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Abstract: Systemic sclerosis (SSc or scleroderma) is a progressive and highly debilitating 

autoimmune disorder characterized by inflammation, vasculopathy, and extensive fibrosis. SSc 

is highly heterogeneous in its clinical presentation, extent and severity of skin and internal 

organ involvement, and clinical course and has the highest fatality rate among connective tissue 

diseases. While clinical outcomes have improved in recent years, no current therapy is able to 

reverse or slow the natural progression of SSc, a reflection of its complex pathogenesis. Although 

activation of the immune system has long been recognized, the mechanisms responsible for the 

initiation of autoimmunity and the role of immune effector pathways in the pathogenesis of SSc 

remain incompletely understood. This review summarizes recent progress in disease pathogenesis 

with particular focus on the immunopathogenetic mechanisms of SSc.
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Introduction
Systemic sclerosis (SSc) is a rare disease with a prevalence ranging from 150 to 300 

cases per million.1,2 Although SSc has a worldwide distribution, prevalence varies 

substantially around the world, with lower estimates (,150 per million) in Northern 

Europe and Japan and higher estimates (276–443 per million) in Southern Europe, 

North America, and Australia.2 As in many other autoimmune diseases, women are at 

higher risk than men (4:1 ratio over men),3–5 and ethnicity plays a critical role in disease 

manifestations and mortality.6 The etiology of SSc remains elusive, but it likely involves 

an interaction between environmental factors in a genetic predisposing background. 

Although SSc is not an inherited disease,7 genetic factors contribute to its suscepti-

bility,8,9 as shown by a 60-fold higher occurrence of the disease in families (1.6%) 

than in the general population (0.026%).8 Genetic linkage studies and genome-wide 

association studies have identified polymorphisms associated with the predisposition 

of patients to develop SSc.10–15 These include genes of the major histocompatibility 

complex (MHC) class II,9,14,16,17 as well as non-MHC genes,13,18–24 such as genes asso-

ciated with the metabolism of extracellular matrix (ECM) molecules25–27 and genes 

coding for proteins involved in the control of innate immunity, macrophage activa-

tion, and T-cell functions.10,14,28–32 Although progress has been made in the identifica-

tion of genetic risk factors in SSc, the corresponding functional mechanisms remain 

elusive, except for the contribution of MHC class II to autoantibody specificity.33–38 

Functional studies of associated loci are thus an area of current focus. Environmental 

factors have been implicated as early triggers of disease processes. Viruses, including 
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human cytomegalovirus,39 parvovirus B19,40 and Epstein–

Barr virus,41 are hypothesized to contribute to the develop-

ment of SSc by inducing vascular damage and fibroblast 

proliferation.42 Other environmental factors, such as drugs as 

well as environmental and occupational exposures to organic 

solvents including vinyl chloride, silica,43 and nanoparticles 

from traffic-derived pollution,44 have also been implicated as 

potential causative agents. SSc exhibits an extensive patient-

to-patient variability. Heterogeneity has been observed in its 

clinical manifestations, clinical course, response to treatment, 

and survival.3 Based on the extent of skin fibrosis and the 

pattern of internal organ involvement, patients with SSc are 

commonly classified into diffuse cutaneous SSc (dcSSc) 

and limited cutaneous SSc (lcSSc) subsets.45–47 Patients with 

dcSSc have rapidly progressive fibrosis of the skin, lungs, 

and other internal organs and present early development 

of visceral organ complications. In contrast, in lcSSc, the 

most prominent features are vascular manifestations, with 

generally mild skin and internal organ fibrosis. Classifica-

tion criteria for SSc have been recently updated by a joint 

committee of the American College of Rheumatology and 

the European League Against Rheumatism.48 The American 

College of Rheumatology/European League Against Rheu-

matism classification criteria are more sensitive and specific 

than the previous criteria and now include patients in the early 

stages of SSc and lcSSc. The expectation is that earlier and 

more specific diagnosis will enable timely treatment before 

irreversible organ damage occurs.

Mechanisms of pathogenesis
The pathogenesis of SSc is poorly understood, which has 

hampered the development of effective therapeutics for 

this complex connective tissue disease. Research effort in 

understanding the key pathogenetic pathways, cell types, 

and mediators underlying disease manifestations is crucial 

for the early diagnosis of SSc as well as for the development 

of targeted therapies. Pathogenesis of SSc is characterized 

by three hallmarks: small-vessel vasculopathy, dysregulation 

of innate and adaptive immunity, and extensive fibrosis of 

the skin and visceral organs. Fibrosis is a major contributor 

to the high level of morbidity and mortality in SSc and is 

believed to result from the interaction of immune mediators 

and other growth factors with responsive tissue fibroblasts, 

resulting in increased deposition of ECM in the skin and 

internal organs.49,50 Although cutaneous fibrosis is the most 

characteristic feature of SSc, fibrosis of visceral organs 

results in organ damage and poor clinical outcome.

