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Abstract: Patients with advanced or recurrent cervical cancer have poor prognosis, and their 

1-year survival is only 10%–20%. Chemotherapy is considered as the standard treatment for 

patients with advanced or recurrent cervical cancer, and cisplatin appears to treat the disease 

effectively. However, resistance to cisplatin may develop, thus substantially compromising the 

efficacy of cisplatin to treat advanced or recurrent cervical cancer. In this article, we systemati-

cally review the recent literature and summarize the recent advances in our understanding of 

the molecular mechanisms underlying cisplatin resistance in cervical cancer.
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Introduction
Cervical cancer remains to be one of the leading causes of cancer-related death in 

women despite advances in screening, diagnosis, prevention, and treatment. It accounts 

for ∼4% of the total newly diagnosed cancer cases and 4% of the total cancer deaths 

according to the GLOBOCAN 2012 estimates.1 The prognosis of patients with 

advanced/recurrent cervical cancer is particularly poor, and their chance of 1-year 

survival is only 10%–20%.2 Chemotherapy is currently the standard treatment for those 

patients. The chemotherapeutic agent cisplatin, which is a small-molecule platinum 

compound and was originally found to inhibit bacterial growth and later identified 

as an anticancer agent, appears to most effectively treat advanced/recurrent cervical 

cancer.3 The molecular mechanism underlying cisplatin-mediated anticancer effect 

is associated with multiple intertwined signaling pathways.4 When the concentration 

of cytoplasmic chloride ion reduces, the chloride ligands of cisplatin are gradually 

replaced by water. The resulting aquated cisplatin is highly reactive and covalently 

binds to DNA to form DNA–cisplatin adducts, which in turn induce DNA damage. 

When the cisplatin-induced DNA damage is beyond repair, the cells undergo apop-

tosis and die.

Combination therapy of cisplatin and paclitaxel is a standard chemotherapeutic 

regimen to treat recurrent or metastatic cervical cancer. The overall response rate is 

29.1%–67%, and the median overall survival is 12.87 months in patients with recur-

rent or advanced cervical cancer receiving the combination chemotherapy.3,5 However, 

resistance to cisplatin, either intrinsic or acquired resistance, may develop, seriously 

compromising the efficacy of cisplatin. In this article, we summarize recent advances in 

our understanding of the mechanisms underlying cisplatin resistance (CPR) in cervical 

cancer and propose strategies to overcome CPR in cervical cancer.
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Mechanisms underlying CPR
The molecular mechanisms underlying CPR are complex and 

usually associated with the following features: 1) reduction 

in the intracellular accumulation of the platinum compounds; 

2) increase in DNA damage repair; 3) inactivation of 

apoptosis; 4) activation of epithelial–mesenchymal transition 

(EMT); 5) alteration in DNA methylation, microRNA profile, 

cancer stem cell characteristics, and expression of stress-

response chaperones (Figure 1).

Reduced intracellular accumulation 
and CPR
Reduced intracellular accumulation of cisplatin may be the 

