Animal models of Parkinson’s disease and their applications

Hyun Jin Park
Ting Ting Zhao
Myung Koo Lee

Department of Pharmacy, Research Center for Bioresource and Health, College of Pharmacy, Chungbuk National University, Cheongju, Republic of Korea

Correspondence: Myung Koo Lee
Department of Pharmacy, Research Center for Bioresource and Health, College of Pharmacy, Chungbuk National University, 1, Chungdae-ro, Seowon-gu, Cheongju 28644, Republic of Korea

Tel +82 43 261 2822
Fax +82 43 276 2754
Email myklee@chungbuk.ac.kr

Abstract: Parkinson’s disease (PD) is a progressive neurodegenerative disorder that occurs mainly due to the degeneration of dopaminergic neuronal cells in the substantia nigra. L-3,4-Dihydroxyphenylalanine (L-DOPA) is the most effective known therapy for PD. However, chronic L-DOPA administration results in a loss of drug efficacy and irreversible adverse effects, including L-DOPA-induced dyskinesia, affective disorders, and cognitive function disorders. To study the motor and non-motor symptomatic dysfunctions in PD, neurotoxin and genetic animal models of PD have been widely applied. However, these animal models do not exhibit all of the pathophysiological symptoms of PD. Regardless, neurotoxin rat and mouse models of PD have been commonly used in the development of bioactive components from natural herbal medicines. Here, the main animal models of PD and their applications have been introduced in order to aid the development of therapeutic and adjuvant agents.

Keywords: Parkinson’s disease, neurotoxin animal models, genetic animal models, adjuvant therapeutics

Introduction

Parkinson’s disease (PD) is a progressive neurological disorder that occurs mainly due to the degeneration of dopaminergic neuronal cells in the substantia nigra pars compacta (SNpc).1 L-3,4-Dihydroxyphenylalanine (L-DOPA) is the most effective known therapy for treating the characteristic motor symptoms of PD including slowness, rigidity, resting tremor, and postural instability.2,3 Other drugs including dopamine agonists and anticholinergics are also used to control the symptoms of the movement disorders in PD.4 However, chronic L-DOPA administration results in a loss of drug efficacy and irreversible adverse effects. Moreover, it leads to the development of severe motor fluctuations such as L-DOPA-induced dyskinesia.5 The most common type of dyskinesia can occur in association with high concentrations of L-DOPA in the brain and maximum improvement in the motor responses during L-DOPA administration.6 In addition, patients with PD suffer from a variety of non-motor disorders that appear at the early or late stages of PD, including affective disorders, such as anxiety disorders and depression, and cognitive function disorders, such as learning and memory impairments.7,8 Although L-DOPA therapy has been found to improve anxiety disorders in PD,9 in general, the non-motor disorders are not improved or are even sometimes worsened by chronic L-DOPA administration.10,11

Recently, the etiology, pathology, and molecular mechanisms of PD have been revealed by using animal and cellular models.12–15 Furthermore, by using animal models,
many bioactive and natural adjunctive agents have been
developed that relieve the symptoms of PD (described in the
“Experimental applications of animal models and the related
clinical studies” section). Here, the main animal models of
PD and their applications are introduced in order to aid the
development of therapeutic and/or adjuvant agents.

Neurotoxin models

6-Hydroxydopamine

The classic animal model of PD is the 6-hydroxydopamine
(6-OHDA) model. The neurotoxic effects of 6-OHDA are due
to oxidative stress that is triggered by the formation of reactive
oxygen species (ROS) after entering the neuron via the
donamine transporter.\(^{16,17}\) Stereotaxic injection of 6-OHDA
into the SNpc or the striatum as a unilateral or bilateral model
induces neuronal cell death of the tyrosine hydroxylase
(TH)-containing neurons in each rat and mouse brain, which
decreases the dopamine levels in the TH-positive terminals
of the striatum.\(^{18}\) Although 6-OHDA does not induce the
formation of Lewy body-like inclusions like those observed
in PD, 6-OHDA reportedly interacts with \(\alpha\)-synuclein\(^{19}\)
that is the main component of Lewy bodies.\(^{20}\) In addition,
examining the turning behavior of the animal in response to
amphetamine or apomorphine after the unilateral application
of 6-OHDA indicates the extent of the induced SNpc
or striatal lesion,\(^{21,22}\) and this method has also been used to
test the efficacy of potential PD therapeutics.

