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Abstract: Coronary computed tomography angiography (CTA) has been increasingly used to 

detect coronary artery disease. The diagnostic performance of coronary CTA is well established 

with a high sensitivity and negative predictive value. Nevertheless, the diagnostic value of 

 coronary CTA is offset by a high false positive rate, partly due to the technique lacking physio

logical lesion assessment when performed in the conventional way. This has raised concerns 

regarding unnecessary invasive coronary angiography referrals and inappropriate revasculariza

tion procedures. Recent advances in computational fluid dynamics and imagebased modeling 

have enabled the calculation of coronary artery blood flow and pressure under various modeled 

physiologic conditions from coronary CTA without the need for hyperemiainducing medica

tions, modification of acquisition protocol or further radiation. Coronary flow and pressure can 

be derived both at rest and during simulated maximum hyperemia allowing for the calculation of 

fractional flow reserve from coronary CTA (FFR
CTA

) across stenotic lesions in a fashion similar 

to invasive FFR. This novel noninvasive technology offers concurrent anatomical and functional 

assessment of major epicardial coronary arteries. The diagnostic performance of FFR
CTA

 has 

been tested in three major trials where it resulted in accurate identification of ischemiarelated 

lesions. Similar to an invasive FFRguided management strategy, the use of FFR
CTA

 has been 

shown to improve patients’ outcomes and reduce health care costs. FFR
CTA

 is emerging as an 

attractive alternative to invasive FFR. There are, however, several challenges that need to be 

overcome before FFR
CTA

 can be incorporated into routine clinical practice.

Keywords: computational Fluid Dynamics, CFD, coronary CTA, FFR, coronary artery 

disease, CAD

Introduction
Coronary artery disease (CAD) is a worldwide leading cause of mortality and mor

bidity.1 It is estimated that more than half of cardiovascular deaths are classified as 

sudden cardiac death, usually as a result of acute myocardial infarction in patients with 

underlying atherosclerotic CAD.2 Invasive coronary angiography (ICA) utilizing intra

coronary injection of radiopaque contrast to obtain radiographic luminograms of the 

coronary vessels is currently the “gold standard” technique used in clinical practice to 

establish the coronary anatomy, and remains the cornerstone for the decision making 

process of choosing medical therapy versus percutaneous or surgical revasculariza

tion. Visual assessment of coronary luminal stenoses assumes a constant relationship 

between the degree of stenosis and ischemia as explained by Gould et al, whereby the 

flow to the myocardium is gradually compromised as the luminal diameter progres

sively narrows.3 Nonetheless, this relationship has been proven to be more complex 
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and visual assessment of coronary luminal stenosis has been 

shown to poorly correlate with ischemia, particularly for 

lesions of moderate severity (40%–70% stenosis).4,5

Fractional flow reserve (FFR) is based on the relation

ship between coronary artery pressure and blood flow.6 

Although this relationship is fairly variable at rest, during 

maximal hyperemia there is a linear relationship between 

coronary pressure and flow because myocardial resistance 

is minimal and therefore constant.7 FFR is defined as the 

ratio of maximal achievable blood flow in a coronary artery 

in the presence of a stenosis to the hypothetical maximal 

achievable blood flow in that same epicardial artery in the 

absence of the stenosis.8 It is calculated during invasive 

cardiac catheterization by measuring pressure beyond the 

stenotic lesion. This is most commonly achieved using a 

guide wire with a pressuresensing transducer at its distal end, 

although alternative methods such as optical interferometric 

sensors can also be employed. After induction of maximal 

hyperemia using an epicardial as well as a microvascular 

vasodilating agent (often nitroglycerine and adenosine), 

the pressure gradient across the lesion is recorded and FFR 

is calculated as the minimal stable ratio of the mean distal 

coronary pressure to the mean aortic pressure.9,10 Pressure 

reduction of more than 25% at the distal vessel (FFR ,0.75) 

correlates well with objective myocardial ischemia, whereas 

relative pressure reductions in the distal vessel of less than 

20% (FFR .0.80) rarely do.11

There is a wealth of data demonstrating the superiority of 

FFRguided revascularization and improved eventfree sur

vival when compared to standard angiographyguided revas

cularization.12–17 In a 5year followup of the DEFER study, 

percutaneous coronary intervention (PCI) of a functionally 

nonsignificant stenosis, as indicated by an FFR $0.75,  

was of no benefit from a prognostic or symptomatic point 

of view.13 In accordance with the results from the DEFER 

study, the FAME study identified a benefit for deferring 

PCI in patients with multivessel disease and functionally 

nonsignificant lesions (FFR $0.80), with reduced rates of 

cardiac events at both 1 and 2 years.9,14 Similar conclusions 

were drawn in patients with stable CAD in the FAME2 trial. 