predominant cause for CPR. Decrease in uptake, increase 

in efflux, and inactivation by thiol-containing proteins con-

tribute to reduction in intracellular cisplatin accumulation, 

which results in reduction in cisplatin–DNA adduct forma-

tion and ultimately leads to resistance to cisplatin.4

Reduced uptake
Reduced cisplatin uptake has been observed in cervical 

cancer cells with acquired CPR. The cisplatin-resistant HeLa 

cells (HeLa-CPR)6 and A431 (A431/Pt)7 cells show 50% and 

77% reduction in cisplatin uptake, respectively, compared 

with the parental cell lines. In HeLa-CPR cells, the human 

cervical adenocarcinoma cells with CPR, the amount of 

cisplatin–DNA adducts is two- to threefold less than that in 

the parental cells,6 but the HeLa-CPR cells have a similar 

rate of cisplatin–DNA adduct removal as the parental HeLa 

cells. Similarly, in A431/Pt cells, which are CPR cervix 

squamous carcinoma cells, platinum accumulation, DNA-

bound platinum, and interstrand cross-link frequency are also 

Figure 1 Molecular mechanisms of CPR in cervical cancer.
Notes: The molecular mechanisms underlying cisplatin resistance in cervical cancer are complex and associated with the following features: 1) reduction in the intracellular 
accumulation of the platinum compounds (decrease in uptake, increase in efflux, and increased drug detoxification by cellular thiols); 2) increase in DNA damage repair 
(increased NER, loss of MMR, and increased TLS); 3) inactivation of apoptosis; 4) activation of EMT; 5) alteration in DNA methylation, microRNA profile, cancer stem cell 
characteristics, and expression of stress-response chaperones.
Abbreviations: CPR, cisplatin resistance; CTR1, copper transporter 1; EMT, epithelial–mesenchymal transition; ERCC1, excision repair cross-complementing; GSH, 
glutathione; HSC71, heat-shock cognate protein 71; HSP, heat-shock protein; MMR, mismatch repair; MRP1, multidrug resistance protein 1; MSH2, MutS homolog 2; MTs, 
metallothioneins; NER, nucleotide excision repair; NF-κB, nuclear factor-κB; OCT3, organic cation transporter 3; P-gp, P-glycoprotein; PMS2, post-meiotic segregation 2; 
TLS, translesion synthesis.
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reduced compared with the parental cells after a short-term 

drug exposure.8 Thus, impaired uptake may contribute to the 

development of CPR in cervical cancer cells.

Up to now, the complex molecular mechanism by which 

cisplatin enters cells remains poorly understood. Cisplatin 

is generally believed to pass the cell membrane via passive 

diffusion, and the diffusion rate is associated with cisplatin 

lipophilicity.9,10 Recently, copper transporter 1 (CTR1), 

which is a transmembrane protein and involved in the 

maintenance of copper homeostasis, has been recognized to 

regulate the influx of cisplatin and its analogs into the cells. 

CTR1 is downregulated in various CPR cell lines including 

HeLa-CPR cells.11 HeLa cells overexpressing CTR1 show 

2.2-fold increase in cisplatin accumulation compared with the 

mock-transfected cells.12 Du et al12 found that the C-terminus 

of CTR1 protein was required for cisplatin uptake in HeLa 

cells. In a mouse model of cervical cancer, Ishida et al13 

demonstrated that the level of DNA–cisplatin adducts cor-

related with CTR1 mRNA level in various organs, suggesting 

that CTR1 may regulate cisplatin uptake in vivo. In contrast, 

overexpression of CTR1 in the parental cells A431 and the 

CPR cells A431/Pt does not affect cisplatin uptake and the 

sensitivity of the cells to cisplatin.7,13 These results suggest 

that the role of CTR1 in cisplatin transmembrane transport 

may vary in different types of cervical cancer cells.

Increased efflux
Previous studies suggested that adenosine 5′-triphosphate 

(ATP)-binding cassette (ABC) transporters, including 

multidrug resistance proteins (MRPs), MRP1, MRP2, 

MRP3, and MRP5, might mediate CPR by increasing cis-

platin export.14,15 MRP1 overexpression has been found to be 

associated with CPR in some cervical cancer cells.16 MRP2 

contributes to an increased cisplatin efflux in CPR human 

hepatic cancer cells, embryonic kidney cells, and melanoma 

cells.17–19 Contrarily, MRP2 expression is reduced significantly 

in CPR cervical cancer KB-CP20 cells,20 but increased in the 

cisplatin-sensitive KB-8-5-11 cells,21 indicating that MRP2 is 

inversely associated with CPR in cervical cancer cells.

In addition to MRPs, P-glycoprotein (P-gp, ABCB1), 

which is also an ABC transporter, mediates the efflux of 

cisplatin conjugates and consequently promotes CPR. P-gp is 

overexpressed in CPR cervical cancer cell line SiHaR.16 P-gp 

expression increases rapidly when HeLa cells are exposed to 

cisplatin,22 and overexpression of P-gp attenuates cisplatin-

induced apoptosis in HeLa cells. However, Takara et al23 

found that P-gp activity and expression were reduced in CPR 

HeLa subline. Similarly, Okada et al24 showed that neither 

the non-P-gp-specific inhibitor probenecid (an inhibitor of 

multiple ABCs) nor the P-gp-specific inhibitor verapamil 

affected the sensitivity to cisplatin in CPR HeLa cells. These 

results suggest that P-gp may not substantially contribute to 

CPR in HeLa cells.