Moreover, 6-OHDA has been found in the human cau-
date nucleus and in the urine of \(\alpha\)-DOPA-treated patients
with PD,\(^{23,24}\) suggesting that 6-OHDA may play a role in the
pathogenesis of PD as an endogenous hydroxylated metabo-
lite of dopamine. However, 6-OHDA-lesioned animal model
including the other neurotoxin models is different from the
insidious progression of PD and does not completely repro-
duce the clinical symptom and pathology of PD.\(^{25}\)

1-Methyl-4-phenyl-1,2,3,6-
tetrahydropyridine

The compound 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
(MPTP) induces neurotoxicity in the nigrostriatal dop-
aminergic neurons in the brain of mice, rats, cats, dogs,
monkeys, and other higher mammals. After a student was
injected with an analog of the synthetic opioid meperidine,
he showed severe PD-like bradykinesia that improved with
paroxetine.\(^{26}\) And then, the MPTP, which causes the PD-like
symptoms, was identified from the synthetic meperidine
analog as a by-product (review).\(^{27}\) MPTP is metabolized to
the active metabolite 1-methyl-4-phenylpyridinium (MPP\(^{+}\))
by monoamine oxidase type B.\(^{27}\) MPP\(^{+}\) is taken up into the
neuron by the dopamine transporter, where it then blocks
the complex I site of the mitochondrial electron chain,\(^{28}\) thus
initiating other intercellular reactions and multisystemic
lesions, including oxidative stress, energy failure, and
inflammation.

The species of nonhuman primate PD model are the
rhesus macaque, common marmoset, squirrel monkey,
African green monkey, and cynomolgus, and the baboon
(review).\(^{26,29,30}\) The PD models of nonhuman primates have
behavioral, neuroanatomical and age-related impairments
related with the symptoms of PD patients.\(^{31,32}\) Chronic
MPTP-induced monkey models of PD also show dopaminergic
cell loss, \(\alpha\)-synuclein aggregation, \(\alpha\)-synuclein upregu-
lation, and neuritic \(\alpha\)-synuclein pathology.\(^{30,33}\) Comparisons
to neuropathological data show that the MPTP-induced
dopaminergic neuronal cell death in monkeys is also identi-
cal to that observed in PD.\(^{34}\) However, the neurodegenerative
process in PD is thought to be progressive over a course of
years in the human intoxicated with MPTP, although the
active phase of neurodegeneration shows within a few days
of the MPTP injection.\(^{26,35}\)

Rotenone

Rotenone is a lipophilic herbicide and an insecticide from
Leguminosa plants that crosses the blood–brain barrier and
impairs oxidative phosphorylation in the mitochondria of
rodents.\(^{36}\) Rotenone models show various hallmarks of PD,
including complex I blockade, behavioral dysfunctions,
inflammation, synuclein aggregation, Lewy body-like
formations, and oxidative stress.\(^{37}\) However, because of the
difficulties associated with using rotenone to generate
a model of PD, limited data have been reported on the
dopamine depletion in the nigrostriatal system of this
model.\(^{38}\)

Paraquat

Paraquat (1,1'-dimethyl-4,4'-bipyridinium) is used widely as
an herbicide in agriculture, and it exhibits a structural resem-
lance to MPP\(^{+}\).\(^{39}\) However, unlike MPP\(^{+}\), paraquat exerts del-
eterious effects on dopaminergic neurons through oxidative
stress-mediated damage of lipids, proteins, DNA, and RNA
by generating ROS, superoxide radicals, hydrogen peroxide,
and hydroxyl radicals in mice.\(^{40}\) The systemic application of
paraquat to mice reduces their motor activity and induces a
dose-dependent loss of striatal TH-positive neurons.\(^{41,42}\) In
addition, paraquat induces an increase in \(\alpha\)-synuclein and
the formation of Lewy-like bodies in dopaminergic SNpc
neurons. However, in several cases of paraquat-induced PD models, there is not a patent decrease in the striatal dopaminergic innervation, and there is only a transient decrease in the striatal TH levels, suggesting that it takes care to make the paraquat model.