Clinical symptoms and histological data indicate that 

vascular injury and endothelial damage are the earliest 

pathogenic events in SSc,51,52 possibly initiated by viruses, 

autoantibodies, chemicals, or oxidative products.52,53 

Activated endothelial cells upregulate the expression of adhe-

sion molecules,54 such as vascular cell adhesion protein 1, 

intercellular adhesion molecule, and E-selectin, as well as 

chemokines, such as MCP-1, MIP-1α, and MIP-1β, resulting 

in the recruitment of inflammatory cells. Endothelial cells 

also produce endothelin-1 and connective tissue growth fac-

tor, which stimulate vascular smooth-muscle cell prolifera-

tion and ECM production.55,56 Progressive thickening of the 

vessel wall results in a narrowing of the lumen of the capil-

laries and in the loss of the microvasculature, which leads 

to tissue hypoxia and oxidative stress.51 Moreover, vascular 

repair and angiogenesis are found defective in SSc, promoting 

the chronic disease state.57 Infiltration of inflammatory cells 

is prominent in patients with early-stage disease58,59 and is 

often seen in a perivascular distribution and preceding the 

development of vasculopathy and fibrosis.

A schematic representation of SSc pathogenesis is 

illustrated in Figure 1. This review focuses on the immune 

dysregulation processes associated with SSc pathogenesis 

and discusses the recent advances.

Immunopathogenesis of SSc
Immunological abnormalities of innate and adaptive immune 

system have long been recognized in SSc, including chronic 

mononuclear cell infiltration of affected tissues, dysregulation 

of cytokine and growth factor production, and production of 

autoantibodies.60,61 In addition, numerous genetic associa-

tion studies have identified several polymorphisms in genes 

relevant for innate and adaptive immune responses that 

confer susceptibility to SSc.10,14 Polymorphisms in genes of 

the innate immune system include PLD4,62 toll-like receptor 

(TLR)2,31 NLRP1,63 and ATG5.13 Other polymorphisms 

associated with SSc are in genes that play important roles in 

T-cell differentiation, proliferation, and/or activation. Among 

those are STAT4,64,65 TBX21,65 PTPN22,66 tumor necrosis 

factor (TNF)SF4,67,68 interleukin (IL)-21,69 CD247,28,70 and 

CD226.71 Polymorphisms in gene regulators of interferon 

(IFN) types I and II, such as IFN-regulatory factor (IRF) 528,72 

and IRF8,11 are also associated with SSc susceptibility. Other 

cytokines and chemokine genes associated with SSc include  

TNFAIP3,73,74 MIF,75 IL-6,76 CXCL8,77 and CCR6.78 How-

ever, the mechanisms responsible for the initiation of auto

immunity leading to fibrosis and the role of immune effector 
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pathways in the pathogenesis of SSc remain incompletely 

understood.

Mononuclear cell infiltrates
Histological studies indicate that a perivascular inflamma-