ATP7A and ATP7B, which are copper-transporting 

ATPases, are also involved in cisplatin efflux. Beretta et al7 

found that CPR A431 cells had higher ATP7A expression 

than the parental cells. In addition, upregulation of ATP7A 

and ATP7B was associated with acquired platinum resistance 

in CPR HeLa subline.11 Contrarily, the cisplatin-sensitive 

KB-8-5-11 cells had reduced ATP7A protein expression and 

ATP7B gene expression.21

Organic cation transporter 3 (OCT3), a widely expressed 

transporter for endogenous and exogenous organic cations, is 

also found to be associated with cisplatin transport. The CPR 

cervical adenocarcinoma KB-CP20 cells express extremely 

less OCT3 than the parental cell lines. OCT3 overexpression 

significantly increases intracellular cisplatin accumulation 

and cytotoxicity, while downregulation of OCT3 by small 

interfering RNA or chemical inhibitors increases the resis-

tance of cervical cancer cells to cisplatin.20

Lysosome-associated protein transmembrane 

4β-35 (LAPTM4B-35) is a member of the mammalian 

4-tetratransmembrane spanning protein superfamily. Previous 

studies have shown that LAPTM4B-35 was overexpressed in 

malignant tissue specimens and significantly correlates with 

poor prognosis of cervical cancer.25 Recently, Li et al26 found 

that LAPTM4B-35 interacted with P-gp to inhibit apoptosis 

by activating PI3K/AKT signaling and induced multidrug 

resistance, such as resistance to doxorubicin, paclitaxel, and 

cisplatin, in cervical cancer cells by promoting drug efflux.

Thiol-containing protein-mediated inactivation
Cisplatin–DNA adducts induce DNA damage, which in 

turn leads to cytotoxicity. After cisplatin enters the cells, 

some cisplatin molecules bind to DNA and thus activate 

the DNA damage-induced apoptosis cascade,15 while others 

can avidly bind to cytoplasmic nucleophilic species, such 

as glutathione (GSH), methionine, metallothioneins (MTs), 

and thiol-containing proteins. The binding of cisplatin to 

the thiol-containing nucleophilic species or thiol-containing 

proteins not only depletes intracellular antioxidant reserves 

to promote oxidative stress but also reduces the availability 

of reactive cisplatin.15

GSH, which is a thiol-containing tripeptide (Glu-Cys-

Gly), can bind to cisplatin to prevent cisplatin from binding to 

DNA and other targets, quench proapoptotic reactive oxygen 
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species that are often generated by cisplatin, and reduce 

the sensitivity of the cells to cell death signals.15 A large 

body of evidence suggests that an increased expression of 

enzymes that promote GSH synthesis and conjugation, such 

as GSH-S-transferase (GST), gamma-glutamyl cysteine 

synthase, and gamma-glutamyl transferase, may contribute 

to the development of CPR. The association between the 

expression of GSH conjugates and CPR in cervical cancer 

appears controversial. GSH has been shown to positively 

correlate with CPR in several cervical cancer cell lines.24,27,28 

KB-8-5-11 cells, which carry platinum-sensitive phenotype, 

have reduced expression of GSTA4, GSTK1, and GSTP1. 

Correspondingly, increased gene expression of GSTP1, 

GSTA4, and GSTK1 is associated with the development of 

CPR in the cervical cancer cell line.21 In contrast, Konishi 

et al29 found that in patients with locally advanced or bulky 

cervical carcinoma, poor response to cisplatin significantly 

correlated with the expression of P-gp but not with GST-pi. 

Similarly, Chao et al30 showed that neither intracellular GSH 

level nor GST activity was elevated in CPR HeLa cells. 

Roy and Mukherjee16 also found that GSH level remained 

unaltered in the CPR clone SiHaR, which derived from SiHa. 

Thus, the role of GSH and its metabolism in CPR in cervical 

cancer remains to be determined.

