Positive association between CD44 gene rs13347 C>T polymorphism and risk of cancer in Asians: a systemic review and meta-analysis

Jinan Shi1
Yin Duan2
Lei Pan3
Xiaoxi Zhou3

1Department of Medical Oncology, Zhejiang Hospital, 1Department of Breast Surgery, Zhejiang Provincial Traditional Chinese Medical Hospital, 1Department of Respiratory Medicine, Zhejiang Hospital, Hangzhou, Zhejiang Province, People’s Republic of China

Background: Cluster of differentiation 44 (CD44) is an important surface marker of cancer stem cells in a variety of tumors. A number of previous studies have been conducted to investigate the association between CD44 gene rs13347 C>T polymorphism and cancer risk in humans; nevertheless, the results remain controversial. We therefore performed this meta-analysis to confirm the role of this polymorphism in susceptibility to human cancer.

Materials and methods: The studies published up to December 2015 were searched in PubMed, Web of Science, and China National Knowledge Infrastructure databases. Twelve eligible case-control studies were identified, involving a total of 6,982 cases and 7,430 controls. Pooled odds ratio (OR) and corresponding 95% confidence interval (CI) were calculated using a fixed or random-effect model to estimate the strength of the association.

Results: The results of the overall analyses indicated that CD44 gene rs13347 polymorphism was significantly associated with cancer risk in Asians (CT vs CC: OR = 1.35, 95% CI = 1.12-1.62; TT vs CC: OR = 1.99, 95% CI = 1.52-2.60; TT vs CT vs CC: OR = 1.41, 95% CI = 1.16-1.71; and TT vs CC + CT: OR = 1.74, 95% CI = 1.41-2.14), especially in Chinese population (CT vs CC: OR = 1.42, 95% CI = 1.16-1.75; TT vs CC: OR = 2.13, 95% CI = 1.58-2.86; TT vs CT vs CC: OR = 1.50, 95% CI = 1.21-1.87; and TT vs CC + CT: OR = 1.80, 95% CI = 1.43-2.26). In stratified analyses by cancer types, there was evidence for an association between this polymorphism and nasopharyngeal cancer and breast cancer, respectively.

Conclusion: The results of this meta-analysis suggest that the CD44 gene rs13347 C>T polymorphism is associated with elevated risk of human cancer in Asians, especially in Chinese population. Further well-designed studies on a larger population covering other ethnicities should be carried out to validate our results.

Keywords: cancer, CD44, polymorphism, meta-analysis

Background
Cancer is currently a serious public health burden in the world, which results from interactions between accumulations of genetic mutation and environmental risk factors.1,2 In recent years, a small subgroup of cancer cells, called cancer stem cells (CSCs), have been proved to be responsible for tumor initiation, progression, metastasis, recurrence, and drug resistance and cause cancer heterogeneity.3 Thus, eliminating CSCs is considered to be efficient and critical in cancer therapy.4 Several cell surface markers have been found to identify CSCs, and overexpression of these markers, such as cluster of differentiation 44 (CD44), CD24, CD133, CD166, and ALDH1A1, indicates severe clinical features and poor prognosis in a number of cancers.5–10 Among these cell surface markers, CD44 is one of the most frequently
reported markers, which was utilized to isolate CSCs from other cancer cells.11–13

CD44, a transmembrane glycoprotein, is ubiquitously expressed in many cell types.14 As a cell surface receptor for hyaluronate and osteopontin, CD44 is involved in many biological and physiological processes including cell migration, hematopoiesis, lymphocyte homing, embryonal development, and apoptosis.14,15 Besides its regulation of cellular processes, CD44 plays a critical role in tumor cell proliferation, differentiation, invasion, and migration, which contributes to the progression and metastasis of tumors.16–19 Therefore, overexpression of CD44 leads to the development of tumors and poor prognosis of several human malignancies.20–22 In addition, it has been reported that CD44+ cancer cells represent enhanced resistance to chemotherapy in the nude mice-engrafted tumor model.23,24 Recent studies have revealed that the genetic variants of CD44 gene could influence tumor cell growth and migration,25,26 which were associated with the risk prediction and prognosis of various human cancers.27–29

