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Abstract: In the past few years, nanomaterial-based drug delivery systems have been applied 

to enhance the efficacy of therapeutics and to alleviate negative effects through the controlled 

delivery of targeting and releasing agents. However, few drug carriers can achieve high targeting 

efficacy, even when targeting modalities and surface markers are introduced. Immunological 

problems have also limited their wide applications. Biological drug delivery systems, such as 

erythrocytes, platelets, and albumin, have been extensively investigated because of their unique 

properties. In this review, erythrocytes, platelets, and albumin are described as efficient drug 

delivery systems. Their properties, applications, advantages, and limitations in disease treat-

ment are explained. This review confirms that these systems can be used to facilitate a specific, 

biocompatible, and smart drug delivery.
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Introduction
Drug delivery systems aim to improve the pharmacological properties of drugs and to 

achieve maximal therapeutic efficacy and minimal side effects by directing therapeutic 

cargos to target cells and tissues.1,2 Novel drug delivery systems have been developed 

because conventional and new drugs provide intrinsic disadvantages, such as poor 

stability, poor solubility, gastrointestinal reactions, and unwanted toxicity.

With remarkable advancements in nanotechnology, nanomaterials and nanostruc-

tures have been widely applied. Nanotechnology- and nanoscience-related studies 

have been extensively conducted over the past decades. Nanomaterial-based drug 

delivery systems have also been rapidly developed.3,4 Various nanomaterials, including 

nanoparticles,5 polymeric micelles,6 lipsomes,7 and nanotubes8 have been utilized as 

drug carriers. Nanocarrier-delivered drugs provide several advantages over free drugs; 

for instance, nanocarriers can prolong circulation time, slow down metabolism, induce 

controlled drug release, and improve patient convenience and compliance.9 When used 

for chemotherapy, nanocarriers can enhance drug targeting to tumors because of their 

selective accumulation in tumors through enhanced permeability and retention (EPR) 

effects. EPR effects or passive targeting effects that often occur in solid tumors involve 

nanocarriers or macromolecules that preferentially accumulate in tumors rather than in 

normal tissues, because of leaky vasculature and poor lymphatic drainage in tumor cells 

and tissues.10 However, some hypoxic regions of solid tumors may fail to elicit EPR 

effects because of poor angiogenesis.11 Thus, active targeting strategies, including cou-

pling with homing peptides,12 antibodies,13,14 and growth factors,15 have been employed 

to overcome the limitations of passive targeting. Although major advancements have 

been observed in this field, neither passive targeting nor active targeting can achieve 
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specific nonrandom targeting that remains chance dependent. 

Human bodies are equipped with innate immune defenses, 

such as the reticuloendothelial system (RES), which rapidly 

recognizes and destroys foreign objects. As such, nanocar-

riers may be engulfed by macrophages of the mononuclear 

phagocyte system before these carriers reach target sites.16 

As the immune system catches up in the game of hide and 

seek, biological drug carriers have been developed to bypass 

immune surveillance.16,17

Biological carriers, such as erythrocytes, platelets, and 

albumin, can bypass immune surveillance and provide several 

advantages, including long circulation time, good biodegrad-

ability, abundant surface ligands, and flexible morphology. 

Therefore, these carriers are optimum biological delivery 

systems and potential solutions to overcome the limitations of 

nanomaterial-based drug carriers.18,19 This review describes 

erythrocytes, platelets, and albumin as promising biological 

drug carriers and their applications in various diseases.