Methamphetamine and other derivatives
Methamphetamine has neurotoxic effects on the nervous system that cause not only functional deficits but also structural alterations. However, although selective dopaminergic or serotonergic neuronal cell loss occurs in rodents following the administration of high doses of methamphetamine, this model is not very reliable; the results only produce a long-term loss of TH enzyme but are not examined in the PD-dependent behavioral tests.

Tetrahydropapaveroline and salsolinol, which are found in the urine of patients with PD following chronic L-DOPA administration, have been shown to be neurotoxic, as they form ROS in the dopaminergic neurons. In addition, organic metals including manganese and carbon disulfide (CS₂) cause the neurodegeneration of substantia nigra neurons.

However, it is suggested that these metals can be considered specific dopaminergic toxins.

Genetic models

α-Synuclein
α-Synuclein is a ubiquitous and abundant 140-amino acid cytosolic protein and is the main component of the filaments that form Lewy bodies. The α-synuclein gene has been identified as the cause of familial forms of PD. Specifically, three point mutations in α-synuclein (A53T, A30P, and E46K) cause familial PD, and the expression level of α-synuclein is a determinant of PD progression. Furthermore, α-synuclein aggregation has been observed in the rotenone- and MPTP-induced animal models of PD. Knocking out α-synuclein does not affect the development or maintenance of dopaminergic neurons. The α-synuclein transgenic mouse models have been reported using human α-synuclein gene mutation (A30P/A53T). The α-synuclein transgenic mouse model that expresses the wild-type gene with the regulated tetracycline system has also been reported: this model provides the loss of neurons of substantia nigra, progressive motor decrease, and cognitive impairment, but there is no fibrillary inclusion. Although the function of α-synuclein was recently revealed, the continual expression of α-synuclein is required for the disease progression, and the actual role of α-synuclein in PD still remains elusive. In addition, α-synuclein aggregation can be modulated by the formation of toxic oligomer by including interaction with lipids or small molecules, phosphorylation of α-synuclein at Ser129 and Ser87, oxidative stress, and truncation (review). The level of total and oligomeric forms of normal and phosphorylated α-synuclein (at Ser129) from PD patients as a prospective diagnosis marker is detected by the immune detection method of plasma samples and other Lewy body disease. Recent researches therefore suggest that the mechanism of the phosphorylation process of α-synuclein in brain might be a sensitive and effective biomarker candidate for PD.

Leucine-rich repeat kinase 2 mutations
Unlike α-synuclein, leucine-rich repeat kinase 2 (LRRK2) is localized to membranes. Mutations in LRRK2, coding for dadarin, are the most frequent genetic cause of late-onset autosomal-dominant PD, and LRRK2 mutations have also appeared in sporadic PD. The main cause of LRRK2-related PD according to pathological observations is the presence of α-synuclein inclusions. The toxicity of LRRK2 mutations involves the overexpression of disease-causing mutations and is kinase- and guanosine-5′-triphosphate-binding dependent. In contrast, knocking out LRRK2 has no effect on dopaminergic neuronal development or maintenance. Moreover, LRRK2 transgenic mouse models do not show the further pathological results, which is unclear.

Parkin, phosphatase, and tensin homolog-induced novel kinase 1, and DJ-1
Currently, the autosomal-recessive causes of PD include mutations in parkin, phosphatase, and tensin homolog-induced novel kinase 1 (PINK1), DJ-1, and ATP13A2. Parkin, PINK1, and DJ-1 mutations have been applied to generate animal and cellular models of PD. However, animal models that utilize ATP13A2 have not been reported.