MTs are low-molecular-weight thiol-containing proteins 

and regulate metal homeostasis and detoxification. MTs can 

bind to cisplatin, thus leading to the development of CPR 

phenotype.31 Mellish et al27 investigated the role of MTs in 

CPR in five human cervical squamous carcinoma cell lines 

and found a significant correlation between an increased 

expression of MTs and CPR.

increased DNA repair and CPR
In CPR cancer cells, inter- and intra-strand DNA adducts often 

fail to trigger apoptotic cascade for many reasons.15 Tumor 

cells with acquired CPR show an enhanced capability to repair 

cisplatin-induced DNA lesions or to tolerate high level of 

unrepaired DNA lesions compared with their parental cisplatin-

sensitive counterparts.15 A high level of repair-associated DNA 

strand breaks and an enhanced activity of DNA excision repair 

have been found in CPR HeLa cells.6,32 Cisplatin-induced DNA 

lesions, which often cause DNA distortion, can be identified 

by multiple DNA repair pathways, among which nucleotide 

excision repair (NER) and mismatch repair (MMR) are the 

predominant DNA repair mechanisms.

Nucleotide excision repair
NER, which is a highly conserved DNA repair pathway and 

a major pathway for the repair of DNA–cisplatin adducts,33 

usually targets on the DNA damages that change the DNA 

helical structure and interfere in DNA replication and 

transcription.34 More than 20 proteins participate in NER, 

including excision repair cross-complementation group 1 

(ERCC1). ERCC1 is a single-strand DNA endonuclease and 

forms a tight heterodimer with ERCC4 to incise DNA on the 

5′ side of bulky lesions such as DNA–cisplatin adducts.15 

ERCC1 expression is upregulated in CPR cervical cancer 

cells HCA-1R,35 and in patients with locally advanced cer-

vical squamous cell carcinoma. ERCC1 expression nega-

tively correlates with responsiveness to cisplatin.36 Thus, 

the level of ERCC1 expression may predict responsiveness 

to cisplatin in patients with cervical cancer. Furthermore, 

low ERCC1 expression is an independent prognostic factor 

and associated with a survival benefit in patients receiving 

adjuvant cisplatin chemotherapy or chemoradiotherapy with 

cisplatin.37,38

DNA mismatch repair
DNA MMR, an evolutionarily conserved process, corrects 

mismatches that are generated during DNA replication and 

escape from DNA proofreading.34 A properly functioned 

MMR system is required to detect cisplatin-induced DNA 

lesions. Thus, MMR deficiency may lead to the develop-

ment of DNA damage tolerance and CPR. Among MMR 

proteins, MutS homolog 2 (MSH2) protein has been shown 

to contribute to the development of CPR in cervical cancer 

cells.39 Lanzi et al8 found that MSH2 protein expression 

in CPR A431 cells was significantly less than that in the 

parental cells. Post-meiotic segregation 2 (PMS2) is also a 

major component of the MMR system. Zhang et al40 found 

a marked downregulation of PMS2 in human cervical 

carcinoma tissue, and over-expression of PMS2 in HeLa 

cells dramatically increased cisplatin-induced apoptosis and 

caspase-3 activity. Thus, upregulation of PMS2 appears to 

enhance the sensitivity of HeLa cells to cisplatin. Addition-

ally, REV3L, the catalytic subunit of DNA polymerase ζ 

(Polζ), plays a key role in skipping DNA damage during 

translesion synthesis. Yang et al41 demonstrated that REV3L 

conferred resistance to cisplatin in cervical cancer cells by 

regulating apoptosis rate and the expression of antiapoptotic 

proteins, such as B-cell lymphoma 2 (Bcl-2), myeloid cell 

leukemia sequence 1 (Mcl-1), Bcl-extra large (Bcl-xL), and 

proapoptotic Bcl-2-associated x protein (Bax).

inactivation of apoptosis pathway 
and CPR
Cisplatin-induced apoptosis is essential for the antican-

cer effect of cisplatin. Cisplatin stimulates apoptosis by 
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triggering the extrinsic death receptor pathway or the intrinsic 

mitochondrial pathway. Multiple proteins such as the Bcl-2 

family proteins and p53 and several signaling pathways 

including mitogen-activated protein kinase (MAPK) pathway 

and nuclear factor-κB (NF-κB) pathway are involved in the 

extrinsic and intrinsic apoptosis pathways. Dysfunction of 

these proteins and signaling pathways may lead to the devel-

opment of CPR (Figure 2). Brozovic et al42 found that HeLa 

cells with acquired CPR showed lower level of cisplatin-

induced apoptosis and lower levels of Bcl-2 and p-Bad than 

the parental cells. In addition, SiHa cells, which are more 

resistant to cisplatin than HeLa cells, showed reduced activity 

of caspase-3, caspase-8, and caspase-9 and cisplatin-induced 

cleavage of poly(adenosine diphosphate [ADP]-ribose) 

