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Abstract: The purpose of our study was the evaluation of toxicological effects of silica-coated 

gold nanoparticles (GNPs) and static magnetic fields (SMFs; 128 mT) exposure in rat lungs. 

Animals received a single injection of GNPs (1,100 µg/kg, 100 nm, intraperitoneally) and 

were exposed to SMFs, over 14 days (1 h/day). Results showed that GNPs treatment induced a 

hyperplasia of bronchus-associated lymphoid tissue. Fluorescence microscopy images showed 

that red fluorescence signal was detected in rat lungs after 2 weeks from the single injection of 

GNPs. Oxidative response study showed that GNPs exposure increased malondialdehyde level 

and decreased CuZn-superoxide dismutase, catalase, and glutathione peroxidase activities in rat 

lungs. Furthermore, the histopathological study showed that combined effects of GNPs and SMFs 

led to more tissular damages in rat lungs in comparison with GNPs-treated rats. Interestingly, 

intensity of red fluorescence signal was enhanced after exposure to SMFs indicating a higher 

accumulation of GNPs in rat lungs under magnetic environment. Moreover, rats coexposed 

to GNPs and SMFs showed an increased malondialdehyde level, a fall of CuZn-superoxide 

dismutase, catalase, and glutathione peroxidase activities in comparison with GNPs-treated 

group. Hence, SMFs exposure increased the accumulation of GNPs in rat lungs and led to more 

toxic effects of these nanocomplexes.

Keywords: malondialdehyde, catalase, superoxide dismutase, glutathione peroxidase, bronchus-

associated lymphoid tissue, nanotoxicity, histopathological study

Introduction
The rapid emergence of gold nanoparticles (GNPs) technology holds great promise for 

future biomedical applications. In fact, due to a high stability, ease of synthesis, and 

straightforward incorporation of functional groups for targeting bio-applications, GNPs 

have several applications in cancer treatment, bioimaging, gene, and protein delivery.1–3

However, despite their huge potential benefits in biomedical, environmental, and 

industrial applications, very little is known about the short- or long-term bioeffects in 

organisms. Reports show that GNPs can circulate in the body for a long time without 

being rejected by the body and the immune system.1 All these behaviors are guided by 

the small size, shape, and surface charges. This is of concern because during synthesis 

and applications, GNPs of various sizes, shapes, and surface charges are generated 

that may be of health risk.3

A previous study suggested that GNPs can be used safely.4 However, other data 

found that gold was toxic to the body, where it becomes soluble by cyanidation and 

can undergo oxidation.3 Investigations revealed that GNPs are heavily taken up by 

kidneys and can also initiate eryptosis.5,6 Physicochemical properties related to size, 
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shape, and surface charge are key factors associated with 

gold complexes toxicity.

Previous studies showed that following injection of col-

loidal gold in mice, particles with size range from 10 to 50 nm 

were dispersed rapidly to all tissues especially in lungs, liver, 

kidneys, and spleen.1,7,8 These investigations pointed to a size-

dependent distribution and potential toxicity of GNPs.1,7,8

Moreover, the rising use of electronic equipment leads 

to concerns about the health bioeffect of electromagnetic 

fields.9 Previous biochemical investigations have been per-

formed in order to evaluate the bioeffects of static magnetic 

fields (SMFs) on the metabolism of animals and humans.10 

These studies concluded that SMFs induced disruption in 

carbohydrate, lipid, and protein metabolism.11–13 Other data 

showed that SMFs are involved in reactive oxygen species 

production, such as superoxide anion in different cells and 

organs.14–16

SMFs can affect membrane structure and function and 

cause DNA damage.15,16 Previous data have also reported 

that SMFs interact with divalent cations in rats such as 

zinc (Zn),17 selenium (Se),18 iron (Fe),19 and cadmium (Cd).20 

The analysis of the literature showed that there were few 

data discussing the interaction between SMFs and GNPs as 

previously described by Shaw et al.21

The purpose of our study was to evaluate oxidative 

response and tissular damages in rat lungs exposed to GNPs 

under magnetic environment.

Materials and methods
chemicals
Silica-gold stabilized nanoparticles were purchased from 

Nano-H-SAS (Saint Quentin Fallavier, France). The size dis-

tribution of silica-coated GNP is determined to be 102.70 nm 

(Figure 1). The study of spectral properties showed that GNPs 

used in our investigation have a wide excitation spectrum 

with a maximum absorbance detected at 525 nm.

By contrast, GNPs have a narrow emission spectrum. 