Erythrocytes as drug delivery 
systems
Properties of erythrocytes
Erythrocytes or red blood cells (RBCs) are enucleated bicon-

cave disk-shaped cells in humans. RBCs are characterized 

by a diameter of ∼7 µm, a thickness of ∼2 µm, and a plasma 

membrane surface area of ∼160 µm2. Erythrocytes are the 

most abundant blood components, and 1 µL of human 

blood contains ∼4–5 million RBCs. The half-life of human 

erythrocytes ranges from 100 days to 120 days. Various 

receptors, proteins, and functional groups on the membrane 

of erythrocytes provide binding sites for antibodies, specific 

ligands, and drug.20–22

The complex and unique membranes of RBCs are 

involved in the delivery of oxygen from lungs to different 

tissues.23 RBCs travel ∼250 km through the cardiovascular 

system containing capillary networks, which can be as nar-

row as one-third of a diameter of cells.24 The cytoskeleton, 

especially hexagonal actin–spectrin lattice underlying the 

plasmalemma, supports the membrane of RBCs, and the 

integrity of the cytoskeleton is based on a series of “hori-

zontal” and “vertical” linkages between membrane protein 

complexes within the fluid phospholipid membrane bilayer. 

These structures ensure that the erythrocyte membrane simul-

taneously undergoes reversible changes between expanded 

and tight networks to maintain integrity and to avoid intra-

vascular hemolysis.25 These damaged and aged RBCs are 

eliminated by tissue macrophages in the liver and spleen, 

and RBCs continuously circulate within the bloodstream 

but pass through the interstitium in splenic follicles and 

hepatic sinusoid. Thus, RBCs are suitable for intravascular 

delivery to treat blood, or endothelium-related diseases.1,26 

Erythrocytes can be supplied as ideal drug delivery systems 

because of these important features; since the discovery of 

RBCs as potential carrier systems, numerous substances have 

been bound to these blood cells or used to encapsulate them 

for disease treatment.27–32

Preparation approaches for RBCs as drug 
delivery systems
encapsulation
Several methods have been used to encapsulate cargos in 

RBCs. Osmosis-based methods developed in the 1970s have 

been considered standard methods, because erythrocytes can 

act as an osmometer. In a hypotonic solution, erythrocytes 

reversibly swell to ∼25% of their original volume, and 

pores ranging from 200 Å to 500 Å are temporarily formed 

in the membrane. Thus, substances can enter erythrocytes 

through these pores. In an isotonic solution, the shape of 

RBCs is regained, and their pores close; substances are then 

encapsulated within erythrocytes.33 This mechanism exhibits 

some variations, including hypotonic hemolysis, hypotonic 

pre-swelling, and hypotonic dilution. Considered as the most 

simple and rapid method of encapsulation, hypotonic dilution 

is the first process in which therapeutic moieties are loaded 

into erythrocytes.34–36

Another encapsulation method is electroporation or 

electro-insertion; in this process, erythrocytes are exposed 

to a strong external electrical field that causes irreversible 

changes in the RBC membrane.37,38 However, Kinosita and 

Tsong39 suggested that desirable membrane permeability 

can be produced through transient electrolysis. Kitao et al40 

 pioneered the successful application of chemical perturba-

tion in human and mouse RBCs in 1980. However, this 

method has been rarely employed because it induces irre-

versible destructive changes in the membrane. Alternative 

approaches, such as lipid fusion and endocytosis, have also 

been applied to encapsulate agents into erythrocytes.41,42

Membrane coupling or binding
Among conventional strategies, reversible or irreversible cou-

pling of a therapeutic moiety to RBCs is the most extensively 

utilized strategy. Nonspecific chemical cross-linkers have 

been used to bind molecules to the surface of erythrocytes.43,44 

However, implementation of these strategies has been 

impeded by specific cross-links, such as biotin–avidin pair, 
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which allow biotinylated molecules, including nucleic acids, 

to couple to sulfhydryl groups, amino acids, and other spe-

cific groups expressed on the membrane of RBCs. Through 

these methods, various agents, such as viral antigens and 

immunoglobulins, have been coupled to the RBC surface.21,45 

In addition to biotin–avidin, various chemical linkers have 

been utilized to attach different molecules, including small 

therapeutic molecules, such as daunorubicin,46 and large 

molecules, such as hyperbranched chemical linkers.47 

Furthermore, single or combined molecules can conjugate 

with the surface of RBCs. In another approach, site-specific 

drug binding occurs as follows.48 Antibodies, peptides, or 

other affinity ligands are initially anchored to the surface 

proteins of erythrocytes; therapeutic agents bind to and 

conjugate with these ligands.48 Agents can also be attached 

to RBC surfaces through physical interactions; for instance, 

polystyrene particles can adhere to the surface of erythrocytes 

via nonspecific van der Waals and hydrogen bonding, which 

work through electrostatic and hydrophobic forces, respec-

tively, between particles and erythrocytes.49

Figure 1 illustrates the two main preparation strategies 

for RBCs as a drug delivery system.