polymerase compared with HeLa cells.43

Caspases
Caspases play critical roles in apoptosis. The activity of 

caspase-3, caspase-8, and caspase-9 is decreased in CPR 

cells.44 Compared with drug-sensitive parental cells, the 

multidrug-resistant endocervical HEN-16-2/CDDP cells are 

more resistant to apoptosis and exhibit reduced caspase-3 

activation.45

Bcl-2 protein family
Exposure to cisplatin initiates programmed cell death. Bcl-2 

protein family contains three functionally and structurally 

distinct subfamilies: 1) anti-apoptotic proteins, including 

Bcl-2, Bcl-xL, Mcl-1, Bcl-w, Bag-1, and A1; 2) proapoptotic 

effector proteins Bax and Bak; 3) proapoptotic BH3-only 

proteins. These proteins tightly control apoptotic process 

by regulating the permeability of the mitochondrial outer 

membrane and the release of cytochrome c and other 

proapoptotic factors. The release of proapoptotic factors 

activates caspases.46

CPR cervical cancer cells frequently overexpress anti-

apoptotic proteins.47 For example, Brozovic et al42 found 

that Bcl-2 was upregulated in CPR HeLa cells compared 

with the parental cells. The overexpression of Bcl-2 was 

related to poorer clinical outcome in patients with cervical 

cancer receiving CDDP-based chemoradiotherapy.48 The 

multidrug-resistant endocervical HEN-16-2/cisplatin cells 

show significantly higher level of Bcl-xL and Bag-1 than 

the drug-sensitive parental cells.45 Similarly, overexpres-

sion of Bag-1L prevents cisplatin-induced apoptosis by 

affecting Raf/Ras signaling and the expression of Mcl-1 

and heat-shock proteins (HSPs) in HeLa cells.49 Further-

more, stable overexpression of Bag-1 promotes resistance 

to cisplatin-induced apoptosis in C33A cells.47 In addition 

to the upregulation of anti-apoptotic proteins, suppression 

of proapoptotic effector proteins also contributes to the 

development of CPR.44

MAPK pathway
MAPKs play critical roles in the complex intracellular sig-

naling network, which regulates gene expression in response 

to various extracellular stimuli.50 In mammalian cells, there 

are mainly three types of MAPKs: stress-activated protein 

kinase/c-Jun-N-terminal kinase (SAPK/JNK), p38 kinase, 

and extracellular signal-regulated kinase (ERK). The asso-

ciation of MAPK activation and CPR has recently been 

recognized. CPR cancer cells often have reduced MAPK 

activity. Cisplatin activates SAPK/JNK, p38 kinase, and ERK 

dose dependently in cisplatin-sensitive HeLa cells, whereas 

Figure 2 inactivation of apoptosis pathway and CPR in cervical cancer.
Note: Multiple molecules and signaling pathways that inhibit apoptosis can lead to CPR.
Abbreviations: CPR, cisplatin resistance; MAPK, mitogen-activated protein kinases; NF-κB, nuclear factor-κB; TNFAIP8, tumor-necrosis-factor-α-induced protein 8.
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cisplatin-mediated activation of SAPK/JNK is significantly 

reduced in the CPR subline.42,51,52 In addition, inhibition of 

JNK, p38 kinase, or ERK attenuates cisplatin-induced apop-

tosis and cell death.42,51,52 Similarly, blockade of MEK–ERK 

by MEK inhibitor PD98059 induces CPR in human cervical 

carcinoma SiHa cells.53 Thus, sufficient MAPK activation 

appears to be required for cisplatin-induced apoptosis.