The highest emission was detected at 575 nm. All other 

chemicals used in the present study were of analytical grade 

and obtained from Sigma-Aldrich (St Louis, MO, USA) and 

Chemi-pharma (Le Bardo, Tunisia).

animals
In the present investigation, adult Wistar male rats 

(SIPHAT, Bin Arous, Tunisia) were used. Animal weights 

ranged from 180 to 200 g during the experimental period. 

Rats were randomly divided into four groups of six: con-

trol, GNPs-treated rats, SMF-exposed rats, and coexposed 

rats (GNPs + SMF). The animal well-being was considered 

during the study. Rats were housed at 25°C (12/12 hours 

light/dark cycle). Animals had free access to commercial 

mash and water. All our experimental protocols were 

approved by the Faculty of Sciences of Bizerte Ethics 

Committee. Animals were cared for, under the Tunisian 

code of practice for the Care and Use of Animals for 

Scientific Purposes.

Treatment protocol by silica-coated 
gNPs and sMFs
The control group was intraperitoneally injected once with 

0.10 mL of 0.90% saline solution. The GNPs-treated rats 

were injected once with silica-coated GNPs (1,100 µg/kg of 

body weight, intraperitoneally). The SMFs-exposed group 

was exposed for 1 h/day to the SMFs over 14 days. Coex-

posed rats (GNPs + SMF) were injected once with GNPs 

(1,100 µg/kg of body weight, intraperitoneally) exposed to 

SMFs (1 h/day) over 14 days.

exposure system
Lake Shore Electromagnets (Lake Shore Cryotronics, 

Inc, Westerville, OH, USA) are compact electromagnets 

suited for many applications, such as magnetic resonance 

demonstrations. For the present experiment, we have used 

an air gap of 15 cm. Water-cooled coils provide an excel-

lent field for stability and uniformity when high power is 

required to achieve the maximum field capability for the 

electromagnet. We have an accurate pole alignment by 

precise construction of the air gap adjustment mechanism.22 

Intensity of SMF was measured and standardized over 

the total floor area of the Plexiglas cage at 128 mT. The 

cage is 20×10×20 cm. The two bobbins of the Lake Shore 

System were separated by 12 cm. Rats were placed at the Figure 1 Data related to size distribution of silica-coated gold nanoparticles.
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center of uniform field area (Figure 2). Uniformity of the 

SMF in the active exposure volume was ±0.2% over 1 cm. 

The cage in the Lake Shore System contained two rats for 

each exposure.

histology and light microscopy
Lung fractions were fixed in buffered formalin. Fractions were 

blocked in paraffin and sections of ~5 µm were performed. 

These sections were stained with hematoxylin and eosin. 

The analysis of histopathological data was carried out by a 

semistatistical evaluation based on the frequency of structural 

changes. The following symbols were used: -, absence of struc-

tural changes; -+, a rare structural change within a group; +++-, 

a structural change observed in almost all animals of a group; 

++++, a structural change found in all animals of a group.

Fluorescence microscopy analysis
Lung fractions were fixed in formaldehyde. Fluorescence 

microscopy analysis was performed using a Leica DM-IRB 

Inverted fluorescence microscope (Leica Microsystems, 

Wetzlar, Germany). The used microscope is equipped with 

mercury arc lamp with an excitation wavelength of 540 nm 

and with a digital camera (CCD camera CoolSNAP™, Princ-

eton Instruments, Trenton, NJ, USA). Fluorescence images 

were obtained with ×40 enlargement and an emission filter 

set at 620 nm. Image processing was carried out using Leica 

IM50 version 5.00 software (Leica Microsystems, Wetzlar, 

Germany).

Tissue preparation
All groups were sacrificed and their lungs were harvested. 

Lungs were weighted, rinsed, and dried. Lungs were 

homogenized in buffer (tris[hydroxymethyl]aminomethane 

10 mmol/L, ethylenediaminetetraacetic acid 1 mmol/L, 

phenylmethylsulfonyl fluoride 1 mmol/L; pH 7.4). The 

homogenates were centrifuged at 600× g for 10 minutes 

and centrifuged again at 13,000× g for 20 minutes at 4°C 

to have a postnuclear homogenate and postmitochondrial 

supernatant fractions.23

evaluation of oxidative response
Malondialdehyde (MDA) content was evaluated by 

thiobarbituric acid reactive substances.24 The analysis 

of catalase (CAT) activity was performed by ultraviolet 

spectrophotometry.25 The activity of glutathione peroxidase 

(GPx) was studied according to Gunzler et al.26 Superoxide 

dismutase (SOD) activity was investigated based on the inhi-

bition of the auto-oxidant of pyrogallol at 420 nm, according 

to the modified method published previously by Marklund 

and Marklund.27

statistical analysis
All our data were reported as mean ± standard deviation and 

the level of significance was set at P,0.05. GraphPad Prism 

version 6.00 for Windows (GraphPad Software Inc, La Jolla, 

CA, USA) was used to perform a one-way analysis of vari-

ance followed by Tukey’s multiple comparisons test.