Application of erythrocytes as a drug 
delivery system
Erythrocytes encapsulate and protect l-asparaginase 

(l-ASNase) from degradation; the encapsulated l-ASNase 

exhibits a longer half-life and lower incidence and severity of 

side effects, such as allergic reactions than native l-ASNase. 

Encapsulated l-ASNase is a promising product with a good 

safety profile to treat children and adults with refractory or 

relapsing acute lymphoblastic leukemia.50,51 For instance, 

the toxic effect of erythrocyte-delivered etoposide on 

macrophages is greater than that of free chemotherapeutic 

drugs; this phenomenon indicates the usefulness of RBCs in 

the delivery of this cytotoxic agent to target macrophages.52 

Mitochondrial neurogastrointestinal encephalomyopathy 

(MNGIE), an autosomal recessive disease, is caused by 

mutations in the nuclear gene ECGF1 coding for thymi-

dine phosphorylase (TP); thus, high deoxythymidine and 

deoxyuridine levels accumulate in the body and induce 

gastrointestinal motility disorders, such as stomachache, 

progressive external ophthalmoplegia, hearing loss, and 

peripheral sensorimotor polyneuropathy. Moran et al53 found 

that deoxythymidine and deoxyuridine levels decrease sig-

nificantly, and symptoms have been ameliorated in patients 

with MNGIE when TP is carried by RBCs. Levene et al con-

cluded that serious toxicities likely preclude a clinical trial of 

TP carried by RBCs in patients with MNGIE.54 Harisa et al32 

demonstrated that human erythrocytes can be successfully 

loaded with pravastatin, and relatively high drug loading 

and encapsulation efficiency can be obtained. Moreover, no 

significant loading parameters and morphological changes in 

erythrocytes have been observed in entrapping pravastatin; 

this finding indicates that erythrocytes are potential carriers 

for pravastatin. Methotrexate (MTX), an antimetabolite and 

antifolate agent used in solid tumors and hematological dis-

eases, can be encapsulated by erythrocytes, and the average 

survival time of rat hepatoma cells is enhanced with MTX-

loaded erythrocyte treatment compared with that of cells 

treated with native MTX.55 Biagiotti et al56 confirmed that 

immunosuppressants can be encapsulated into erythrocytes 

in the presence of corresponding target proteins, and RBCs 

can serve as a promising delivery system for immunosuppres-

sive agents.56 The use of RBCs as a drug delivery system for 

chemotherapeutic agents, especially in vitro and in vivo use 

of antineoplastic agents, has been widely investigated. Other 

therapeutic drugs delivered by RBCs include gentamicin for 

bacterial infection,57 δ-aminolevulinate dehydratase for lead 

poisoning,58 β-glucocerebrosidase for enzyme replacement 

therapy in Gaucher’s disease,59 adenosine deaminase for 

adenosine deaminase deficiencies,60 enalaprilat for hyperten-

sion management and congestive heart failure,61 and heparin 

for thromboembolism62 and carrier for thrombolytic agents.63 

Table 1 provides some examples of therapeutic moieties 

loaded by erythrocytes.28,46,64–75

Advantages
Erythrocytes applied as drug delivery systems have been 

extensively investigated because of several factors. For 

instance, erythrocyte sources are abundant, and the structure 

Figure 1 Two main strategies of preparing erythrocytes as drug delivery systems.
Notes: in the method of encapsulation, therapeutic agents are inserted within 
erythrocytes, while in the method of conjugation, they are attached to the 
erythrocyte membrane.
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and properties of erythrocytes are well understood. RBCs 

also possess good biocompatibility and biodegradability 

without inducing immunological reactions and producing 

toxic by-products. The membrane properties of RBCs permit 

relatively high drug loading and slow molecular release. 