The gene encoding CD44 is located on chromosome 11p13.30 A growing number of studies have been carried out to investigate the effects of several CD44 gene single nucleotide polymorphisms (SNPs) on cancer risk. Among them, the rs13347 C>T polymorphism, located on the 3’-untranslated region (3’-UTR) of CD44 gene, is the most frequently studied.31,32 This SNP might influence the CD44 gene expression, since it has been reported that subjects carrying TT and CT genotypes had remarkably higher levels of CD44 protein than those carrying CC genotype in breast cancer, nasopharyngeal carcinoma, and acute myeloid leukemia.28,31,33

To date, a number of case–control studies have been conducted to evaluate the role of CD44 gene rs13347 polymorphism in predisposition to several human cancers.28,29,32–35 Nevertheless, the results from different articles remain controversial. To clarify the association between CD44 gene rs13347 polymorphism and risk of cancer, we performed this meta-analysis by integrating data from eligible published studies.

Materials and methods

Search strategy

Relevant reports were retrieved by searching the electronic databases: PubMed, Web of Science, and China National Knowledge Infrastructure (CNKI; from inception to December 20, 2015), using the following keywords: (“CD44”) and (“tumor” or “cancer” or “carcinoma” or “neoplasm” or “malignancy”) and (“polymorphism” or “polymorphisms” or “SNP” or “variant” or “variation”). The search was filtered to English-language journals in PubMed. Besides, we also performed a manual search among the references of the relevant publications and related articles. The studies with overlapping data by the same investigators or based on the same population were checked prudently, and the most recent articles covering the largest numbers of cases and controls would be included.

Inclusion and exclusion criteria

The eligible studies in this meta-analysis were required to strictly follow the predetermined criteria: 1) use a case–control study design, 2) evaluate the association between CD44 rs13347 C>T polymorphism and risk of cancer, and 3) report an estimation of odds ratio (OR) and 95% confidence interval (CI), or sufficient data to allow calculation of these two statistics. The main exclusion criteria were studies 1) that did not use a case–control design (eg, case reports, letters, animal studies, reviews, and editorials), 2) that are duplicate of previous publications, 3) that involve inherited cancers, 4) with sample size of cases or controls <100, and 5) in which genotype distribution of controls is not in agreement with the Hardy–Weinberg equilibrium.

Data extraction

All the eligible studies were reviewed by two authors independently to extract useful data. The following information were collected: the name of the first author, the year of publication, the ethnicity of study population, the country of origin, sample size of cases and controls, source of controls (hospital based or population based), genotyping method, and genotype distributions of cases and controls. The disagreements in this step were solved by rechecking the original data to reach a consensus.

Statistical analysis

Hardy–Weinberg equilibrium was estimated by the goodness-of-fit test based on the chi-square test in the control group of each study.36 Pooled analysis was conducted to estimate the strength of the association between CD44 rs13347 C>T polymorphism and cancer risk, using an OR with a corresponding 95% CI. The pooled ORs were calculated by comparisons with a codominant model (CT vs CC and TT vs CC), a dominant model (TT + CT vs CC), and a recessive model (TT vs CC + CT). The values of the pooled ORs were tested by the Z-test.37 Stratified analyses were further performed based on country (People’s Republic of China or India), specific cancer types (nasopharyngeal cancer, gallbladder cancer, or breast cancer), source of controls.
(hospital based or population based), and genotyping method (TaqMan or matrix-assisted laser desorption/ionization time-of-flight). Heterogeneity among the included studies was evaluated by the chi-square-based Q-test. Pooled ORs were calculated using a fixed (Mantel–Haenszel method) or a random (DerSimonian–Laird method) effective model, according to the absence ($P<0.10$ and $I^2<50\%$) or presence ($P<0.10$ or $I^2>50\%$) of heterogeneity. Sensitivity analyses were performed by omitting one study each time to evaluate the stability of the results. The potential publication bias of the included studies was assessed by Begg’s funnel plots graphically and Egger’s test quantitatively.