In this trial, FFRguided therapy reduced the need for urgent 

revascularization in patients with stable CAD and function

ally significant lesions.16

Therefore, the American College of Cardiology Foundation/ 

American Heart Association/Society for Cardiovascular 

Angiography and Interventions guideline for PCI has recom

mended the use of an FFRguided strategy in patients with 

stable ischemic heart disease (class IIa recommendation, 

level of evidence: A).18 FFRguided strategy carries an even 

stronger level of recommendation (class Ia recommendation, 

level of evidence: A) in the 2014 European guidelines on 

myocardial revascularization.19 Surprisingly, despite the 

unequivocally favorable data, invasive FFR is underutilized 

in clinical practice, as fewer than 10% of coronary revascu

larization procedures in the US utilize FFR, perhaps due to 

its invasive nature, risk of instrumentation, increased pro

cedural time, and the use of pharmacologic agents.20,21 This 

underutilization underscores the need for novel noninvasive 

methods to evaluate both anatomical and functional aspects of 

coronary stenosis. Such noninvasive anatomic–physiologic 

testing prior to cardiac catheterization and intervention may 

improve patients’ outcomes and reduce costs.

Non-invasive imaging of CAD and 
coronary blood flow
Coronary computed tomography angiography (CTA) has 

been increasingly used in clinical practice to detect CAD. 

It is estimated that 2.3 million coronary CTA examinations 

are performed annually in the US alone.22 The diagnostic 

accuracy of coronary CTA for identification of CAD has been 

demonstrated in several studies with a sensitivity and nega

tive predictive value (NPV) approaching 99% in individuals 

without known CAD.23,24 Nevertheless, this high sensitivity is 

 offset by a relatively low specificity and positive predictive 

value (PPV) (64%–83% and 48%–86% respectively).21,22 

Despite the high resolution anatomical identification of 

obstructive CAD, coronary CTA, in its conventional appli

cation, cannot determine the hemodynamic significance of 

coronary lesions and frequently overestimates the degree of 

coronary stenosis. The results from two recently published 

trials, PROMISE and SCOTHEART, provided evidence that 

the use of coronary CTA for chest pain evaluation enhanced 

the diagnostic accuracy and appropriately altered subsequent 

therapeutic plans when compared to other modalities of 

noninvasive functional testing.25,26 However, coronary CTA 

increased the rate of referral for ICA and revascularization by 

up to 50% with little understanding of the ischemiaproducing 

lesions raising concerns regarding unnecessary ICA and 

possibly inappropriate revascularization procedures.25,27,28 

Moreover, a strategy of initial CTA was associated with 

higher radiation exposure than functional testing as suggested 

by the PROMISE trial (mean cumulative radiation exposure 

of 12.0 mSv versus 10.1 mSv; P,0.001).23

Although noninvasive tests such as myocardial perfu

sion imaging with singlephoton emission CT and positron 

emission tomography, as well as stress echocardiography 
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provide functional assessment of CAD by identifying regions 

of suboptimal coronary flow and wall motion abnormalities, 

they do not directly visualize coronary lesions and carry a 

significant false positive and false negative rate. A homo

geneous myocardial perfusion scan does not exclude the 

presence of CAD, especially in the setting of multivessel 

CAD and balanced ischemia.29 Positron emission tomo

graphy quantification of the transmural extent of myocardial 

perfusion is still far from ideal, despite the improvement in 

spatial resolution.

The combination of anatomic and physiologic imaging 

from a single imaging test can overcome the limitations of 

predominantly anatomic (eg, conventional cardiac CTA) and 

functional stress modalities. Although the CT myocardial 

perfusion imaging hybrid serves this purpose, it is limited by 

significant radiation exposure and increased cost.30 Therefore, 

recent advances in imaging techniques and fluid dynamics 

have been applied in the calculation of FFR from coronary 

CTA (FFR
CTA

).