Parkin mutations account for ~50% of the familial cases of PD and 20% of the young-onset PD cases. The 465-amino acid parkin protein functions as an E3 ubiquitin ligase, which participates in the ubiquitin proteasome system. Mutations in parkin mostly lead to a loss of E3 ubiquitin ligase activity, which causes mitochondrial dysfunction followed by the general pathogenesis of early-onset parkinsonism. Constitutive knockout rodent models of these genes do not demonstrate any nigrostriatal degeneration. However, a recent report showed that the conditional deletion of parkin in adult mice is associated with SNpc neurodegeneration.
PINK1 is localized to the mitochondrial intermembrane space and membrane, and may regulate mitochondrial calcium dynamics. Most of the reported mutations in PINK1 are loss-of-function mutations that affect the kinase domain. Similar to parkin knockouts, PINK1 knockout mice do not exhibit any major abnormalities; in particular, the number of dopaminergic neurons and the level of striatal dopamine are unchanged. In addition, parkin and PINK1 function in a common pathway and regulate mitochondrial trafficking and autophagy.

DJ-1 is a redox-sensitive molecular chaperone and regulator of antioxidants and is a member of the ThiJ/Pppl family of molecular chaperones. DJ-1 is subcellularly localized to the cytosol, mitochondrial matrix, and intermembrane space, where it is ubiquitously expressed and functions in vivo as an atypical peroxiredoxin-like peroxide. Mutations in DJ-1 result in reduced neuroprotective function and antioxidant activity and play a role in early-onset parkinsonism. Similar to parkin and PINK1 knockouts, DJ-1 knockout mice do not exhibit the major abnormal symptoms that are associated with PD.

Finally, the ATP13A2 protein is a lysosomal membrane protein, and most mutations are retained and degraded in the endoplasmic reticulum, which leads to PD neurodegeneration and α-synuclein accumulation.

Experimental applications of animal models and the related clinical studies

Behavioral alterations in animal models of PD are related to dopaminergic neuronal activity in the nigrostriatal region. Chronic L-DOPA administration-induced dyskinesia is mainly related to the supersensitivity of dopaminergic neurons. PD-induced anxiety disorders are closely related to the dopaminergic and serotoninergic neuronal functions in the brain. In addition, memory dysfunctions are related to dopaminergic and N-methyl-D-aspartate (NMDA) neuronal functions.

Interestingly, smoking and nicotine protect dopaminergic neurons in the MPTP mouse model, and nicotine also has protective effects in the primate MPTP model and in the 6-OHDA-, rotenone-, and paraquat-induced animal models of PD (review). Nicotine reduces the loss of striatal TH immunoreactivity induced by 6-OHDA, which leads to neuroprotection of the nigrostriatal region, but the precise mechanism remains unknown yet. Similarly, caffeine exerts neuroprotective effects in the MPTP, 6-OHDA, and paraquat animal models by antagonizing adenosine A2A receptors (review). SS31, a mitochondria-targeted aromatic-cationic peptide, protects dopaminergic neurons in the MPTP-induced PD model. D-Cycloserine, a partial agonist of the NMDA receptor, improves PD-related dementia by inducing behavioral and neurological changes in the MPTP-induced rat model of PD.

The targets for various neuroprotective drugs and agents and the approach for promoting L-DOPA therapy in PD have been reviewed previously. Thus, we summarize the bioactive components and extracts that have been isolated from natural herbal medicines for the purpose of relieving and protecting against the symptoms of PD in Table 1.

Effects on neurotoxin-induced behavioral dysfunction and the death of dopaminergic neurons

In the 6-OHDA-induced rat model of PD, the extract of Mucuna pruriens, ethanol extract of Gynostemma pentaphyllum, curcumin and naringenin, epigallocatechin derivatives from green tea, and bilobalide from Ginkgo biloba extract show neuroprotective effects.

In the MPTP-induced mouse and rat models of PD, G. biloba extract, kavain, ginsenoside Rg1, echinacoside from Cistanches salsa, celastrol, paoniflorin from Paoniae alba, resveratrol, baicalein, and gypenosides (GPS) from G. pentaphyllum exhibit protective effects. Extracts from Acanthopanax senticosus and Withania somnifera also show protective effects in the MPTP-induced rodent model of PD.