Results
histopathological analysis
The analyses of lung sections of control rats and rats exposed 

to SMFs have not revealed any structural changes. However, 

hyperplasia of bronchus-associated lymphoid tissue was 

evident after GNPs treatment (1,100 µg/kg, single injection, 

intraperitoneally) (Table 1, Figure 3). Interestingly, coexpo-

sure to GNPs (1,100 µg/kg, intraperitoneally) and SMFs led 

to higher hyperplasia of bronchus-associated lymphoid tis-

sue than GNPs-treated group. In addition, light microscopic 

Figure 2 lake shore electromagnets.

Table 1 Histopathological findings in lungs of rats following gold nanoparticles treatment and/or static magnetic fields exposure

Histopathological findings Control SMF GNPs GNPs + SMF

hyperplasia of bronchus-associated lymphoid tissue - - -+ +++-
granuloma - - - +++-
alveolar compression - - -+ +++-

Notes: -, absence of structural changes; -+, a rare structural change within a group; +++-, a structural change observed in almost all animals of a group; ++++, a structural 
change found in all animals of a group.
Abbreviations: GNPs, gold nanoparticles; SMF, static magnetic field.
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examination showed the presence of granuloma and an 

alveolar compression after coexposure to GNPs and SMFs 

(Table 1, Figure 3).

Fluorescence microscopy analysis
In control rats, images showed the absence of fluorescence 

signal (Figure 4A and B). Similar results were observed 

following SMFs exposure (Figure 4C and D). By contrast, 

fluorescence image processing revealed red fluorescence 

signal in lungs after GNPs treatment (Figure 4E and F). 

Importantly, coexposure to GNPs and SMFs increased 

fluorescence intensity compared to GNPs-treated rats 

(Figure 4G and H).

Evaluation of oxidative response 
following GNPs treatment under 
SMFs
MDa level
Exposure to SMFs led to an increase in MDA level 

(1.51±0.05 nmol/mg protein vs 1.08±0.06 nmol/mg protein; 

P,0.05). In addition, GNPs treatment (1,100 µg/kg, intra-

peritoneally) increased MDA level (1.93±0.05 nmol/mg 

protein vs 1.08±0.06 nmol/mg protein; P,0.01). Coexposure 

to GNPs and SMFs led to a higher increase in MDA level 

compared with control rats (2.83±0.06 nmol/mg protein vs 

1.08±0.05 nmol/mg protein; P,0.001) (Figure 5). Interest-

ingly, MDA level was higher in coexposed group to GNPs and 

SMFs compared to GNPs-treated rats (2.83±0.06 nmol/mg 

protein vs 1.93±0.05 nmol/mg protein; P,0.01).

evaluation of antioxidant enzymes 
activities
Antioxidant enzymes assays showed that acute exposure to 

SMFs (128 mT, 1 h/day) induced a decrease in GPx (-56%), 

CAT (-15%), and CuZn-SOD (-80%) activities (Table 2). 

In addition, GNPs treatment (1,100 µg/kg, intraperitoneally) 

reduced the pulmonary activities of GPx (-48%) compared 

with control. The same treatment induced a depletion of 

CAT (-62%) and CuZn-SOD (-82%) activities compared 

to control. Furthermore, coexposure to SMFs and GNPs 

decreased GPx (-53%), CAT (-71%), and CuZn-SOD 

(-87%) in rat lungs (Table 2).

Discussion
The aim of our study was to evaluate the effects of SMFs on 

silica-coated GNPs acute toxicity in rat lungs.

Figure 3 Structural changes in rat lungs following exposure to GNPs and/or SMFs.
Notes: (A) Normal structure of lungs in control rats. (B) Normal structure of lungs in rats exposed to sMFs for 14 days. (C) lung structure of gNPs-treated rats. (D) lung 
structure of coexposed rats to gNPs and sMFs. ×100 magnification.
Abbreviations: G, granuloma; GNPs, gold nanoparticles; H, hyperplasia; SMFs, static magnetic fields.
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Figure 4 Fluorescence microscopy images of lung fractions of rats exposed to gold nanoparticles and/or static magnetic fields.
Notes: light microscopy (A) and fluorescence microscopy (B) of lung sections of control rats. light microscopy (C) and fluorescence microscopy (D) of lung sections of 
sMF-exposed rats. light microscopy (E) and fluorescence microscopy (F) of lung sections of gNPs-treated rats. light microscopy (G) and fluorescence microscopy (H) of 
lung sections of coexposed rats to gold nanoparticles and static magnetic field. ×100 magnification.
Abbreviations: GNPs, gold nanoparticles; SMF, static magnetic field.