P53 signaling pathway
Stabilization and activation of wild-type p53 are critical for 

cisplatin-induced apoptosis. Thus, loss of p53 can impair 

apoptosis process and lead to tolerance of DNA damage, 

consequently promoting drug resistance.44 Sultana et al54 

demonstrated that chemosensitivity was associated with p53-

Bax-mediated apoptosis in cervical cancer. Cisplatin-based 

chemotherapy for cervical cancer is more beneficial to patients 

harboring wild-type p53 than to patients with mutated p53.55 

Additionally, patients who respond to cisplatin well show a 

higher proportion of p53-positive cells than nonresponders.56 

Overexpression of p53 is a predictive factor for chemoresistance 

in adenocarcinoma of the uterine cervix.57

NF-κB pathway
NF-κB, usually in the form of heterodimer or homodimer 

formed by the NF-κB family members, is ubiquitously 

expressed and regulates .500 genes that are involved 

in immunoregulation, inflammation, growth regulation, 

apoptosis, and carcinogenesis.58 Numerous in vitro and 

in vivo studies, including ours, have demonstrated that con-

stitutive activation of NF-κB inhibits chemotherapy-induced 

apoptosis in different types of cancer, including cervical 

cancer.43,59 We found that NF-κB contributed to CPR in 

human cervical cancer SiHa cells and inhibition of NF-κB 

sensitized SiHa cells to cisplatin-induced apoptosis.59 This 

study suggests that combination of cisplatin and NF-κB 

inhibitors may have therapeutic potential.

Others
The tumor-necrosis-factor-α-induced protein 8 (TNFAIP8) 

family, which is a newly identified and poorly characterized 

group of proteins, is found to play a role in the maintenance 

of immune homeostasis and inhibition of apoptosis. Shi et al60 

reported that high protein level of TNFAIP8 was significantly 

associated with CPR and poor clinical outcomes in patients 

with cervical cancer.

Activation of eMT and CPR
In recent years, the role of EMT in acquired CPR has been 

increasingly recognized. Our previous study found that 7-day 

low-concentration cisplatin (1 μM) treatment induced EMT 

in cervical cancer HeLa and C4-1 cell lines by activating 

transforming growth factor-β pathway. TWIST1, which is a 

highly conserved transcription factor and belongs to the basic 

helix-loop-helix protein family, plays a key role in EMT. In 

cervical cancer, TWIST1 expression appears to correlate with 

MDR1/P-gp expression positively. In HeLa cells, silencing 

TWIST1 expression by RNAi downregulates MDR1/P-gp 

expression, suppresses cell proliferation, inhibits rhodamine 

123 efflux, and sensitizes the cells to cisplatin.61 In addition to 

TWIST1, other proteins that are involved in EMT have also 

been found to be associated with CPR. Shen et al4 found that 

human cervical cancer cells with high CPR overexpressed 

SNAIL1 and E-cadherin, whereas the cells with mild CPR 

did not. These results indicate that overexpression of SNAIL1 

and E-cadherin may occur at late stage of CPR development 

and thus facilitate cell survival under high-dose platinum.4 

Astrocyte elevated gene-1 (AEG-1), which can be induced 

by human immunodeficiency virus-1 (HIV-1), was initially 

identified from human fetal astrocytes.62 Knockdown of 

AEG-1 blocks EMT and reduces CPR in cervical cancer 

cells.63 These findings indicate that EMT may contribute to 

the development of CPR in cervical cancer.

MicroRNA and CPR
MicroRNAs have been found to regulate multiple pathways 

that are involved in the cellular response to cisplatin.64 The 

effects of microRNAs on the development of CPR in cervi-

cal cancer have been investigated. Pouliot et al65 found that 

the miR-181 family members were overexpressed in CPR 

cells KB-CP5 and KB-CP20 compared with the parental 

KB-3-1 cells, and silencing the proteins that are essential for 

microRNA synthesis, such as DICER and TRBP2, reversed 

CPR in the cells. Chen et al66 found that in cervical squamous 

cell carcinoma, upregulation of miR-181 appeared to corre-

late with CPR significantly and miR-181a inhibited apoptosis 

and enhanced CPR by targeting protein kinase C-δ (PRKCD). 

In contrast to miR-181, other microRNAs can increase 

drug sensitivity. Lei et al67 found that miR155 suppressed 

epithelial-growth-factor-induced EMT, decreased migration/

invasion, inhibited cell proliferation, and increased the sensi-

tivity to cisplatin in human CaSki cervical cancer cells. Wang 

et al68 showed that miR-214 increased the sensitivity of HeLa 

cells to cisplatin by directly inhibiting Bcl2l2 expression and 

increasing the expression of Bax, caspase-9, caspase-8, and 

caspase-3. In addition, KH-type splicing regulatory protein, 

which interacts with Drosha and increases the binding and 

subsequent processing of specific pri-microRNAs such as 

pri-let7a-1 and pri-miR-21,64 is upregulated in the nucleus 
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of HeLa cells that are exposed to cisplatin.69 These results 

indicate that the levels of some microRNAs may predict 

patient response to cisplatin.