All the statistical calculations were carried out with Stata/SE software Version 12.0 (StataCorp LP, College Station, TX, USA), using two-sided P-values, and $P<0.05$ was considered to be significant.

Results

Literature search and characteristics of eligible studies

A total of 890 potential relevant records were retrieved through the search strategy described previously. Eight hundred and seventy records were excluded after title or abstract scanning. After full-text reviewing, eight studies were excluded. Finally, 12 studies were eligible for pooled analysis. The flow process of detailed literature search and study selection is shown in Figure 1.

There were 12 case–control studies included in this meta-analysis, involving a total of 6,982 cases and 7,430 controls. All the studies were conducted on an Asian population. Among them, nine originated from the People’s Republic of China and the other three from India. There was no study conducted on Caucasians or Africans. Cancer types included bladder cancer, non-small-cell lung cancer, gallbladder cancer, colorectal cancer, nasopharyngeal cancer, hepatocellular carcinoma, oral cancer, breast cancer, and acute myeloid leukemia. The distribution of genotypes in all the control groups was in agreement with Hardy–Weinberg equilibrium. The characteristics of each eligible study are listed in Table 1.

Quantitative synthesis

The pooled results of the present meta-analysis are shown in Table 2 and Figure 2. There was an association between $CD44$ gene rs13347 polymorphism and risk of cancer in the overall analyses. Significantly elevated cancer risk was revealed in the codominant genetic model (CT vs CC: OR =1.35, 95%
of control, and genotype method. According to subgroup investigated by covariates, such as country, cancer type, source for heterogeneity; Table 2). The source of heterogeneity was I sons under all the genetic models (CT vs CC:

Test for heterogeneity and sensitivity analysis

There was significant heterogeneity in the overall comparisons under all the genetic models (CT vs CC: \(P<0.001 \) and \(I^2=82.4\% \) for heterogeneity, TT vs CC: \(P<0.001 \) and \(F=67.7\% \) for heterogeneity, TT + CT vs CC: \(P<0.001 \) and \(F=85.8\% \) for heterogeneity, and TT vs CC + CT: \(P=0.031 \) and \(F=48.3\% \) for heterogeneity; Table 2). The source of heterogeneity was investigated by covariates, such as country, cancer type, source of control, and genotype method. According to subgroup analyses, country and cancer type might be the source of heterogeneity. To explore the main origin of heterogeneity, a meta-regression analysis was performed in the comparison TT vs CC, which indicated that cancer type contributed to the most proportion in heterogeneity. Moreover, two studies on nasopharyngeal cancer\(^{35,42} \) were under suspicion. After omitting these two studies, the pooled OR was not altered (TT vs CC: \(OR =1.74, 95\% CI =1.39–2.16 \), whereas the heterogeneity remarkably decreased (TT vs CC: \(P=0.110 \) and \(F=34.7\% \) for heterogeneity).

Sensitivity analysis was performed, and the pooled ORs were not influenced qualitatively in all the genetic models by removing any single study, which indicated that the pooled results of this meta-analysis were statistically stable (Figure 3).

Publication bias

The potential publication bias of the eligible studies was assessed by Begg’s funnel plots graphically and Egger’s test statistically. The shapes of funnel plots in all the genetic models did not indicate any evidence of an obvious asymmetry (Figure 4). Meanwhile, Egger’s test revealed that there was no publication bias either (CT vs CC: \(P=0.139 \), TT vs CC: \(P=0.755 \), TT + CT vs CC: \(P=0.186 \), and TT vs CC + CT: \(P=0.975 \)).
Table 2 Pooled analysis of association between CD44 rs13347 C>T polymorphism and cancer risk in Asians