In addition, purslane isolated from Portulaca oleracea L. and sesamin from A. senticosus demonstrate protective effects on the rotenone-induced rat model of PD.

Effects on MPTP-induced anxiety disorders

GPS and the ethanol extract from G. pentaphyllum show anxiolytic effects on affective disorders by modulating the brain levels of dopamine and serotonin in the MPTP-induced mouse model of PD.

Effects on L-DOPA-induced dyskinesia

One double-blind, placebo-controlled study showed that amantadine reduced L-DOPA-induced dyskinesia in PD. Pilot studies also suggest that cannabinoids and aripiprazole can reduce L-DOPA-induced dyskinesia in PD.

Endocannabinoids reduce L-DOPA-induced dyskinesia in an MPTP-induced cynomolgus monkey model of PD. L-Stepholidine shows neuroprotective effects on L-DOPA.
Table 1 The applications of PD animal models by bioactive components and herbal medicines

<table>
<thead>
<tr>
<th>Bioactive component/herbal medicine</th>
<th>Toxic model</th>
<th>Behavioral function</th>
<th>Biochemical analysis</th>
<th>Application for the model</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mucuna pruriens (seed)</td>
<td>Intrastriatal 6-OHDA-lesioned rat</td>
<td>Rotational behavior</td>
<td>None</td>
<td>Test symptomatic therapy</td>
<td>92</td>
</tr>
<tr>
<td>Gynostemma pentaphyllum (ethanol extract)</td>
<td>Unilateral 6-OHDA-lesioned rat</td>
<td>Rotational behavior</td>
<td>TH-immunohistochemistry</td>
<td>Test symptomatic therapy</td>
<td>93</td>
</tr>
<tr>
<td>Gynosides (G. pentaphyllum)</td>
<td>MPTP-lesioned mouse (C57BL/6)</td>
<td>Elevated plus-maze test</td>
<td>Dopamine and serotonin levels</td>
<td>Test affective disorders</td>
<td>111</td>
</tr>
<tr>
<td>Marble burying test</td>
<td>MPTP-lesioned mouse (C57BL/6)</td>
<td>TH-immunohistochemistry</td>
<td>Dopamine and its metabolite levels</td>
<td>Test symptomatic therapy</td>
<td>106</td>
</tr>
<tr>
<td>Curcumin, naringenin (green tea)</td>
<td>Unilateral 6-OHDA-lesioned rat</td>
<td>None</td>
<td>Dopamine and serotonin levels</td>
<td>Test symptomatic therapy</td>
<td>94</td>
</tr>
<tr>
<td>Epigallocatechin derivatives (green tea)</td>
<td>Unilateral 6-OHDA-lesioned rat</td>
<td>None</td>
<td>Dopamine levels</td>
<td>Test symptomatic therapy</td>
<td>95</td>
</tr>
<tr>
<td>Bilobalide (Ginkgo biloba)</td>
<td>Unilateral 6-OHDA-lesioned rat</td>
<td>Locomotor activity</td>
<td>TH-positive cells</td>
<td>Test symptomatic therapy</td>
<td>96</td>
</tr>
<tr>
<td>G. biloba (acetone–water extract)</td>
<td>MPTP-lesioned mouse (C57)</td>
<td>None</td>
<td>Dopamine levels</td>
<td>Test symptomatic therapy</td>
<td>97</td>
</tr>
<tr>
<td>Kavain (Piper methysticum)</td>
<td>MPTP-lesioned mouse (C57BL/6)</td>
<td>None</td>
<td>MAO activity</td>
<td>Test symptomatic therapy</td>
<td>98</td>
</tr>
<tr>
<td>Ginsenoside Rg1</td>
<td>MPTP-lesioned mouse (C57BL)</td>
<td>None</td>
<td>Dopaminergic neurons</td>
<td>Test symptomatic therapy</td>
<td>99</td>
</tr>
<tr>
<td>Echinacoside (Cistanches salsa)</td>
<td>MPTP-lesioned mouse (C57BL/6)</td>
<td>Locomotion test</td>
<td>TH expression</td>
<td>Test symptomatic therapy</td>
<td>100</td>
</tr>
<tr>
<td>Celastrol (Celastraceae family)</td>
<td>MPTP-lesioned mouse 3-Nitropropionic acid-lesioned rat</td>
<td>None</td>
<td>Dopaminergic neurons</td>
<td>Test symptomatic therapy</td>
<td>101</td>
</tr>
<tr>
<td>Paeoniflorin (Paeoniae alba)</td>
<td>MPTP-lesioned mouse (C57BL/6)</td>
<td>Pole test</td>
<td>TH-positive cells</td>
<td>Test symptomatic therapy</td>
<td>102</td>
</tr>
</tbody>
</table>

