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Objective: The aim of this study was to use amplitude of low-frequency fluctuation (ALFF) 

to explore regional brain activities in healthy subjects after sleep deprivation (SD).

Materials and methods: A total of 16 healthy subjects (eight females, eight males) under-

went the session twice: once was after normal sleep (NS), and the other was after SD. ALFF 

was used to assess local brain features. The mean ALFF-signal values of the different brain 

areas were evaluated to investigate relationships with clinical features and were analyzed with 

a receiver-operating characteristic curve.

Results: Compared with NS subjects, SD subjects showed a lower response-accuracy rate, 

longer response time, and higher lapse rate. Compared with NS subjects, SD subjects showed 

higher ALFF area in the right cuneus and lower ALFF area in the right lentiform nucleus, right 

claustrum, left dorsolateral prefrontal cortex, and left inferior parietal cortex. ALFF differences 

in regional brain areas showed high sensitivity and specificity. In the SD group, mean ALFF 

of the right claustrum showed a significant positive correlation with accuracy rate (r=0.687, 

P=0.013) and a negative correlation with lapse rate (r=-0.706, P=0.01). Mean ALFF of the 

dorsolateral prefrontal cortex showed a significant positive correlation with response time 

(r=0.675, P=0.016).

Conclusion: SD disturbed the regional brain activity of the default-mode network, its anticor-

related “task-positive” network, and the advanced cognitive function brain areas.

Keywords: sleep deprivation, amplitude of low-frequency fluctuation, default-mode network, 

functional magnetic resonance imaging

Introduction
Sleep is very important for humans to live a normal life. Sleep deprivation (SD), 

widespread in today’s society, is a sleep-loss status generally caused by personal 

or environmental reasons.1 SD can lead to a series of changes in emotional balance, 

and has a detrimental effect on cognitive function, attention, learning, and working 

memory.2–5 Long-term SD duration is associated with exaggerated neural reactivity, 

multisystemic and multiorganic dysfunction, and negative metabolic, psychological, 

physiological, or even behavioral reactivity.1,6–8

Many studies have been carried out in short-term SD (24 hours), and found that SD 

adversely affects brain function and cognitive domains.9,10 A previous study employ-

ing resting-state functional magnetic resonance imaging (rs-fMRI) to explore brain-

activation patterns by acupuncture stimuli during SD status found that sanyinjiao (SP6) 

elicits greater and anatomically different activations in the salience network than those 

of sham stimuli.11 rs-fMRI studies have found altered functional connectivity in the 
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sleep-deprived brain.12–15 Furthermore, multiple observations 

of altered connectivity within and between various resting-

state networks have been reported for SD.12–18 These findings 

suggest that SD disturbs resting-state brain-activity patterns 

for internal processing of information.19 However, the neu-

rologic mechanisms remain unclear.

The amplitude of low-frequency fluctuation (ALFF) can 

locate which brain region has abnormal regional spontaneous 

neuronal activity in blood oxygen level-dependent signals, 

and has been shown to have good-to-moderate test–retest 

reliability ranging from minimal to robust.20–22 Therefore, 

the simple calculation and reliable characterization of the 

ALFF measurement make it a potentially useful tool for rs-

fMRI data analysis to investigate various functional brain 

changes.15 Recently, the use of ALFF measurement has been 

successfully applied to SD,15,23 wakefulness and light sleep,24 

obstructive sleep apnea,25 primary insomnia,26 and primary 

angle-closure glaucoma.27 In this study, we hypothesized that 

SD would result in aberrant regional brain activity. To test 

the hypothesis, we utilized ALFF as an index to investigate 

the potential neurologic mechanisms of SD.

Materials and methods
subjects
Sixteen healthy university students (mean age 24.51±2.75 years, 

mean education duration 16.8±1.8 years) responding to a 

web-based questionnaire were recruited. All subjects met the 

following criteria, as in previous studies:1,15,28 1) no symp-

toms associated with sleep disorders and no history of any 

psychiatric or neurologic disorders; 2) right-handed; 3) good 

sleeping habits; 4) good sleep onset and/or maintenance, and 

no history of swing shift, shift work, sleep complaints, or 

other sleep disorders; 5) regular dietary habits, and had not 

consumed any stimulants, alcohol, tea, cigarettes, medica-

tions, or caffeine for at least 3 months prior to the study; 

6) no foreign implants in the body, and no inborn or other 

acquired diseases; 7) moderate body shape and weight; 

and 8) Pittsburgh Sleep Quality Index score ,5.

research design and procedures
To evaluate sleep status, all subjects were monitored for 

1 week by wearing a Fitbit Flex tracker (http://help.fitbit.com).28 

Each of the subjects underwent the session twice randomly. 