Cancer stem cells and CPR
Cancer stem cells are highly resistant to various chemo-

therapeutic agents, because they express abundant levels of 

multiple drug resistance transporters such as MDR1/P-gp 

and mitoxantrone resistance protein (MXR)/breast cancer 

resistance protein-1 (BCRP-1).50 Liu and Zheng70 demon-

strated that aldehyde dehydrogenase (ALDH) was a marker 

for cervical cancer stem cells and high ALDH activity was 

associated with an increased resistant to cisplatin in cervi-

cal cancer cells. In addition, the CPR clone R-ME-180 can 

form three-dimensional multicellular spheroids, which show 

positive expression of the cancer stem cell marker ALDH, 

but the parental ME-180 cells do not express the marker.71 

Wang et al72 enriched cervical cancer stem cells by using a 

nonadhesive culture system and found that the cervical cancer 

stem cells had high resistance to cisplatin.

DNA methylation and CPR
DNA methylation plays a critical role in the development of 

CPR in several cell culture models. Aberrant DNA methy-

lation may alter the expression of genes that are critical to 

drug response and thus affect the sensitivity of cancer cells to 

cisplatin.4 Epigenetic drugs such as 5-azacytidine have been 

shown to block aberrant DNA methylation and thus reverse 

CPR.64 Combination of cisplatin and 5-aza-2′-deoxycytidine, 

a demethylating agent, significantly enhances the sensitivity 

to cisplatin in ME180 parent cells and the CPR subclones, 

and the removal of 5-aza-2′-deoxycytidine restores the CPR 

of the subclones rapidly.73

Stress response chaperones and CPR
Molecular chaperones that are involved in the general 

stress responses, such as autophagy and HSPs, can promote 

CPR via multiple, most often indirect, mechanisms.10,15 

Autophagy, a process by which cells digest their own dam-

aged organelles, has been recently shown to contribute to 

CPR in some cell types and inhibition of autophagy can 

enhance the cytotoxicity of chemotherapeutic agents.74 

Cisplatin induces autophagy in HeLa cells, and inhibition 

of autophagy induces endoplasmic reticulum (ER) stress 

and thus enhances cisplatin cytotoxicity.75 Beclin-1, an 

autophagy-related molecule, plays a critical role in the regula-

tion of response to chemotherapeutic agents. In CaSki cells, 

overexpression of Beclin-1 promotes apoptosis signaling and 

thus sensitizes the cells to cisplatin.76 NH
4
Cl, an autophagy 

inhibitor, blocks the activation of lysosomal enzymes and the 

degradation of autolysosome components. NH
4
Cl has been 

found to increase DNA damage and consequently enhance 

cisplatin cytotoxicity in HeLa cells.77 Similarly, pretreat-

ment with the autophagy inhibitor bafilomycin sensitizes 

both cervical adenocarcinoma HeLa cells and squamous cell 

carcinoma CaSki cells effectively to cisplatin.78

The function of HSPs is to adapt the cells to high tem-

perature or other stressful conditions, and HSPs promote 

conformational change in target proteins and protect the 

cells from oxidant-induced DNA damage and apoptosis.4 

Because cisplatin induces DNA damage and consequently 

results in apoptosis, HSPs are probably affected during the 

development of CPR.4 Shen et al79 used two-dimensional 

gel electrophoreses and amino acid micro-sequencing and 

found HSP 60 overexpression in human cervical CPR cells. 

Castagna et al80 further confirmed that the expression of heat 

shock cognate protein 71 (HSC71) and HSP 60 was signifi-

cantly increased in the CPR cells, A431/Pt cells, compared 

with the parental A431 cells. Furthermore, Zhang and Shen31 

demonstrated that HSP 27 suppressed cisplatin-induced 

ASK1/p38 and Akt activation, which consequently impaired 

the cytotoxic response of HeLa cells to cisplatin. The HSP 

90 inhibitor PU-H71 (8-[(6-iodo-1,3-benzodioxol-5-yl)

sulfanyl]-9-[3-(propan-2-ylamino)propyl]purin-6-amine) 

induces ER stress and thus promotes apoptosis in HeLa 

cells, and HeLa cells treated with PU-H71 overcome the 

CPR conferred by Bcl-2.81 These results indicate that HSPs 

may contribute to CPR.