(Continued)
<table>
<thead>
<tr>
<th>Bioactive component/herbal medicine</th>
<th>Toxic model</th>
<th>Behavioral function</th>
<th>Biochemical analysis</th>
<th>Application for the model</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resveratrol</td>
<td>MPTP-lesioned mouse (Balb/c)</td>
<td>Motor coordination impairment</td>
<td>Hydroxy radical levels</td>
<td>Test symptomatic therapy</td>
<td>103</td>
</tr>
<tr>
<td></td>
<td>MPTP-lesioned mouse (C57BL/6)</td>
<td>None</td>
<td>Dopamine depletion TH-immunopositive cells</td>
<td>Test symptomatic therapy</td>
<td>104</td>
</tr>
<tr>
<td>Baicalein (Scutellaria baikalensis)</td>
<td>MPTP-lesioned mouse (C57BL/6)</td>
<td>Spontaneous motor activity Pole test</td>
<td>Dopamine and serotonin levels</td>
<td>Test symptomatic therapy</td>
<td>105</td>
</tr>
<tr>
<td>Acanthopanax senticosus (ethanol extract)</td>
<td>MPTP-lesioned rat</td>
<td>Pole test</td>
<td>TH-positive cells</td>
<td>Test symptomatic therapy</td>
<td>110</td>
</tr>
<tr>
<td></td>
<td>Ropone-lesioned rat</td>
<td>Pole test</td>
<td>SOD and catalase activities</td>
<td>Test chronic stress-induced pathology</td>
<td>107</td>
</tr>
<tr>
<td>Sesamin (A. senticosus)</td>
<td>Ropone-lesioned rat</td>
<td>Pole test</td>
<td>TH-positive cells</td>
<td>Test symptomatic therapy</td>
<td>107</td>
</tr>
<tr>
<td>Withania somnifera (root powder)</td>
<td>MPTP-lesioned mouse (Albino)</td>
<td>Hang test</td>
<td>GDNF-positive cells</td>
<td>Test symptomatic therapy</td>
<td>108</td>
</tr>
<tr>
<td>Purrsane (Portulaca oleracea)</td>
<td>Ropone-lesioned rat</td>
<td>Striate calcium levels</td>
<td>Dopamine metabolite levels Complex I activity</td>
<td>Test symptomatic therapy</td>
<td>109</td>
</tr>
<tr>
<td>Amantadine</td>
<td>PD patients (clinical trials)</td>
<td>Total dyskinesia score</td>
<td>None</td>
<td>Test L-DOPA-induced dyskinesia</td>
<td>112</td>
</tr>
<tr>
<td>Nabilon (Cannabinoid receptor agonist)</td>
<td>PD patients (clinical trials)</td>
<td>Total dyskinesia score</td>
<td>GABA reuptake</td>
<td>Test L-DOPA-induced dyskinesia</td>
<td>113</td>
</tr>
<tr>
<td>Aripiprazole</td>
<td>PD patients (clinical trials)</td>
<td>Trunk measurement (AIMs score)</td>
<td>GABA transmission</td>
<td>Test L-DOPA-induced dyskinesia</td>
<td>114</td>
</tr>
<tr>
<td>Endocannabinoids</td>
<td>MPTP-induced cynomolgus monkey</td>
<td>Total dyskinesia score (movement range, posture, bradykinesia) Locomotor and motor function tests</td>
<td>None</td>
<td>Test PD generation</td>
<td>115</td>
</tr>
<tr>
<td>Stepholidine</td>
<td>6-OHDA-lesioned rat</td>
<td>AIMs score Locomotive score Contralateral rotational behavior</td>
<td>S-1H mRNA levels</td>
<td>Test L-DOPA-induced dyskinesia</td>
<td>116</td>
</tr>
<tr>
<td>Lycopene</td>
<td>Ropone-lesioned rat</td>
<td>Cognitive decline</td>
<td>Glutathione levels SOD and catalase activities NADH and AChE activities</td>
<td>Test PD-induced cognitive disorders</td>
<td>118</td>
</tr>
</tbody>
</table>