Once was after normal sleep (NS), and the other was after 

a total of 24 hours’ SD. Each subject underwent an MRI 

scan at each session, before which all subjects underwent 

an attention network test.15,29,30 A simple questionnaire was 

administered immediately after the scans to ascertain whether 

the subjects were awake during the scans. SD was conducted 

in a specialized room, and started from 7 pm and ended at 

7 pm the following day.

All volunteers were informed of the purposes, methods, 

and potential risks. This study was approved by the human-

research ethics committee of Sir Run Run Shaw Hospital of 

Zhejiang University. All volunteers participated voluntarily, 

and all signed an informed con sent form.

Mri parameters
MRI scans were performed on a 3 T MR scanner (Trio; 

Siemens, Munich, Germany). High-resolution T
1
-weighted 

images were acquired with a three-dimensional spoiled 

gradient-recalled sequence in a sagittal orientation: 

176 images (repetition time 1,900 ms, echo time 2.26 ms, 

thickness 1 mm, gap 0.5 mm, acquisition matrix 256×256, 

field of view 250×250 mm, flip angle 9°) were obtained. 

Finally, rs-fMRI scan was obtained with eyes opened. A total 

of 240 functional images (repetition time 3,000 ms, echo 

time 30 ms, thickness 4 mm, gap 1.2 mm, acquisition matrix 

64×64, flip angle 90°, field of view 220×220 mm; 36 axial 

slices with gradient-recalled echo-planar imaging pulse 

sequence) covering the whole brain were obtained.

fMri data analysis
Based on the MatLab 2012a (MathWorks, Natick, MA, 

USA), data preprocessing was performed by Data Processing 

Assistant for Resting-State fMRI (http://rfmri.org/DPARSF) 

software, including Digital Imaging and Communication in 

Medicine form transformation, slice timing, head-motion 

correction, spatial normalization, and smooth. The first ten 

time points of the functional images were discarded, due 

to the possible instability of the initial MRI signal and the 

participants’ adaptation to the scanning environment. Par-

ticipants who had more than 1.5 mm maximum translation 

in x, y, or z and 1.5° motion rotation were rejected. Friston 

six head-motion parameters were used to regress out the 

head-motion effects based on recent work showing that the 

higher-order models were more effective in removing head-

motion effects.31,32 After head-motion correction, the fMRI 

images were spatially normalized to Montreal Neurological 

Institute space and resampled at a resolution of 3×3×3 mm. 

Smoothening was performed with a Gaussian kernel of 

6×6×6 mm3 full width at half maximum. After preprocess-

ing, the time series for each voxel was temporally band-pass 

filtered (0.01–0.08 Hz) and linearly detrended to reduce low-

frequency drift and physiological high-frequency respiratory 

and cardiac noise. The details of the ALFF calculation have 
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been reported in previous studies.15,27,33 To reduce the global 

effects of variability across the participants, the mean ALFF 

value of each voxel was divided by the global mean ALFF 

value for each participant.

receiver-operating characteristic curve
Discrimination results are considered excellent for areas 

under the curve between 0.9 and 1, good between 0.8 and 

0.9, fair between 0.7 and 0.8, poor between 0.6 and 0.7, and 

failed between 0.5 and 0.6.34 Since different ALFF areas 

might be utilized as markers to separate the SD group from 

the NS group, the mean signal values of the different areas 

were extracted and used for receiver-operating characteristic 

(ROC)-curve analysis to investigate whether these specific 

ALFF differences had the sensitivity and specificity to dis-

tinguish the SD group from the NS group.

Brain–behavior correlation analysis
Based on the ALFF findings, the mean ALFF-signal values of 

the different brain areas were extracted and their correlations 

calculated with the behavioral performances using the IBM 

Statistical Package for the Social Sciences (SPSS, version 21.0) 

software, with the statistical threshold set at P,0.05.

statistical analysis
A two-paired t-test was used to assess the differences in 

brain activity between the two groups. A corrected signifi-

cance level of individual voxels of P,0.001 and contiguous 

cluster volume $351 mm3, using an AlphaSim corrected 

threshold of cluster P,0.05, were used to determine statisti-

cal significance.