System biology of CPR
System biological approach has been used to investigate 

CPR.10 In our previous studies on proteomics profiling, 

we found that protein levels of S100A8 and S100A9 were 

increased and annexin A2 level was decreased in patients 

with cervical cancer who failed to response to cisplatin-based 

neoadjuvant chemotherapy treatment.82,83 S100A8, S100A9, 

and annexin A2 are Ca2+-binding proteins and play roles in 

immune response, vesicle trafficking, cell division, apoptosis, 

and calcium signaling. Chavez et al84 conducted quantitative 

proteomics, analyzed protein interaction network, and found 

that 374 proteins were differentially expressed in CPR versus 

cisplatin-sensitive HeLa cells. Those differentially expressed 

proteins are involved in DNA binding, DNA damage repair, 

energy-producing metabolic pathways, and stress response.84 

Castagna et al80 used a similar approach to discover that 

calmodulin, microtubule-associated protein, and stathmin 

were downregulated in CPR A431 subline. Wu et al85 per-

formed gene expression profiling on CPR HeLa cells and 
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identified nine genes (NAPA, CITED2, CABIN1, ADM, 

HIST1H1A, EHD1, MARK2, PTPN21, and MVD), which 

were consistently upregulated in two CPR HeLa cell lines.

Conclusion and future direction
Cisplatin has been used to treat cervical cancer since the 

early 1980s86 and remains to be the most effective antican-

cer agent for advanced/recurrent cervical cancer. However, 

chemoresistance may develop, and thus seriously hinders the 

use of cisplatin in clinical practice. Over the past 3 decades, 

great efforts have been devoted to characterize the molecular 

mechanisms underlying CPR in cervical cancer cells. Starting 

with the early 1990s, GSH87 and NER88 were identified as 

causative of resistance to cisplatin. In the early 2000s, CTR1 

turned out to play a critical role in the uptake of cisplatin.89 

In the mid-2000s, EMT and microRNA have been implicated 

in the development of drug resistance. In the last decade, 

the advent of high-content and high-throughput screening 

technologies has accelerated the discovery of the molecular 

mechanisms underlying CPR at cell-intrinsic level.10 Ca2+-

binding proteins such as S100A8, S100A9, and annexin 

A2 and energy-producing metabolic pathways have been 

identified to be related to CPR in cervical cancer.82 NAPA, 

a protein found in the ER, and CITED2, a transcriptional 

modulator, have been identified to confer resistance to cis-

platin in HeLa cells.85 Further investigation is required to 

obtain additional insights into CPR at protein, DNA, RNA, 

mRNA, and microRNA levels.

Based on the mechanisms underlying CPR, the following 

strategies have been proposed to overcome the resistance 

in cervical cancer: 1) develop new platinum drugs;90,91 

2) improve cisplatin delivery to tumor;71 3) specifically target 

CPR mechanisms; and 4) combine cisplatin with other drugs.92 

The greatest challenge is that CPR often exhibits a multi-

factorial nature. Strategies that target one mechanism 

at a time may not sufficiently enhance the sensitivity to 

cisplatin. Thus, combination therapies targeting multiple 

mechanisms underlying CPR should be exploited. In our 

previous study, we found that a combination of pyrrolidine 

dithiocarbamate and cisplatin synergistically increased 

apoptosis and inhibited cell growth by suppressing NF-κB 

in human cervical cancer cells. Additionally, agents includ-

ing genistein,93 curcumin,16 tea polyphenols,94 melatonin,95 

mifepristone,96–98 epigallocatechin gallate,99,100 ursolic acid,101 

Morinda citrifolia,102,103 and wogonin104 have been shown to 

be beneficial to overcome CPR via targeting the molecular 

pathways that are involved in CPR (Table 1). Understanding 

the molecular mechanisms underlying CPR may be helpful 

to identify patients with a potential to develop CPR, and 

thus oncologists may be able to provide an effective therapy 

for those patients.
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