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Abstract: Lafora disease (LD) is a fatal neurodegenerative disorder caused by loss-of-function 

mutations in either laforin glycogen phosphatase gene (EPM2A) or malin E3 ubiquitin ligase 

gene (NHLRC1). LD is associated with gradual accumulation of Lafora bodies (LBs). LBs are 

aggregates of polyglucosan, a long, linear, poorly branched, hyperphosphorylated, insoluble 

form of glycogen. Loss-of-function mutations either in the EPM2A or in the NHLRC1 gene lead 

to polyglucosan formation. One hypothesis on LB formation is based on findings that laforin–

malin complex downregulates glycogen synthase (GS) through malin-mediated ubiquitination, 

and the other one is based on findings that laforin dephosphorylates glycogen. According to the 

first hypothesis, polyglucosan formation is a result of increased GS activity, and according to the 

second, an increased glycogen phosphate leads to glycogen conformational change, unfolding, 

precipitation, and conversion to polyglucosan, while GS remains bound to the precipitating 

glycogen. In this review, we summarize all the recent findings that have important implications 

for the treatment of LD, all of them showing that partial inhibition of GS activity may be suffi-

cient to prevent the progression of the disease. The current perspective in LD is high-throughput 

screening for small molecules that act on the disease pathway, that is, partial inhibitors of GS, 

which opens a therapeutic window for potential treatment of this fatal disease.
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Introduction
Lafora disease (LD; OMIM 254780) is an autosomal recessive, progressive metabolic 

disorder characterized by intractable myoclonus and seizures, inexorable neurological 

deterioration, cognitive decline, unfavorable clinical course, and poor prognosis. LD 

usually begins in late childhood or adolescence (9–18 years) after a period of apparent 

normal development. Although the outcome of LD is always unfavorable, the onset of 

the symptoms and the progression of the disease may vary. The most common present-

ing feature is a single seizure followed by progressive myoclonus, generalized and/

or focal seizures, cognitive decline, and severe motor and coordination impairments. 

Myoclonus can be fragmentary, symmetric, or massive and is the primary reason for 

early wheelchair dependency. Early emotional disturbance, depression, and confu-

sion later evolve into dementia. Rapidly progressive cognitive decline with pyramidal 

and cerebellar signs lead to a vegetative state. Death usually occurs within 10 years 

in status epilepticus, most commonly due to pneumonia or complications related to 

degeneration of the nervous system.1

LD is more prevalent in the Mediterranean basin of Southern Europe, Southern 

India, Northern Africa, and the Middle East; in isolated populations of southern USA 
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and Quebec, Canada; and in other parts of the world with a 

high rate of consanguinity.2 It is interesting to stress that LD 

has not been reported in Finland.3

Molecular genetics of LD
LD is caused by mutations in two genes: EPM2A,4 which 

encodes laforin, a dual specificity phosphatase that dephos-

phorylates complex carbohydrates,5 and NHLRC1, which 

encodes malin,6 an E3-ubiquitin ligase (Figure 1).7 Malin 

regulates the amount of laforin, and laforin regulates glycogen 

phosphorylation. To date, more than 50 distinct mutations 

have been described for each of the two genes. The observed 

mutations include missense, nonsense, frameshift muta-

tions as well as exon and whole gene deletions. Mutations 

in the NHLRC1 gene within Japanese, Italian, and Serbian/

Montenegrin LD patients are more common than those in the 

EPM2A gene.6,8,9,10 Conversely, EPM2A mutations are more 

common in the Spanish and French populations.11 Within the 

Indian and Arab populations, the distribution of mutations 

in the two genes is more or less even.12,13

Diagnosis of LD is based on the clinical and electrophysio-

logical findings as well as molecular genetics. On rare 

occasion, skin biopsy is necessary to detect characteristic 

Lafora bodies (LBs), periodic acid-Schiff positive structures 

to confirm the diagnosis. Skin biopsy used to be the primary 

diagnostic test for LD, but interpretation of findings on skin 

biopsy involves a risk of false-negative results,13 especially 

in newly symptomatic individuals, and a risk of false-positive 

results because of the difficulty in distinguishing LBs from 

normal periodic acid-Schiff-positive polysaccharides in 

apocrine glands.14,15 Molecular diagnostics has an absolute 

priority over skin biopsy and includes targeted gene analysis 

of the EPM2A or NHLRC1 gene and/or the use of multigene 

panel, which includes EPM2A, NHLRC1, and other genes of 

interest. If a diagnosis is not confirmed in a patient with LD 

features after analysis of the EPM2A and NHLRC1 genes, 

genomic testing may be considered. Such testing may include 

whole-exome sequencing, whole-genome sequencing, and 

whole-mitochondrial sequencing. However, multigene panel 

strategy and genomic testing should be complemented by 

exon or whole gene deletion testing in patients with a single 

heterozygous mutation in one of the genes as well as in 

patients with an apparently homozygous mutation in one 

of the genes, but the same mutation is carried by only one 

parent.