Furthermore, their circulation time in the bloodstream is 

prolonged. RBCs are phagocytosed by macrophages in the 

liver and spleen. Thus, RBCs introduce cargos into the RES 

of cells, thus they can be beneficial for the treatment of 

macrophage-related hepatic diseases22,23,48,76 (Figure 2).

Drawbacks
Similar to other drug delivery systems, carrier erythrocytes 

are limited by various factors. For example, encapsulation 

may cause an osmotic stress-induced damage to the RBC 

membrane. Coupling therapeutic moieties to RBCs can 

lead to the loss of the mechanical stability and plasticity 

of erythrocytes. These morphological and physiological 

changes in erythrocytes may trigger an unwanted removal 

of RBCs by RES; as a consequence, their circulation time 

in the bloodstream is decreased. Molecules encapsulated in 

or coupled with RBCs may induce erythrocyte leakage and 

thus elicit toxic effects. Furthermore, preparation strategies 

for erythrocyte carriers have yet to be standardized; these 

carriers are also more varied than synthetic carrier systems. 

The storage of erythrocyte carriers and risk of blood contami-

nation before, during, and after drug loading should also be 

highly considered.27,77

Advancements
Drug selection and RBC–drug relationship have been 

improved because of various limitations. Prodrugs, such 

as corticosteroid prodrugs for prolonged circulation and 

nucleoside/nucleotide prodrugs for macrophage targeting, 

can improve the performance of RBC-based drug carriers. If 

an encapsulated or coupled molecule is inactive, erythrocytes 

can transform and release prodrugs in their active forms. This 

strategy can reduce off-target effects and prolong the half-life 

of drugs. Kwon et al78 introduced a new strategy of protein 

loading by using membrane-translocating low molecular 

weight protamine, which causes negligible changes in RBC 

membrane. Other novel engineered substances, such as 

nanoparticles and polymeric multilayered microcapsules, 

combined with RBCs are also currently used.22,79,80

Platelets as drug delivery systems
Properties of platelets
Platelets, with an average diameter of 2–3 µm, are discoid 

fragments from megakaryocytes of the bone marrow and the 

smallest components of the blood. Approximately 108 cells 

can be produced by megakaryocytes daily. Thus, 2×1011 to 

5×1011 platelets can be generated; when demands are high, 

Table 1 examples of therapeutic moieties loaded by erythrocytes

Therapeutic moieties Application Approaches Study types References

Dexamethasone Crohn’s disease; ulcerative colitis encapsulation Both in vitro and in vivo 64–66
Dexamethasone Chronic obstructive pulmonary disease encapsulation in vivo 67
Dexamethasone Cystic fibrosis encapsulation in vivo 68
Dexamethasone Ataxiateleangiectasia encapsulation in vivo 69
Daunorubicin Acute leukemia Binding Both in vitro and in vivo 46
Doxorubicin Lymphoma Binding in vivo 70
5-Fluorouracil Malignant ascites encapsulation in vivo 28
Phenylalanine ammonia lyase Phenylketonuria encapsulation in vivo 71
iFN-α and Ribavirin Hepatitis C encapsulation in vitro 72
Glutamine synthetase Hyperammonemia encapsulation in vivo 73
Factor iX Hemophilia B encapsulation in vitro 74
inositol hexaphosphate Sickle cell disease encapsulation in vitro 75

Abbreviation: iFN-α, interferon-α.