Techniques and scientific basis of 
FFRCTA calculation
Recent advances in computational fluid dynamics and image

based modeling now enable the calculation of coronary 

artery blood flow and pressure under different physiologic 

conditions from coronary CTA, without the need for hype

remia induction, modification of acquisition protocol, or 

additional radiation exposure. Coronary flow and pressure 

can be derived both at rest and during simulated maximum 

hyperemia permitting the ability to calculate FFR
CTA

 across 

stenotic lesions. The scientific basis for quantifying FFR
CTA

 

has been described in detail by Taylor et al;31 it is based on the 

generation of physiologic models of coronary blood flow.

The principal element for the generation of a reliable 

and precise model of human coronary blood flow is accurate 

threedimensional anatomic imaging of the aorta and the coro

nary circulation. In addition, computation of patientspecific 

coronary velocity and pressure under different physio logic 

conditions is feasible through mathematical methods to solve 

the governing equations of fluid dynamics utilizing basic 

 concepts.32–34 The first concept is the calculation of total  resting 

coronary blood flow relative to myocardial mass quantified 

on coronary CTA. The baseline coronary blood flow at rest is 

proportional to the oxygen demands of the subtended myo

cardium. The second concept is that the resistance of the micro

vasculature bed is inversely related to the size of the  supplying 

vessel.35–37 The third concept is that the microvasculature has 

a predictable vasodilator response to adenosine.38

The governing equations, known as the “NavierStokes 

equations”, are solved to compute coronary blood flow and 

pressure. Computation of millions of equations simultane

ously, and repetition of the process for thousands of time 

intervals in a single cardiac cycle is required to compute a 

realistic patientspecific model of the coronary circulation.39 

The numerical methods for solving fluid dynamics problems 

are known as computational fluid dynamics.31

In addition to solving the governing equations, it is neces

sary to define the domain of interest and boundary conditions 

that interface the modeled domain to the remainder of the 

circulation in order to construct a precise patientspecific 

blood flow model. The domain of interest is the segment 

where the blood is flowing (the lumen), and the relevant 

boundaries, extracted from cardiac CTA data, including the 

lateral surface, the inlet boundary (the aortic root), and the 

outlet boundaries of the ascending aorta and the coronary 

arteries. Boundary conditions are mathematical relationships 

between the variables of interest (eg, flow and pressure; see 

Figure 1). The final step in constructing a realistic model of 

coronary flow requires coupling of lumped parameter models 

of the heart, systemic circulation, and coronary circulation 

to a patientspecific model of the root of the aorta along with 

the coronary tree extracted from cardiac CTA data. Finally, 

maximum hyperemia is simulated by modeling the effect of 

adenosine on reducing the peripheral microvascular myocar

dial resistance downstream of the coronary artery stenosis to 

compute FFR
CTA

. It has been shown that in coronary arteries 

with normal coronary flow reserve, total coronary resistance 

at maximum hyperemia drops to a quarter of the resting 

value with intravenous administration of 140 mg/kg/min of 

adenosine.38 FFR
CTA

 is then computed as the ratio of the mean 

hyperemic pressure downstream of the coronary stenosis to 

the mean hyperemic pressure in the aorta.

Diagnostic performance of FFRCTA 
in correlation with invasive FFR
Emerging data suggest that noninvasive calculation of 

lesionspecific FFR, as described in “Noninvasive  imaging 

of CAD and coronary blood flow” section, is feasible using 

coronary CTA with high diagnostic performance. Using 

invasive FFR as a reference, the diagnostic accuracy of 

FFR
CTA

 has been tested in three clinical trials.40–42 In the 

DISCOVERFLOW study, 103 patients with known or sus

pected CAD underwent coronary CTA in four international 

centers. Obstructive CAD was defined as a stenosis $50% 

on coronary CTA and lesionspecific ischemia was defined 

as FFR or FFR
CTA

 #0.8. FFR
CTA

 was computed in 159 major 
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coronary arteries and compared to FFR performed at the time 

of invasive angiography. FFR
CTA

 correlated well with invasive 

FFR (r=0.717, P,0.001) and was superior and additive to 

coronary CTA for the detection of ischemiacausing lesions. 