Abbreviations: 5-HT, 5-hydroxytryptamine; 6-OHDA, 6-hydroxydopamine; AChE, acetylcholinesterase; AIMs, abnormal involuntary movements; GABA, γ-aminobutyric acid; GDNF, glial cell line-derived neurotrophic factor; ERK, extracellular signal-regulated kinases; L-DOPA, L-3,4-dihydroxyphenylalanine; MAO, monoamine oxidase; MPP⁺, 1-methyl-4-phenylpyridinium; MPTP, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine; mRNA, messenger RNA; NF-kB, nuclear transcription factor-kB; NADH, reduced nicotinamide adenine dinucleotide; NO, nitric oxide; PD, Parkinson’s disease; ROS, reactive oxygen species; SOD, superoxide dismutase; TBARS, thiobarbituric acid-reactive substance; TH, tyrosine hydroxylase; TNF-α, tumor necrosis factor-α.
induced dyskinesia in the 6-OHDA-induced rat model of PD.116 GPS and the ethanol extract from \textit{G. pentaphyllum} also attenuate the development of L-DOPA-induced dyskinesia by modulating the biomarker activities of delta-FosB expression and extracellular signal-regulated kinases (ERK1/2) phosphorylation in the 6-OHDA-induced rat model of PD.117

Effects on L-DOPA-induced memory dysfunctions or cognitive disorders

Lycopene exerts protective effects on the cognitive decline that is observed in the rotenone-induced model of PD.118 Recently, it has been demonstrated that (−)-sesamin from \textit{Asiasarum heterotropoides} F. Maekawa var. mandshuricum, and GPS and the ethanol extract from \textit{G. pentaphyllum} have neuroprotective effects on the L-DOPA-induced memory dysfunctions by modulating phosphorylation of ERK1/2, cyclic AMP-response element binding protein, and NMDA receptor in the hippocampus of MPTP-induced mouse model of PD (Zhao et al, unpublished data, 2016; Kim et al, unpublished data, 2016).

Conclusion

Rats and mice are widely used as models of PD. Nonhuman primates are also used for the PD models. Neurotoxin models are animal models of end-stage PD, although researchers are working toward developing a progressive toxic model. In contrast, genetic models are created through overexpression or knockout methodology and occasionally through knockin or conditional methodology. However, neither neurotoxin nor genetic animal models display all of the pathophysiological symptoms of PD. PD is a multi-symptomatic disease that mainly arises through environmental neurodegenerative factors and genetic condition. Because a single model can have advantages and disadvantages, further studies might combine genetic models with neurotoxin models and/or double neurotoxin models by each PD-related research plan.

In addition, the effects of various bioactive components from natural herbal products have been reported. However, the clinical applications of these components as therapeutic drugs for PD remain undeveloped; these reasons are raised as the bioactive components are not able to show the desirable drug efficacy because of the recurrent limitation with PD animal models and may also induce the neurotoxicity by their long-term administrations in the animal models.

Acknowledgment

This research was financially supported by the National Research Foundation of Korea (2013-R1A1A2058230) (2015), Republic of Korea.

Disclosure

The authors report no conflicts of interest in this work.

References