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


International Journal of Nanomedicine 2016:11submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

2716

Ferchichi et al

The investigation indicated that GNPs induced lung 

nanotoxicities in rats as previously demonstrated with other 

kinds of nanoparticles in lungs and different organs.28–30 

Light microscopy data showed the absence of tissular 

damages in lungs of control rats. Moreover, the exposure 

to SMFs failed to alter lungs architecture in rats. How-

ever, GNPs treatment induced mild epithelial hyperplasia, 

prominent inflammatory cells infiltrate, and enlarged 

airway cavities. Previously, similar data were reported by 

Terentyuk et al31 and Schulz et al;32 indicating that gold may 

induce inflammatory processes. Previously, Abdelhalim 

and Jarrar33 showed that exposure to GNPs led to a focal 

inflammatory reactions represented by higher number of 

alveolar macrophages. The same investigation revealed 

an intracytoplasmatically located GNPs associated with 

granulocytes and alveolar type II hyperplasia.33 Similarly, 

Hanini et al28 reported that exposure to magnetic nanopar-

ticles such as iron oxide nanoparticles led to lung damages 

and increased leukocytes number related to an inflammatory 

process in rat.

Optical properties of GNPs were associated with plas-

monic phenomena. The plasmonic properties of GNPs could 

be useful for biomedical applications.3 Interestingly, red 

fluorescence signal was detected in rat lungs following GNPs 

treatment. The superposition of light microscopy images and 

fluorescence images revealed a localized fluorescence in 

lung cells but not in alveoli. In fact, biodistribution studies 

revealed that GNPs are promptly translocated from the blood-

stream into organs as lungs, liver, and spleen.34–36 In addition, 

many investigations reported that following parenteral 

administration, GNPs were detected in blood, lungs, heart, 

liver, spleen, stomach, small intestine, and kidneys.37–40

Moreover, previous investigations showed that distribu-

tion of GNPs in tissue is size-dependent,34,35 dose-dependent,36 

and surface charge-dependent.37,38 Furthermore, James et al41 

examined the biodistribution of GNPs and demonstrated a 

high accumulation of GNPs in lung 4 hours, 14 days, 21 days, 

and 28 days following the single administration.

Previous data pointed that parenteral or oral adminis-

tration of metals induces biosynthesis of metallothioneins 

(MTs).42,43 Gold (Au) could generate gold–MTs (Au–MTs) 

complexes after being bound to cysteine residues in MTs as 

previously demonstrated by Ariyasu et al.43

Trabelsi et al44 found that subacute exposure to cadmium 

ions “Cd2+” could lead to nanoparticle biosynthesis in differ-

ent organs. This finding was explained by the ability of Cd 

to react with sulfur in MTs and/or with selenium (Se) in rat 

hepatocytes and nephrocytes.44 By an analogical explanation, 

we suggest that gold could interact with lung elements and 

generate nanocomplexes. The present hypothesis will be 

demonstrated in future studies.

The nanotoxicity of GNPs could be modulated by dif-

ferent environmental parameters such as SMFs, which is 

widely used. Our investigation showed cotreatment with 

GNPs and SMFs (GNP + SMF) increased red fluorescence 

signal in lungs. This finding can be explained by a higher 

accumulation of GNPs in rat lungs under magnetic environ-

ment. Bae et al45 showed that SMFs enhanced cellular uptake 

of magnetic nanoparticles and generate their aggregation. 

Histological findings demonstrated that nanoparticles uptake 

was higher under SMFs. Previous data showed that magnetic 

fields accelerate the sedimentation of magnetic nanoparticles 

on cell surface.46–48

The appearance of lymphocytic infiltrate in lung tissues 

can be explained by the effects of GNPs on oxidative response 

leading to reactive oxygen species generation.33 Oxidative 

Figure 5 Effects of gold nanoparticles and static magnetic field on pulmonary MDA 
level.
Notes: results represent mean ± sD of six animals per group. *P,0.05; **P,0.01; 
***P,0.001 compared with control rats. bP,0.01 compared with gNPs-treated 
group. results are in response to a one-way analysis of variance.
Abbreviations: c, control; gNPs, gold nanoparticles; MDa, malondialdehyde; 
prot, protein; SMFs, static magnetic fields; SD, standard deviation.

