by Student32,33 and Pearson.34 Curiously, Bruhn and 

McKenzie cite Fisher but not Student or Pearson.

Recent works attempting a compromise between ran-

domization and purposive sampling are Pfeffermann35 and 

Pfeffermann and Sverchkov.36 In these two papers, purposive 

sampling is used just to incorporate available information 

(which is formally unadvised in frequentist statistical infer-

ence). Fossaluza et al21 make operational the introduction 

of Basu’s “bit of randomization”. There are certainly other 

fields in which purposive sampling is helpful: in robustness 

for instance, see Pereira and Rodrigues37 under a frequentist 

perspective and the Bayesian counterpart is introduced 

by Bolfarine et al.38 Finally, we recommend some sound 

foundational and formal work by Berry and Kadane7 and 

DeGroot.39
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Supplementary materials
Mathematics of randomization 
irrelevance
Ed and Joe had 924 different possible allocations of 

six patients to each group to choose from. In general, 

2n patients can be allocated in (2n)!÷(n!)² different ways 

to two groups of n patients each for which n! being the 

well-known factorial of n. And there are (N!)÷[(n!)(N−n)!] 

different samples of size n, which can be extracted from a 

population of N patients. Each allocation (or each sample) 

has a numerical “value”, which can be thought of as the 

amount of information it will bring about the population 

(or about the effects of interventions). Such values depend 

also on the population (and the effects of interventions 

on its elements), which is of course unknown. These 

values can be ordered according to their averages taken 

over all population possibilities weighted by respective 

probabilities. This expected utility of each sample is 

therefore a real number that depends on the probability 

distribution (opinion) over the population and relative 

values (preference).

Mathematically, the choice of the sample that maximizes 

expected utility is implied by fundamental “rationality” 

axioms of opinion and preference. This is the so-called 

Maximization of Expected Utility Paradigm.

A randomized sample is always a convex combination 

of two or more nonrandom (or rigid or extreme) samples, 

in the sense that it ends up being one of the rigid samples 

with respective (randomization) probabilities. The fol-

lowing theorem formalizes the irrelevance of randomized 

samples (and allocations or choices in general) also in 

Mathematical Decision Theory (see DeGroot1). Here, we 

write E[.] for expectation of the random element between 

brackets.

Theorem: Let ∆ be a nonempty set (of choices), Θ a set of 

all possible population profiles, and U a utility function which 

assigns a nonnegative number to each pair (δ,θ). Consider a 

randomization which selects δ with probability π or δ
2
 with 

probability (1−π) and let the resulting choice be represented 

by δ*. Then E[U(δ*)] is not larger than both expected utilities 

E[U(δ
1
)] and E[U(δ

2
)], for any 0 # π

 
# 1, any δ

1
, δ

2
 in ∆, 

and any probability distribution over Θ.

Proof: The theorem of Total Probability implies:

 E[U(δ*)] = π×E[U(δ
1
)] + (1−π)×E[U(δ

2
)]

and as π belongs to (0,1), we obtain, without loss of genera-

lity (due to assuming the inequality E[U(δ
1
)] # E[U(δ

2
)]), 

the following result:

 E[U(δ
1
)] # E[U(δ*)] # E[U(δ

2
)].

Aitchison distance for compositional data
Aitchison2 presents the statistical analysis for compositional 

data. Here, we only describe the comparison of two samples 

respecting their vectors of frequency for a specific categorical 

variable and extend it to our particular case of four prognostic 

factors: severity, sex, age, and sample size.

Let A
1
 = (  f

11
+½;…; f

1k
+½) and A

2
 = (  f

21
+½;…; f

2k
+½) the 

two arms k-vectors of compositional frequencies (with the addi-

tion of ½) of a prognostic factor for the two arms of a clinical 

trial. Each position of the vectors corresponds to a possible factor 

classification of the patients. Define the following functions:

For j=1, 2,…,k, k.0 being the number of possible classi-

fications of the prognostic factor being evaluated, consider
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The Aitchison compositional distance between A
1
 and A

2
 

is the standard deviation of L, that is,
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As in our example we have four prognostic factors, we 

have four distances to be composed: severity, sex, age, and 

sample size. Let us represent the four distances as D
sev

, D
sex

, 

D
age

, and D
sam

. As the weights representing the importance 

of each factor, our overall distance is given by:

 ∆∆ == ++ ++ ++2 2

6

D D D Dsev sex age sam

Recall that D
sam

 upon any new arrival t is given by:

 

D
m

nsam
t

t

++
++

1
2

1
2

1
2

1
2





















;

Finally, we call attention to the fact that we had added ½ 

to all elements of the vectors involved to avoid the problem 

of zero frequencies.
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