Results
Behavioral results
Compared with the NS subjects, the SD subjects showed 

a lower response-accuracy rate (SD: 92%±1.95%, NS: 

97.25%±2.42%, t=-5.852; P,0.001), a longer response 

time (SD: 631.61±86.67 ms, NS: 527.49±39.06 ms, t=3.794; 

P=0.002), and a higher lapse rate (SD: 7.11%±9.59%, NS: 

0.09%±0.25%, t=2.534; P=0.028).

alFF differences
Compared with the NS subjects, the SD subjects showed 

higher ALFF area in the right cuneus (Brodmann’s area 

[BA] 17, BA 18), and lower ALFF area in the right lentiform 

nucleus, right claustrum, left middle frontal gyrus (BA 46), 

and left inferior parietal cortex (IPC; BA 39). Details are 

presented in Figure 1 and Table 1.

alFF analysis shows high sensitivity 
and specificity
Figure 2 shows the mean ALFF-signal values of the altered 

regional brain areas. These different values were used for 

ROC-curve analysis to investigate whether these specific 

ALFF differences had the sensitivity and specificity to distin-

guish the SD group from the NS group. ROC-curve analysis 

showed that the area under the curve of the five different 

brain areas (from cluster 1 to cluster 5) was 0.861 with a 

cutoff point of 0.996 (mean ALFF-signal value), 0.757 with 

a cutoff point of -0.538, 0.944 with a cutoff point of -0.93, 

0.826 with a cutoff point of 0.084, and 0.736 with a cutoff 

point of 0.471. Further diagnostic analysis showed that the 

different brain areas alone discriminated SD status from NS 

status with high sensitivity and specificity: corresponding 

values from clusters 1–5 were 0.667 and 0.917, 0.667 and 

0.833, 0.833 and 0.917, 0.833 and 0.833, and 0.583 and 

0.833, respectively. Details are presented in Figure 3.

Brain–behavior correlation results
In the SD group, the mean ALFF value of the right claustrum 

showed a significant positive correlation with accuracy rate 

(r=0.687, P=0.013) and a negative correlation with lapse rate 

(r=-0.706, P=0.01). The mean ALFF value of the middle 

frontal gyrus showed a significant positive correlation with 

response time (r=0.675, P=0.016).

Discussion
In this study, our results confirmed functional alterations in 

resting-state networks after SD. Compared with the NS sub-

jects, the SD subjects showed higher ALFF areas in the right 

visual network and lower ALFF areas in the right lentiform 

nucleus, right claustrum, left dorsolateral prefrontal cortex 

(DLPFC), and left IPC. ALFF differences in regional brain 

areas showed high sensitivity and specificity. The reliability 

of the ALFF differences revealed that the different ALFF 

areas could serve as markers to distinguish the SD condition 

from the NS condition. Our findings may suggest that SD is 

associated with the model of excitation–inhibition imbalance 

in the central nervous system.

Previous studies have demonstrated that hyperarousal 

reactivation in the occipital gyrus was found in SD subjects 

and patients with insomnia.1,28 These findings supported our 

results that the SD group showed higher ALFF area in the 

right cuneus compared with the NS group. The vision-related 

regions were not only activated by real vision but also by 

visual mental imagery,35,36 since the visual cortex is relevant 

to emotional activities and emotional changes can lead to 
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higher blood oxygen level-dependent signal regions in the 

visual cortex.37,38 The higher activity in the visual cortex may 

represent a compensatory reaction to recover the emotional 

changes.

Among the spontaneously synchronized neuronal net-

works, the “task-negative” network and its “task-positive” 

anticorrelated network (ACN) have received the most 

attention.19 The task-negative network was the default-mode 

network (DMN). The IPC region, one key region of the DMN, 

is obligatorily or unintentionally engaged in the recall, con-

solidation, and retrieval of episodic memory information,39–41 

as well as being implicated in diverse cognitive operations42 

that include bodily awareness,43 generating a sense of  personal 

responsibility44 and moral decision making.45 Chee and Chuah 

found that SD reduced the IPC deactivation during a visual 

short-term memory task.46 Horovitz et al revealed a decreased 

functional connectivity between the IPC and the medial PFC 

during deep sleep and after partial SD.47,48 Nie et al found that 

patients with chronic insomnia demonstrated significantly 

decreased functional connectivity between the left medial 

temporal lobe and the left IPC compared with good sleepers.49 

De Havas et al also found that the IPC node of the DMN was 

consistently impaired and might represent an early marker 

for the effects of 24-hour SD, as well as serving as an indi-

cator of hitherto-unexplored behavioral impairments.50 Our 

results were in accordance with these findings. The DLPFC, 

Figure 1 alFF differences between the sD and Ns groups.
Notes: Colors in the map represent differences. Red signifies higher ALFF area in the right cuneus, and blue signifies lower ALFF area in the right lentiform nucleus, right 
claustrum, left middle frontal gyrus, and left inferior parietal cortices.
Abbreviations: ALFF, amplitude of low-frequency fluctuation; SD, sleep deprivation; NS, normal sleep.