On a pervessel basis, the sensitivity, specificity, PPV, and 

NPV were 87.9%, 82.2%, 73.9%, 92.2%, respectively, for 

FFR
CTA

 compared to 91.4%, 39.6%, 46.5%, 88.9%, respec

tively, for coronary CTA stenosis. Evidently, the enhanced 

diagnostic accuracy of FFR
CTA

 compared to coronary CTA 

(84% versus 59%) is largely due to lower false positive rates 

observed with FFR
CTA

.40

The above findings were subsequently reproduced 

in a larger cohort, the DeFACTO study.41 Similar to the 

DISCOVERFLOW study, 252 stable patients with known 

or suspected CAD in 17 international centers were evaluated 

with cardiac CTA, FFR
CTA

, and invasive FFR. Obstructive 

CAD was defined as a stenosis $50% and ischemia was 

defined as FFR or FFR
CTA

 #0.8. FFR
CTA

 demonstrated supe

riority over coronary CTA in ischemia determination. The 

DeFACTO study’s prespecified primary outcome goal was to 

demonstrate a perpatient diagnostic accuracy for FFR CTA 

of .70% at the lower 95% confidence interval (CI) border 

of certainty. In perpatient analysis, sensitivity, specificity, 

PPV, and NPV were 90%, 54%, 67%, and 84% with FFR
CTA

 

compared to 84%, 42%, 61%, and 72% with coronary CTA 

respectively. Although the study failed to meet its primary 

endpoint, FFR
CTA

 demonstrated improved accuracy for the 

diagnosis of ischemia compared to coronary CTA alone; 

73% (95% CI 67%–78%) for FFR
CTA

 versus 64% (95% CI 

58%–70%) for coronary CTA.

The more recent HeartFlow NXT trial further assessed 

FFR
CTA

 in 254 patients and generated improved diagnostic 

accuracy (perpatient accuracy 81%; 95% CI: 76%–85%).42 

Improving the diagnostic accuracy of FFR
CTA

 in the HeartFlow 

NXT trial when compared to earlier trials, namely, DISCOVER

FLOW and DeFACTO, reflects the substantial refinement in 

FFR
CTA

 technology and physiologic modeling. Subsequently, 

FFR
CTA

 (HeartFlow Inc, Redwood City, CA, USA) has gained 

US Food and Drug Administration approval as a class II 

 Coronary Physiologic Simulation Software Device.

The clinical outcomes and resource utilization of FFR
CTA



guided strategy was recently assessed in the PLATFORM 

trial.43 Fivehundred and eightyfour patients with suspected 

CAD were enrolled in this trial from eleven European cen

ters and were assigned to receive “usual testing” or FFR
CTA

. 

The primary outcome was the percentage of patients with 

no evidence of obstructive CAD on ICA. Among patients 

with a planned ICA, no obstructive CAD was found in 12% 

of the FFR
CTA

 arm and in 73% of the “usual care” arm (risk 

difference 61%, 95% CI 53%–69%, P,0.0001). Notably, the 

FFR
CTA

guided strategy resulted in cancelation of ICA in 61% 

of the patients. The authors suggested that the FFR
CTA

guided 

strategy is a safe and feasible alternative to ICA.43

In addition to the above studies, two metaanalyses were 

conducted to assess the diagnostic performance of FFR
CTA

.44,45 

The first metaanalysis included a total of 609 patients and 

1,050 vessels from the three major multicenter trials (Heart

Flow NXT Trial, DISCOVERFLOW study, and DeFACTO 

study).44 Using the merged study results, FFR
CTA

 demonstrated 

a powerful diagnostic accuracy when compared to coronary 

Inlet boundary

Baseline conditions Hyperemic conditions
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Figure 1 Mathematical model of blood flow through an idealized LAD stenosis with a reference diameter of 3.5 mm and 60% diameter reduction stenosis.
Notes: A constant pressure (Pa=90 mm Hg) is applied at the inlet boundary, and a constant resistance, Rmicro, is prescribed at the outlet boundary to simulate the downstream 
microcirculatory resistance. The velocity is set at zero along the luminal boundary. Rmicro is set at 120,000 dynes.s.cm−2 to model baseline conditions with a flow rate of  
1 cc.s−1 and is reduced by a factor of 4.5 to 26,664.4 dynes.s.cm−2 to model hyperemic conditions. Hyperemic flow increases to 3.6 cc.s−1. The velocity on a slice along the 
vessel illustrates that a jet through the stenosis rapidly dissipates under baseline conditions but persists under hyperemic conditions. (Pd/Pa=0.97 at baseline, FFR=Pd/Pa=0.79 
at hyperemia). Figure reprinted from J Am Coll Cardiol, 22/61, Taylor CA, Fonte TA, Min JK, Computational fluid dynamics applied to cardiac computed tomography for 
noninvasive quantification of fractional flow reserve: scientific basis, 2233–2241, Copyright 2013, with permission from Elsevier.31