Figure 2 illustration of the mechanism of erythrocytes and platelets as drug delivery 
systems.
Note: erythrocytes are targeting to ReS-related organs and platelets are targeting 
to tumor.
Abbreviation: ReS, reticuloendothelial system.
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this number increases tenfold. The platelet concentration in 

the circulating blood is ∼150×109/L to 350×109/L with an 

average life span of 7–10 days; after this period, platelets 

are removed by reticuloendothelial cells from the liver and 

spleen.81,82

Platelets participate in several physiological and patho-

logical processes, including hemostasis, wound healing, 

thrombosis, inflammation, and atherosclerosis.83 In hemo-

stasis, damaged small blood vessels and capillaries promote 

vasoconstriction to prevent blood loss. In addition, platelets 

adhere to the site of injury by interacting with von Willebrand 

factor and collagen; some mediators work with various potent 

functional molecules, including adenosine diphosphate and 

thromboxane A2. Thus, platelets act as a storage “depot” and 

trafficking “vehicle” in blood vessels.84

Pathological conditions occur because of nonspecific 

activity of platelets, stimulation of agonist secretion, and 

platelet aggregation in atheromatous plaques; these condi-

tions decrease the number of platelets in circulation and cause 

ischemia.85 The mechanism by which platelets engulf small 

molecules is different from conventional phagocytosis, in 

which an engulfed substance is metabolized. Compared with 

other carriers, encapsulated substances in the platelet remain 

intact, and are thus referred to as covercytes.86

The relationship between platelets and malignancy was 

first discovered in 1865 by Armand Trousseau, a French 

clinician who reported that migratory thrombophlebitis can 

be an indicator of occult malignancies, including pancreatic 

carcinoma. Named after this clinician, Trousseau syndrome 

is characterized by a hypercoagulable state with advanced 

malignancy. Seven years later, Riess87 described a “massive 

increase of platelets” in patients with carcinoma. In 1878,88 

Billroth found that platelets not only participate in tumor 

growth but also contribute to metastatic spread. A century 

later, researchers found that thrombocytopenia alleviates 

metastasis in mice. Tumor cells induce platelet aggregation, 

and active platelets protect or cloak circulatory tumor cells 

from physical factors such as shear stress within the vas-

culature, and help them escape from immune surveillance. 

Subsequently, platelets cause tumor cells to transfer to 

secondary sites on the vascular wall; platelets also secrete 

proteases and cytokines that promote the formation of new 

blood vessels, which are necessary for tumor-associated 

angiogenesis and growth. Platelet count is increased by 

tumor cells. Therefore, the correlation between platelets and 

tumors can be described as a vicious cycle: tumor increases 

platelet count; the increased platelet count promotes tumor 

growth and metastasis; as a consequence, platelet count is 

further increased (Figure 3).89,90 The phenomenon by which 

tumor cells cause platelet aggregation was first discovered 

in 1968 and referred to as tumor-induced platelet aggrega-

tion (TCIPA).91 TCIPA is considered the fundamental to 

utilize platelets as drug delivery systems for malignant 

tumor treatment. The mechanism of TCIPA is illustrated 

in Figure 2.

Application of platelets as a drug delivery 
system
Sarkar et al92 showed that platelets can take up drugs at a rela-

tively high drug loading concentration, and the efficiency of 

inducing cytotoxicity is significantly increased when platelets 

are used as drug delivery carriers in vitro and in vivo. They 

concluded that platelets can be potential drug carriers when 

a low drug concentration is used in a targeted mode. Anti-

thrombotic agents are commonly utilized to manage patients 

at a high risk of thrombosis and hemorrhage. Platelets have 

also been effectively exploited as carriers for antithrombotic 

agents, especially for arterial clots.93,94 Davies et al95 con-

structed a strategy to deliver europium luminescent complex 

and gold nanoparticles (AuNPs) into human platelets by using 

a low-pH insertion peptide. The radiolabeling of platelets to 

assess survival and recovery has been developed for more 

than 4 decades. However, this technique has been banned for 

use in clinical studies. By contrast, nonradioactive labeling 

of platelets has been used frequently in clinical studies, 

including evaluation of the survival of transfused platelets 

and analysis of the pathogenesis of stroke.96 In our study, 

Figure 3 The relationship between platelets and malignancy.
Notes: Tumor cells induce platelet aggregation, and then active platelets protect 
or cloak circulatory tumor cells from physical factors, as well as help them escape 
from immune surveillance. Subsequently, platelets facilitate tumor cells to transfer 
to the secondary sites on the vascular wall and secrete proteases and cytokines 
that promote the formation of new blood vessels. On the other hand, tumor cells 
increase the platelet count.
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doxorubicin is loaded into platelets, and high drug loading 

and encapsulation efficacy are detected. Doxorubicin is also 

released by a pH-based trigger. Inhibition and apoptosis rates 

are higher in the group that received drug-loaded platelets 

than in the untreated group.