Are defects in malin and laforin 
gene clinically indistinguishable?
Both in patients and mouse models, defects in laforin and 

malin lead to clinically indistinguishable phenotypes.4,6,16,17 

To date, no correlations between phenotype and mutation 

type or its location in the gene have been demonstrated. 

Genotype–phenotype correlations are difficult to establish 

in LD because of the high allelic heterogeneity and frequent 

compound heterozygotes in different combinations.18,19 

Although a subphenotype consisting of childhood-onset 

learning disorder followed by epilepsy and neurologic dete-

rioration has been associated with either mutations in exon 1 

of EPM2A16,20 or the p.I198N pathogenic variant located in an 

NHL protein–protein interaction domain of NHLRC1,19 these 

findings need to be replicated, expanded, and studied further 

in order to understand their relationship to the underlying 

pathophysiological processes.

However, a slower course of the disease with a delayed 

age of death has been reported in some patients with 

NHLRC1 mutations. This finding has been demonstrated 

especially for patients with the NHLRC1 c.436G.A 

(p.D146N)  substitution.9,19,21,22 Five of six LD patients who 

maintained .10 years gait autonomy carried homozygous 

or compound heterozygous p.D146N mutation and were 

described as mild.22 In a Turkish family with four brothers 

affected by homozygous p.D146N mutation in the NHLRC1 

gene (three subjects were followed-up for .10 years), late 

age of onset was reported.23 Franceschetti et al9 speculated 

that the p.D146N mutation was invariably associated with a 

slow progression in three unrelated cases with homozygous 

p.D146N mutation. In the diagnostic workup of slowly pro-

gressive adult patients with progressive myoclonic epilepsy, 

detection of this mutation should be considered.22 But it 

should be stressed that EEG findings remain typical even 

in these cases.

But NHLRC1 mutations are not necessarily associated 

with a slow disease course, as some patients may have 

extremely severe phenotypes. Brackmann et al24 described 

a case of a 15-year-old adolescent with NHLRC1 muta-

tion and rapidly progressive phenotype. A Malian family 

with the NHLRC1 gene mutation presented with severe 

cognitive decline 4–5 years after the onset of disease.25 

Kecmanovi  et al26 reported a Montenegrin patient with 

A
CBM DSP

RING NHL NHL NHL NHL NHL NHLB

Figure 1 A schematic of laforin and malin.
Notes: (A) Laforin contains a CBM and a DSP domain. (B) Malin contains RiNG 
domain and six NHL repeats.
Abbreviations: CBM, carbohydrate-binding module; DSP, dual-specificity phos-
phatase.
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deletion of the entire NHLRC1 gene and a clinical course 

more progressive than in most individuals with NHLRC1 

mutations. Also, a lower quality of medical care in some 

of these LD cases with the faster disease progression could 

not be excluded.

Glycogen metabolism and LD
LD is characterized by the accumulation of LBs and by 

neurodegeneration.27 LBs are mostly composed of abnor-

mal glycogen, called polyglucosan, which is insoluble and 

hyperphosphorylated and contains a small amount of  protein. 

A normal glycogen molecule remains soluble because its 

glucose chains are short, is made of 13 units, and each chain 

is a branch of another, and as a result of this structure, the 

whole molecule is spherical. Malformed glycogen lacks 

glycogen’s normal branching and spherical structure essen-

tial to its solubility. Polyglucosans are more similar to plant 

amylopectin or starch than to glycogen, and like these plant 

carbohydrates, they are insoluble, precipitate, and accumu-

late.28 It has been demonstrated that in plants, variants in the 

starch excess 4 gene (SEX4) result in the accumulation of 

amylopectin, similar to the way loss of laforin leads to the 

accumulation of polyglucosans with formation of LBs in 

humans.29–31 In plants, human laforin can rescue the SEX4-

mutated phenotype.30

Glycogen is an efficient energy storage molecule in 

animals. For de novo glycogen synthesis to proceed, the first 

glucose residue is attached to a protein known as glycogenin. 