<table>
<thead>
<tr>
<th>Study</th>
<th>N</th>
<th>CT vs CC</th>
<th>OR (95% CI)</th>
<th>P</th>
<th>F (%)</th>
<th>TT vs CC</th>
<th>OR (95% CI)</th>
<th>P</th>
<th>F (%)</th>
<th>TT + CT vs CC</th>
<th>OR (95% CI)</th>
<th>P</th>
<th>F (%)</th>
<th>TT vs CC + CT</th>
<th>OR (95% CI)</th>
<th>P</th>
<th>F (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall</td>
<td>12</td>
<td>1.35 (1.12–1.62)</td>
<td><.0001</td>
<td>82.4</td>
<td></td>
<td>1.99 (1.52–2.60)</td>
<td><.0001</td>
<td>67.7</td>
<td></td>
<td>1.41 (1.16–1.71)</td>
<td><.0001</td>
<td>85.8</td>
<td></td>
<td>1.74 (1.41–2.14)</td>
<td>0.031</td>
<td>48.3</td>
<td></td>
</tr>
<tr>
<td>Country</td>
<td></td>
</tr>
<tr>
<td>People’s Republic of China</td>
<td>9</td>
<td>1.42 (1.16–1.75)</td>
<td><.0001</td>
<td>84.7</td>
<td></td>
<td>2.13 (1.58–2.86)</td>
<td><.0001</td>
<td>73.9</td>
<td></td>
<td>1.81 (1.21–1.87)</td>
<td><.0001</td>
<td>75.6</td>
<td></td>
<td>1.61 (1.43–2.26)</td>
<td>0.012</td>
<td>59.0</td>
<td></td>
</tr>
<tr>
<td>India</td>
<td>3</td>
<td>1.11 (0.89–1.37)</td>
<td>0.069</td>
<td>0.0</td>
<td></td>
<td>1.36 (0.77–2.39)</td>
<td>0.753</td>
<td>0.0</td>
<td></td>
<td>1.13 (0.92–1.39)</td>
<td>0.672</td>
<td>0.0</td>
<td></td>
<td>1.32 (0.75–2.33)</td>
<td>0.744</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Cancer type</td>
<td></td>
</tr>
<tr>
<td>Nasopharyngeal</td>
<td>2</td>
<td>2.15 (1.82–2.54)</td>
<td>0.060</td>
<td>81.5</td>
<td></td>
<td>4.10 (2.99–5.61)</td>
<td>0.827</td>
<td>0.0</td>
<td></td>
<td>2.39 (2.04–2.81)</td>
<td>0.802</td>
<td>0.0</td>
<td></td>
<td>2.95 (2.17–3.99)</td>
<td>0.787</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Gallbladder</td>
<td>2</td>
<td>1.16 (0.90–1.49)</td>
<td>0.473</td>
<td>0.0</td>
<td></td>
<td>1.46 (0.75–2.84)</td>
<td>0.637</td>
<td>0.0</td>
<td></td>
<td>1.18 (0.93–1.51)</td>
<td>0.625</td>
<td>0.0</td>
<td></td>
<td>1.41 (0.73–2.73)</td>
<td>0.502</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Breast</td>
<td>2</td>
<td>1.32 (0.80–2.19)</td>
<td>0.020</td>
<td>81.5</td>
<td></td>
<td>2.17 (1.71–2.76)</td>
<td>0.210</td>
<td>36.5</td>
<td></td>
<td>1.36 (0.79–2.33)</td>
<td>0.009</td>
<td>85.3</td>
<td></td>
<td>1.76 (1.39–2.22)</td>
<td>0.387</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Source of control</td>
<td></td>
</tr>
<tr>
<td>PB</td>
<td>5</td>
<td>1.45 (1.08–1.95)</td>
<td><.0001</td>
<td>86.9</td>
<td></td>
<td>2.39 (1.65–3.47)</td>
<td>0.022</td>
<td>65.2</td>
<td></td>
<td>1.52 (1.12–2.09)</td>
<td><.0001</td>
<td>89.6</td>
<td></td>
<td>1.99 (1.67–2.37)</td>
<td>0.142</td>
<td>41.9</td>
<td></td>
</tr>
<tr>
<td>HB</td>
<td>6</td>
<td>1.26 (0.96–1.65)</td>
<td><.0001</td>
<td>80.8</td>
<td></td>
<td>1.79 (1.20–2.67)</td>
<td>0.007</td>
<td>68.5</td>
<td></td>
<td>1.33 (1.00–1.76)</td>
<td><.0001</td>
<td>83.5</td>
<td></td>
<td>1.60 (1.17–2.19)</td>
<td>0.061</td>
<td>52.7</td>
<td></td>
</tr>
<tr>
<td>Genotyping method</td>
<td></td>
</tr>
<tr>
<td>TaqMan</td>
<td>8</td>
<td>1.12 (0.91–1.37)</td>
<td>0.006</td>
<td>64.8</td>
<td></td>
<td>1.56 (1.03–2.35)</td>
<td>0.012</td>
<td>61.2</td>
<td></td>
<td>1.16 (0.93–1.46)</td>
<td><.0001</td>
<td>73.9</td>
<td></td>
<td>1.50 (1.08–2.09)</td>
<td>0.089</td>
<td>43.4</td>
<td></td>
</tr>
<tr>
<td>MALDI-TOF</td>
<td>4</td>
<td>1.80 (1.64–1.97)</td>
<td>0.115</td>
<td>49.4</td>
<td></td>
<td>2.58 (1.93–3.45)</td>
<td>0.031</td>
<td>66.3</td>
<td></td>
<td>1.94 (1.66–2.27)</td>
<td>0.031</td>
<td>66.3</td>
<td></td>
<td>1.96 (1.53–2.51)</td>
<td>0.091</td>
<td>53.6</td>
<td></td>
</tr>
</tbody>
</table>