Table 1 alFF differences between sD and Ns conditions

Condition Cluster Brain region of peak  
coordinates

R/L BA Volume 
(mm3)

t-score of  
peak voxel

MNI coordinates of 
peak voxel

sD . Ns 1 cuneus r 17, 18 4,185 9.6937 9 -87 21

sD , Ns 2 lentiform nucleus (putamen) r Na 621 -9.9864 15 9 0

sD , Ns 3 claustrum r Na 351 -7.5188 30 -6 18

sD , Ns 4 Middle frontal gyrus l 46 540 -6.9257 -33 21 42

sD , Ns 5 inferior parietal lobule l 39 837 -6.8085 -48 -57 39

Notes: The statistical threshold was set at voxels with P,0.001, cluster size with P,0.05, and cluster volume $351 mm3 between sD and Ns, corrected by alphasim.
Abbreviations: ALFF, amplitude of low-frequency fluctuation; SD, sleep deprivation; NS, normal sleep; NA, not applicable; R/L, right/left; BA, Brodmann’s area; MNI, Montreal 
Neurological institute.
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one region of the ACN, recruits working-memory tasks, and 

has been implicated to be responsible for failure in working 

memory for the sleep-deprived brain.51–54 It is well known 

that sleep plays an important role in the formation and 

consolidation of memories.55 Patients with insomnia show 

significant reduction in gray-matter concentrations and lower 

regional homogeneity in the DLPFC.28,56 One recent SD 

study reported a reduced anticorrelation between the DMN 

and ACN nodes at both task-related and resting states.50 In 

support of these findings, in the present study we found that 

the SD subjects showed lower ALFF in the DMN and ACN 

nodes compared with NS subjects; furthermore, the mean 

ALFF value of the ACN node showed a significant positive 

correlation with response time (r=0.675, P=0.016). These 

findings may represent a decline in attention and memory 

processes by SD.

The lentiform nucleus and claustrum are associated with 

advanced cognitive function and involved in aberrant regional 

brain activity in patients with obstructive sleep apnea.57 

In the SD group, the mean ALFF value of the right claustrum 

showed a significant positive correlation with accuracy rate 

(r=0.687, P=0.013) and a negative correlation with lapse rate 

(r=-0.706, P=0.01). SD decreased the regional brain activity 

in several brain areas thus needs to attempt to recruit more 

specific advanced cognitive function brain areas to sustain 

alertness and accomplish cognitive performance. In this study, 

SD showed a continuing decline in the DMN–ACN activity, 

therefore, the lentiform nucleus and claustrum were recruited 

to sustain alertness and accomplish cognitive performance.

Conclusion
In this study, our results confirmed that SD demonstrated a 

compensatory reaction in the visual network and disturbed 

spontaneous neuronal activity in advanced cognitive function 

brain areas and the DMN–ACN compared with NS. The mean 

Figure 2 Mean alFF-signal values of the altered regional brain areas.
Notes: compared with the Ns group, the sD group showed altered alFF in 
the right cuneus (1.37±0.6 versus 0.61±0.45) and lower alFF area in the right 
lentiform nucleus (-0.55±0.23 versus -0.25±0.31), right claustrum (-1±0.06 
versus -0.85±0.08), left middle frontal gyrus (-0.08±0.25 versus 0.3±0.33), and left 
iPc (0.52±0.54 versus 1.04±0.66).
Abbreviations: ALFF, amplitude of  low-frequency fluctuation; NS, normal sleep; 
SD, sleep deprivation; IPC, inferior parietal cortex.

Figure 3 rOc curve of the mean alFF value of the different brain areas.
Note: The different brain areas showed high sensitivity and specificity.
Abbreviations: ROC, receiver-operating characteristic; ALFF, amplitude of low-frequency fluctuation.
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ALFF-signal values of the different brain areas showed high 

sensitivity and specificity. Our findings provide insights into 

the pathophysiological mechanism of SD, and may be helpful 

for understanding the pathophysiology of SD.
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