Table 2 effects of silica-coated gold nanoparticles and static 
magnetic fields exposure on antioxidant enzymes activities in 
lungs

Groups GPx
(U/mg prot)

CAT
(U/mg prot)

CuZn-SOD
(U/mg prot)

control 4.71±0.17 210.08±1.56 636.30±94.97
sMF 2.07±0.03*** 179.30±6.92* 127.90±5.50**
gNPs 2.46±0.04*** 81.30±1.73*** 117.10±30** 
gNPs + sMF 2.26±0.06*** 62.24±7.12*** 84.16±4.16**

Notes: results represent mean ± sD of six animals per group. *P,0.05; **P,0.01; 
***P,0.001 compared with control rats. results are in response to a one-way 
analysis of variance.
Abbreviations: caT, catalase; cuZn-sOD, cuZn-superoxide dismutase; gNPs, 
gold nanoparticles; gPx, glutathione peroxidase; prot, protein; sMF, static magnetic 
field; SD, standard deviation.

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


International Journal of Nanomedicine 2016:11 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

2717

gNPs could induce tissular damage and oxidative stress in rat lungs

response results showed that exposure to GNPs or coexposure 

to GNPs and SMFs led to a higher MDA levels. In fact, previ-

ous data reported by Chater et al49 and Amara et al50 found 

that SMFs increased MDA level and induced a depression of 

antioxidant enzymes in rat liver, kidneys, and testis. These 

findings were associated with an imbalance of the intracellu-

lar redox homeostasis. Furthermore, SMFs may alter mineral 

elements homeostasis, which are essential in antioxidant 

enzyme biosynthesis.49,50 Alteration of trace element (Se, Zn) 

by SMFs may disrupt the activities of antioxidant enzymes.51 

In addition, SMFs could induce change in the conformational 

structure of antioxidant enzymes, which alter their activities. 

Moreover, GNPs caused oxidative stress and cytotoxicity 

effects by catalyzing nitric oxide production. Reactive oxygen 

species generation could be related to the proportionately 

high surface area of GNPs.52–55

Furthermore, gold effects in cells could be related to its 

interactions with divalent mineral such as calcium (Ca2+), zinc 

(Zn2+), copper (Cu2+), iron (Fe2+), and selenium (Se2+). The 

mechanism of gold toxicity can be explained by its interac-

tions with the enzymatic systems of cells resulting from the 

substitution of these mineral elements (Zn2+, Cu2+, Se2+) in 

metalloenzymes.43

The present results showed the ability of gold to induce 

oxidative stress in lungs as evidenced by a high level of 

lipid peroxidation (MDA) following GNPs treatment. These 

data are in agreement with previous findings reported by 

Ferreira et al.56

The lung MDA level in rats treated with gold is asso-

ciated with a decrease in SOD, CAT, and GPx tissues 

activities, indicating an imbalance of the intracellular redox 

homeostasis.

The disruption of CuZn-SOD activity could be explained 

by the substitution of Zn by Au in CuZn-SOD. de Paula et al57 

showed that gold can occupy the site of Zn and other divalent 

elements. The mechanism of substitution of divalent element 

by metals (platinum [Pt], palladium [Pd], Au) can explain 

the oxidative disruption and probably the lack of generation 

of CuZn-SOD molecules, leading to an inactive form of the 

enzyme (CuAu-SOD). GNPs increased lipid peroxidation 

under magnetic environment. In addition, the combined 

effects of GNPs and SMFs led to higher antioxidant enzymes 

activities depletion compared to GNPs-treated rats. This 

result can be correlated to a higher red fluorescence signal 

detected after coexposure to SMFs and/or GNPs compared to 

GNPs-treated group. Previously, Trabelsi et al29 established 

a ratio correlating the number of CdS/CdSe nanoparticles to 

oxidative response. Based on our findings, a similar ratio can 

be described correlating the number of GNPs or fluorescence 

intensity to oxidative response parameters.29

 
NanoMet X OR

Intensity of red fluorescence

signal number
( )

(
=

of GNPs

Antioxidant marker

)

where NanoMet(X) refers to metallic nanoparticles and OR 

to oxidative response. The ratio increase is correlated to the 

increase of GNPs number associated with fluorescence and 

a decrease in antioxidant enzymes activities. SMFs increased 

the accumulation of GNPs in lungs and lead to more deple-

tion of antioxidant enzymes activities. This result must be 

evaluated by fluorescence imagery methods based on red 

fluorescence intensity.

Conclusion
Our investigation reported that silica-coated nanoparticles 

could induce tissular damages and oxidative stress in 

rat lungs. In addition, acute exposure to SMF reinforced 

oxidative stress, observed following GNPs treatment in 

rat lungs.
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