Notes: N, number of studies; P, p-value of Q-test for heterogeneity.
Abbreviations: PB, population based; HB, hospital based; MALDI-TOF, matrix-assisted laser desorption/ionization time-of-flight; OR, odds ratio; CI, confidence interval.
Figure 2 Forest plot of the association between CD44 gene rs13347 C>T polymorphism and risk of cancer in the overall analysis (TT vs CC).

Note: Weights are from random effects analysis.

Abbreviations: OR, odds ratio; CI, confidence interval.

Figure 3 Sensitivity analysis of the association between CD44 gene rs13347 C>T polymorphism and risk of cancer in the overall analysis (TT vs CC).

Abbreviation: CI, confidence interval.
and the interactions between different environmental factors and host might also influence the susceptibility to different cancer types.

Some limitations of the present meta-analysis should be pointed out. First, the pooled results were calculated based on unadjusted estimates, which limited us to perform a more precise assessment on adjusted estimates by several important factors such as sex, age, lifestyle, etc. Thus, lack of the baseline information restricted further evaluation of the potential interactions, because malignancy predisposition might be influenced by gene–gene and gene–environment interactions. Second, most of the included studies just focused on the relationship between CD44 gene rs13347 polymorphism and cancer risk, which made it hard to assess the effects of CD44 gene haplotypes composed of different CD44 gene SNPs on carcinogenesis. There was evidence that CD44 gene rs187115 A>G and rs115214213 T>C polymorphisms were associated with cancer risk.\(^3\)\(^5\),\(^42\),\(^44\) Thus, the status of other CD44 gene polymorphisms might cover up the effects of rs13347 T>C polymorphism, which could lead to controversial results among different studies.

Despite these limitations, advantages in this meta-analysis should also be acknowledged. First, the statistical power was remarkably increased since we pooled a substantial number of cases and controls. Second, the quality of all the eligible studies met the inclusion criteria completely and strictly. Third, there was no publication bias observed through Begg’s funnel plots and Egger’s test, which indicated that the pooled outcomes should be unbiased.

Conclusion

The results of the present meta-analysis were robust and credible. The relationship between CD44 gene rs13347 polymorphism and cancer risk was assessed, and this SNP was associated with elevated cancer risk in Asians. To draw a more conclusive result, further studies should be conducted with more detailed information on individuals and environmental factors, concerning the effects of different haplotypes and other SNPs and enrolling properly identified cases and well-matched controls, especially in other ethnicities including Africans and Caucasians, to validate the role of CD44 gene rs13347 C>T polymorphism in carcinogenesis.

Acknowledgment

This work was granted by National Natural Science Foundation of China (grant no 91229104).

Disclosure

The authors report no conflicts of interest in this work.

References