Abbreviations: FFR, fractional flow reserve; LAD, left anterior descending.
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CT at perpatient and pervessel analyses. The second meta

analysis included five studies of high methodological quality; 

it concluded that FFR
CTA

 exhibited a good degree of diagnos

tic accuracy for the detection of ischemiacausing stenosis, 

when applying FFR as a standard reference.45 These findings 

remained consistent regardless of whether the diagnostic accu

racy of FFR
CTA

 was examined at a perpatient and pervessel 

or perlesion level using the threshold FFR value of #0.80.

Clinical effectiveness and economic 
implications
FFR

CTA
 is a novel noninvasive technology that offers both 

anatomical and functional assessment of major epicardial 

coronary arteries. As described above, the computation of 

FFR from coronary CTA is based on fluid dynamics and 

physiologic models without the need for image acquisition 

modification, additional radiation, administration of addi

tional contrast or hyperemiainducing medications including 

adenosine. Furthermore, the accuracy of the FFR
CTA

 to identify 

ischemiarelated lesions is superior to traditional functional 

stress testing as it provides precise anatomical identification 

of ischemiarelated lesions that would otherwise be difficult 

to identify using other noninvasive modalities.

Similar to invasive FFRguided management strategy, the 

use of FFR
CTA

 has been shown to improve patient outcome and 

reduce health care costs.46,47 A simple cost analysis simulation 

was performed in 96 patients from the DISCOVERFLOW 

study to determine the health care cost under various manage

ment scenarios. The projected initial management costs were 

lowest for the coronary CTAFFR
CTA

ICA strategy (US$7,674) 

and highest for ICAvisual assessment strategy (US$10,702). 

The use of FFR
CTA

 to select patients for ICA and revascular

ization would result in 30% lower costs and 12% fewer events 

at 1 year compared to the most commonly used ICAvisual 

assessment strategy.46 Similar results were achieved when a 

health care cost analysis was conducted on patients from the 

HeartFlow NXT trial. 47 It was concluded that the use of the 

FFR
CTA

 strategy to select patients for revascularization would 

result in 32% lower costs and 19% fewer cardiac events in  

1 year, compared with the ICAvisual assessment strategy.47

Limitations of FFRCTA
FFR

CTA
 is emerging as an attractive alternative to invasive 

FFR. There are, however, several challenges that need to be 

overcome before FFR
CTA

 can be translated into routine clinical 

practice. First, the technique is limited by the same factors 

that limit the standard coronary CTA namely: calcifications, 

tachycardia, motion, and misregistration artifacts. These 

limitations have become particularly important since pre

cise anatomic modeling is an essential step to create an 

accurate model and to compute a reliable FFR
CTA.

 Similarly, 

adherence to robust acquisition protocols is important for 

exact definition of patientspecific boundary conditions. 

Additionally, the relationships relating myocardial mass to 

coronary blood flow and resistance to vessel size are prere

quisites for generating a patientspecific physiologic model. 

It is, however, well known that these relationships are highly 

variable between patients.31 Furthermore, FFR
CTA

 computation 

assumes a predictable vasodilatation response to adenosine 

administration, an assumption which is debatable.48 Another 

important limitation is that there are no published data for 

FFR
CTA

 in more complex anatomy such as the evaluation of 

coronary artery bypass grafts or for instent restenosis. Finally, 

the process of FFR
CTA

 calculation is time consuming as it 

takes several hours per exam using specialized software on a 

highperformance computing platform. An improvement in 

automation processing time in the future may help in utilizing 

FFR
CTA

 as a desirable assessment tool for daytoday clinical 

practice, although the modeling time may not be a significant 

limitation in clinical practice in the context of stable CAD.

Conclusion
FFR

CTA
 is a novel noninvasive technology that offers both 

anatomical and functional assessment of major epicardial 

coronary arteries. Similar to an invasive FFRguided manage

ment strategy, the use of FFR
CTA

 has been shown to improve 

patients’ outcomes and reduce health care costs. FFR
CTA

 is 

emerging as an attractive alternative to invasive FFR for 

lowintermediate risk patients. There are, however, several 

challenges that need to be overcome before FFR
CTA

 can be 

incorporated into routine clinical practice.
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