The attached glucose then serves as the primer required 

by glycogen synthase (GS), which catalyzes formation of 

the vast majority of glycogen’s interglucosidic bonds and 

glycogen branching enzyme, which catalyzes glycogen’s 

branching. Glycogen is degraded by glycogen phosphorylase 

(GP) and glycogen debranching enzyme. Protein targeting to 

glycogen (PTG) is an adaptor protein that mediates dephos-

phorylation of GS and GP by the pleiotropic phosphatase 

PP1, which activates GS, inactivates GP, and thus, increases 

glycogen production.32,33 GS is essential to glucose polymer-

ization by formation of α-1,4-glycosidic bonds whether the 

final structure is glycogen or polyglucosans. Despite glucose 

being the preferential energy source for the neurons, neurons 

synthesize very low glycogen under physiological conditions 

compared to most other cell types.34 Saez et al34 showed that 

endogenous neuronal glycogen metabolism participates in 

the neuronal tolerance to hypoxic stress.  Progressive accu-

mulation of glycogen in mouse and  Drosophila neurons 

leads to neuronal loss, locomotion defects, and reduced life 

span and is responsible for neurodegeneration.35  Laforin 

and malin were found to promote neuronal survival by 

 restricting glycogen synthesis.36 A complex of these proteins 

was reported to keep neuronal glycogen synthetic machin-

ery constitutively silent by enforcing GS inactivation and 

 degradation of PTG.36

In brain, LBs form in neuronal perikarya and in neuronal 

short processes (mostly dendrites), but are never seen in 

long tract axons. Polyglucosan masses gradually replace the 

cytoplasms of dendrites, likely underlying onset, progres-

sion, and intractability of LD, since dendrites are the chief 

determinant of a neuron’s excitability state.28,37 Except in the 

central nervous system, LBs are present in retina, heart, liver, 

skeletal muscle, and skin but cause no symptoms in these 

organs.28,37,38 The exact role of the LBs in the pathogenesis 

of LD has been the subject of intensive research efforts over 

the past few years.

LBs and polyglucosans do occur in other neurological 

diseases, including adult polyglucosan body disease, caused 

by mutations in the glycogen branching enzyme gene.39 But 

unlike LD, LBs in this disease form exclusively in axons. 

The affected patients suffer from motor neuron disease and 

may have mild dementia, but have no epilepsy.39,40 Branching 

enzyme activity is normal in LD,41 which rules out decreased 

branching enzyme activity as the mechanism of polyglucosan 

generation in LD. Further, type VII glycogen storage disease 

is due to muscle-specific phosphofructokinase deficiency 

and affects only skeletal muscle.42 Deficiency of this enzyme 

results in accumulation of its precursor, glucose 6-phosphate 

(G6P), an allosteric activator of GS. Increased GS activity dis-

turbs the glycogen-branching balance in favor of extension, 

leading to muscle polyglucosan.43 The ubiquitous presence 

of polyglucosans in LD rules out phosphofructokinase gene 

(PFKP) as a LD gene indicating that changes in GS activity 

result in polyglucosan formation and LD.

Reduced glycogen synthesis could 
prevent LD
Many studies showed that reducing glycogen synthesis 

resulted in prevention of formation of LBs, neurodegen-

eration, and seizure susceptibility, thus preventing LD.44–46 

A study by Pederson et al45 showed that genetic elimination 

of brain GS in laforin-lacking LD mice resulted in long-term 

correction of the LD phenotype. The same result was obtained 

through partial reduction of glycogen synthesis by genetically 

removing PTG in laforin-lacking LD mice.44 These results 

indicated that in LD caused by laforin deficiency, LBs are due 

to a disturbance in glycogen metabolism and that loss of lafo-

rin’s glycogen-related function underlies this disturbance. Fur-

thermore, in LD caused by malin deficiency, removing PTG 

resulted in prevention of LBs formation,  neurodegeneration, 
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and seizure susceptibility, same as in laforin-deficiency mice.46 

These results indicated that malin’s functions that are glycogen 

related underlie formation of LBs.46

It has been shown that reduction of glycogen synthesis 

prevents polyglucosan accumulation and neurodegeneration 

in PTG/laforin, GS/laforin and PTG/malin double knockout 

mice.44–46 Thus, partial GS inhibition, that is, glycogen synthesis 

downregulation, may provide a potential  treatment for LD. In 

humans, complete GS elimination cannot be contemplated as 

this causes significant pathology,47 but partial reduction of GS, 

or reduction of GS and activation of GP, could be therapeutic. 

Compounds that are known to partially inhibit GS or PTG, as 

well as genetic approaches such as antisense oligonucleotides 

against GS, could prove useful in halting LD early in its course, 

or preclinically, and prevent its progression.45

Beside impairment in glycogen metabolism, it is thought 

that LD results in defect in autophagy and that the defect in 

autophagy could be at the basis of neurodegeneration seen 

in LD. But a recent study by Duran et al48 demonstrated that 

glycogen accumulation per se drives neuronal death and 

that the accumulation of glycogen is not a consequence of 

autophagy impairment but rather the cause of it. Also, without 

glycogen accumulation, there is no alteration of autophagy 

in LD.48 Further, a recent study by Garyali et al49 showed 

that defects in autophagy may be secondary to glycogen 

overaccumulation since both laforin and malin knockout 

cells displayed mammalian target of rapamycin-dependent 

autophagy defects.

Closing summary
In the new genome era, we are witnessing the progressive 

development of therapies for many rare diseases. The former 

concept of gene therapy is abandoned and replaced by a search 

for small molecules or RNA molecules that act on the disease 

mechanism. Since the discovery of the first gene associated 

with LD has passed a little more than 15 years, today we are a 

step away from the curative therapy. This step means screening 

for small molecules that act on partial inhibition of GS.
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