Nanoparticles mimicking platelets have been proposed for 

drug and gene delivery to treat various diseases. Kona et al97 

formulated drug-loaded poly(lactic-co-glycolic acid) nano-

particles and conjugated the external fraction of platelet 

glycoprotein Ib (GPIb) via carbodiimide chemistry. They 

confirmed that the GPIb-conjugated poly(lactic-co-glycolic 

acid) nanoparticles can act as a controlled and targeted drug 

carrier under flow conditions at vascular injury sites.97 Lin et al  

obtained similar results.98 Modery-Pawlowski et al99 found 

that platelet mimetics is a promising method in the treatment 

of metastasized tumor. Researchers prepared polymeric nano-

particles enclosed in the plasma membrane of human platelet; 

they verified that platelet membrane-cloaked nanoparticles 

exhibit less uptake by macrophage-like cells than uncoated 

nanoparticles do, and particle-induced complement activation 

is reduced. Furthermore, therapeutic efficacy is enhanced when 

vancomycin and docetaxel are applied to an experimental 

mouse model of systemic bacterial infection and a rat model 

of coronary restenosis via platelet-mimetic nanoparticles.100

Other applications of platelets as drug carriers are sum-

marized in Table 2.92,101

Advantages
Biocompatibility, which is defined as “expression of the 

benignity of the relation between a material and its biological 

environment”, is considered a fundamental property of a 

carrier. The biocompatibility of platelets is superior to that of 

other drug delivery systems because platelets are components 

of the human body. In theory, ∼500 molecules can be loaded 

on 1×10−15/L nanoparticles; in reality, the amount is much 

lower. The loading efficacy of platelets is relatively high, with 

an average of 50,000–70,000 molecules encapsulated by the 

same number of platelets.86,102 Another property of platelets is 

that targets are well defined: these targets are mostly sites with 

high density of proliferating cells or injured sites. Thus, side 

effects caused by nonspecific targeting are decreased because 

of the inherent targeting capacity of platelets. Furthermore, 

platelet-encapsulated drugs are protected from physical stress 

and immunological reactions; as such, the systemic clearance 

of the encapsulated drugs is similar to that of single platelet, 

and circulation time is prolonged. Controlled drug delivery 

is quite important, and platelets can facilitate controlled drug 

release by artificially exposing drugs to agonists. According 

to Sarkar et al, lethal effects are exacerbated by enhanced 

apoptosis when cytotoxic drugs are carried by platelets; this 

phenomenon indicates the synergetic effect of platelets and 

drugs. As such, low amounts of drugs can be used to achieve 

the same treatment efficacy, and few side effects are induced. 

Another advantage of platelets over other carriers is that 

the method can be individualized because a patient’s own 

platelets are the ones used to deliver drugs.92 The method is 

also appropriate for patients who need transfusion.

Drawbacks
The main drawbacks of platelets are similar to those of RBCs. 

These limitations include proper storage and contamination. 

In genetic therapy, whether the platelet-specific expression 

of transgenes affects the expression of endogenous proteins 

remains unknown. Furthermore, whether the usage of plate-

lets as drug carriers causes thrombogenesis should be further 

investigated.

Albumin as a drug delivery system
Properties of albumin and its preparation
Albumin, which is the most abundant plasma protein, acts as 

a molecular taxi for various small insoluble substances, such 

as hormones, nutrients, and toxins. The albumin concentra-

tion in an adult ranges from 35 g/L to 50 g/L.103 Albumin, 

with an average half-life of 19 days, is synthesized in the 

liver and its molecular weight is 66.5 kDa.104

Babson and Winnick105 demonstrated for the first time 

that tumor cells can trap plasma proteins and utilize their 

degradation products for proliferation. Since then, other 

researchers have revealed the ability of albumin to accu-

mulate in malignant tissues via the EPR effect. The leaki-

ness of the defective blood vessels of tumor tissues enables 

macromolecules to pass the endothelial barrier, but normal 

Table 2 examples of therapeutic moieties loaded by platelets

Therapeutic moieties Application Study types References

Factor viii Hemophilia A in vivo 101
Factor iX Hemophilia B in vivo 84
Doxorubicin Lung adenocarcinoma; ehrlich ascites carcinoma Both in vitro and in vivo 92
Ferucarbotran superparamagnetic nanoparticles Transfusion medicine and cardiovascular medicine in vitro 96
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tissues are permeable only to small molecules.71,104 As such, 

the proper size of macromolecules that can extravasate 

into tumor tissues but not into healthy tissues ranges from 

2 nm to 10 nm, and the diameter of serum albumin is 7.2 nm. 

In addition, Stehle et al proposed that albumin is a major 

nutrient and energy source for tumor cell growth.106 In 2003, 

Wunder et al107 showed that albumin accumulates in the 

arthritic paws of mice. Therefore, albumin is a potential car-

rier that can be used to deliver drugs to the inflamed joints 

of patients with rheumatoid arthritis.104

Albumin as a drug delivery system is prepared via 

two primary ways: 1) encapsulation of drugs into albumin 

nanoparticles, which are dependent on physical interaction 

between drugs and albumin, and 2) coupling of drugs to 

endogenous or exogenous albumin and conjugation with 

bioactive proteins.

Application of albumin as a drug delivery 
system
The MTX bound to human serum albumin (MTX-HSA) is 

the first albumin conjugate evaluated in Phase I/II clinical 

studies. In the assessment of antitumor activity in preclinical 

in vivo models, complete remission/cure is achieved in soft-

tissue sarcoma SXF 1301 by using MTX-HSA; free MTX 

lasts for a short period. In the prostate cancer model PRXF 

PC3M, MTX-HSA induces a greater growth inhibition than 

native MTX dose. These results demonstrate that antitumor 

effectiveness can be enhanced when MTX is conjugated 

with albumin.108 MTX-HSA can be combined with cisplatin, 

and the toxicity of the antitumor activity against urothelial 

carcinomas is tolerable.109 One of the successful applications 

of albumin as a drug delivery system is demonstrated by the 

albumin–paclitaxel (PAC) nanoparticle Abraxane, which was 

first approved in 2005 by the US Food and Drug Adminis-

tration to treat metastatic breast cancer; this drug was also 

approved in 41 countries in the same year. Teneriello et al110 

verified that nanoparticle albumin-bound PAC is active in 

patients with recurrent ovarian, peritoneal, or fallopian tube 

cancer, and toxicity is manageable, as revealed by Phase II 

evaluation. HSA has been proposed as a carrier for renal 

targeting drugs, but glomeruli are not entirely permeable to 

HSA because of the molecular weight of albumin. Therefore, 

Yuan et al111 used three peptide fragments (PFs), namely 

PF-A1-123, PF-A124-298, and PF-A299-585, obtained 

through the cyanogen bromide degradation of HSA to carry 

agents and selectively accumulate in kidneys; they verified 

that PFs can be applied as potential drug delivery systems 

for renal targeting, and PF-A299-585 may be an optimal 

carrier. Cationic bovine serum albumin as a gene delivery 

system has also been demonstrated as a promising strategy 

to treat lung and metastatic cancers.112 Asmatulu et al113 

fabricated albumin-based drug-carrying microcomposite 

spheres loaded with cyclophosphamide and 5-fluorouracil; 

they subsequently investigated the potential of these spheres 

for breast cancer treatment in vitro by using fibroblast cells 

(3T3) and breast cancer cells (MDA-486). Nude mice have 

also been used for in vivo evaluation. The results showed 

that chemotherapeutic efficacy is enhanced when the mice are 

exposed to other drug delivery systems possibly because of 

the albumin-induced increase in uptake of microspheres by 

malignant cells. Peralta et al114 revealed that gold nanorods 

combined with the chemotherapeutic drug PAC are suc-

cessfully encapsulated into HSA nanoparticles (HSAPs) to 

form PAC–AuNP–HSAPs. They verified that PAC–AuNP–

HSAPs are more efficient than free PAC in inhibiting the 

proliferation of 4T1 mouse breast cancer cells and inducing 

the apoptosis of these cancer cells. Zhang et al115 demon-

strated that cytotoxicity is enhanced by two to five times in 

tumor cells when ruthenium-based anticancer complexes 

[RuCl5(ind)]2− bind to HSA; no side effects are detected 

in normal cells in vitro. Compared with the use of single 

drugs, the use of the HSA–[RuCl5(ind)]2− complex promotes 

tumor cell apoptosis. Albumin drug nanoparticles combined 

with phospholipid perifosine or the antibodies trastuzumab 

(Herceptin) and bevacizumab (Avastin) can effectively treat 

patients with head, neck, or breast cancer.116 Thus, albumin 

is a potential drug delivery system.117 Other uses of albumin 

as a drug carrier are listed in Table 3.112,118–127

Advantages
Albumin is an optimal candidate for drug delivery because of 

several advantages, including abundant sources, nontoxicity, 

biodegradability, nonimmunogenicity, and preferential 

uptake in tumor and inflamed tissues. Albumin is also 

stable at various temperatures (it can be heated at 60°C for 

up to 10 hours without deleterious effects), pH (it is stable 

at pH 4–9), and in various organic solvents.117 Therefore, 

albumin can enhance the solubility of poorly water-soluble 

molecules, prolong the circulation time of drugs, and 

minimize side effects by improving targeting. Furthermore, 

albumin provides a depot for various drug binding sites and 

high binding capacity for different drugs.117,128

Drawbacks
In preparing albumin–drug conjugates with or without 

additional targeting ligands, the structure of albumin may 
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be disrupted; as a result, these conjugates may accumulate 

in nontarget tissues and may be eradicated by the mononu-

clear phagocyte sysetm.128 Furthermore, the performances of 

nanomaterials and albumin in vitro differ from the interaction 

of albumin and nanomaterials in vivo; undesirable results, 

such as the risk of capillary blockage because of increased 

size and potential toxicity caused by conformational changes 

in albumin, may also be obtained.9

Others
In addition to erythrocytes, platelets, and albumin as drug 

delivery systems, apoferritin has been used to encapsulate 

cisplatin and carboplatin.129 Ivy nanoparticles also exhibit 

great potential for the delivery of chemotherapeutic drugs in 

cancer therapy.130 Wang et al131 suggested that tea nanopar-

ticles can be useful to prevent multidrug resistance in tumor 

cells and to enhance the chemotherapeutic efficacy in tumor 

treatment. Yi et al132 also confirmed that tea nanoparticles can 

function as a multifunctional nanocarrier for cancer therapy. 

Fungal nanoparticles have also been proposed as nanocar-

riers for cancer treatment.133 Low-density lipoprotein,134 

nonpathogenic bacteria,135,136 and dendritic and eukaryotic 

cells137 have also been used to deliver drugs, enzymes, and 

genes to specific sites.

Conclusion
Biological agents have been investigated as drug delivery 

systems in various research and clinical applications, espe-

cially for antineoplastic agent delivery, because of their 

excellent properties. The advantages of biological delivery 

carriers have been verified by numerous studies. Neverthe-

less, further research should be conducted to clarify the 

following questions: 1) Can thrombus be formed through 

the reduplicative application of platelets as drug carriers? 

2) Can carrier erythrocytes deliver oxygen from lungs to 

different tissues? 3) Can carrier platelets still participate in 

physiological and pathological processes; if so, what is their 

role in human bodies?
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