tory infiltrate accompanies endothelial cell damage in very 

early stages of SSc.58,59 Macrophages and T-lymphocytes are 

the predominant inflammatory cell types and are believed 

to produce cytokines and other immune mediators with 

proinflammatory and profibrotic function. Interestingly, in 

situ hybridization studies have demonstrated that collagen-

synthesizing fibroblasts are located in close proximity to 

small blood vessels and to the perivascular inflammatory 

infiltrate,60,79 consistent with the hypothesis that inflam-

matory cells provide important stimuli that drive collagen 

synthesis in fibroblasts. Indeed, multiple studies in patients 

with early disease have demonstrated an association between 

macrophages, inflammation, and skin80 and lung fibrosis.81 

Tissue-resident macrophages become profibrotic through 

“alternative activation” by type 2 cytokines, such as IL-13 

(M2 macrophages), and produce transforming growth factor 

beta (TGFβ) with profibrotic function.82 Indeed, increased 

levels of soluble CD163, a marker for M2 macrophages, 

were found in the blood and in the affected tissues of patients 

with early SSc.83 Infiltrating T-cells in SSc-affected tissues 

exhibit increased expression of activation markers and 

express an oligoclonal T-cell receptor repertoire sugges-

tive of an antigen-driven expansion.84,85 While their antigen 

specificity is not known, T-cell-derived cytokines have been 

implicated in the induction of fibrosis.86 T-cells have also 

been found necessary for the production of autoantibodies87 

and in driving inflammatory responses, which can involve 

concurrently fibroblasts as well as endothelial and epithelial 

cells. CD4+ and CD8+ T-cell subsets were both found in the 

skin88 and lungs89 of patients with SSc. However, we observed 

that CD8+ lymphocytes are more abundant than CD4+ T-cells 

in the skin of patients with early SSc, while in late-stage 

disease more CD4+ lymphocytes are found,88 suggesting that 

CD8+ T-cells are involved in early disease processes. We and 

others established that SSc CD4+ and CD8+ are characterized 

by a predominant type 2 phenotype86,88 and produce type 2 

cytokines, such as IL-13. Moreover, we demonstrated that 

IL-13-producing CD8+ lymphocytes are abundant in the skin 

lesions of patients with early-stage disease and induce a pro-

fibrotic phenotype in fibroblasts.88 Although Th17 cells have 

been found in the skin of patients,90 several studies indicate 

that they do not play a direct role in skin fibrosis but contrib-

ute in boosting the inflammatory response in SSc.91

Dysfunction of T-regulatory cells (Tregs) also seems to 

contribute to altered immune homeostasis in SSc, with some 
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Figure 1 Etiopathogenesis of SSc.
Notes: Environmental and genetic factors contribute to the etiology of SSc. The pathogenesis of SSc involves an interplay between vascular, immunological, and fibrotic 
processes. Vascular injury and endothelial damage are the earliest events in the pathogenesis of SSc. Activated endothelial cells upregulate the expression of adhesion 
molecules and secrete chemokines, leading to inflammation and autoimmunity. Macrophages and T-cells are the predominant inflammatory cell types of the inflammatory 
infiltrates and produce cytokines and growth factors that drive the synthesis of extracellular matrix proteins by fibroblasts, resulting in progressive fibrosis. T-cells have also 
been implicated in autoantibodies production.
Abbreviations: ECM, extracellular matrix; IFN, interferon; IL, interleukin; MMP-1, matrix metalloproteinases-1; PDGF, platelet-derived growth factor; SSc, systemic 
sclerosis; TGFβ, transforming growth factor beta; Treg, T-regulatory cell; ?, role unknown.
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studies implicating a Treg-deficient suppressive function92–94 

and/or reduced number95–97 and other studies indicating a 

redirected function of Tregs favoring fibrosis.98

An activated B-cell signature has been found in lesional 

skin and affected the lung tissues of patients with SSc,99,100 

with upregulation of cell-surface expression of CD19 and 

CD21,101 costimulatory molecules, such as CD80 and 

CD86,101 and B-cell activating factor,102 a B-cell stimulatory 

molecule that induces B-cell proliferation, and immuno

globulin secretion.103 CD19 associates with CD21 and 

positively regulates B-cell function.104 CD19 overexpression 

induces the production of autoantibodies105 and skin fibrosis106 

in transgenic mouse models. Significantly, a single nucleotide 

polymorphism in the CD19 gene promoter (−499G.T) has 

been associated with higher CD19 expression in B-cells and 

with susceptibility to SSc,107 consistent with a role in B-cell 

activation in SSc. Furthermore, recent studies have shown 

that SSc B-cells can induce contact-dependent human dermal 

fibroblasts activation and upregulation of type I collagen108 

and that depletion of B-cells in a mouse model of scleroderma 

led to reduced fibrosis.109 Therefore, B-cell activation and 

overactivity is not only involved in autoantibodies production 

in SSc but might also contribute to the fibrotic process.

Several recent studies implicate TLR signaling as one of 

the early steps during inflammatory and fibrotic processes 

of SSc.110,111 TLR activation in SSc innate immune cells is 

believed to be triggered by microbial and endogenous ligands, 

such as products released from cells upon damage, necrosis, 

or stress.110 A recent study showed that TLR2 is upregulated 

in SSc fibroblasts and responds to the acute-phase reactant 

serum amyloid A, resulting in increased IL-6 secretion 

by fibroblasts.112,113 Interestingly, a rare polymorphism in 

the gene for TLR2 is associated with the SSc phenotype 

and induces the production of inflammatory mediators.31 

TLR4 is overexpressed in SSc skin and lung biopsies,114–116 

and its levels correlate with progressive skin disease.114 

Although the canonical ligand of TLR4 is LPS, numerous 

endogenous ligands have been shown to activate TLR4.117 

TLR4 can also respond to the alternative spliced fibronectin 

domain A (Fn-EDA), which is markedly upregulated in 

response to tissue damage and wound healing.118 Interest-

ingly, Fn-EDA was shown to be upregulated in the serum 

and skin biopsies of patients with SSc.116 High levels of 

Fn-EDA were also found in idiopathic pulmonary fibrosis119 

and cardiac allograft fibrosis.120 Significantly, in vitro and in 

vivo studies demonstrated that Fn-EDA promoted cutaneous 

fibrosis through TLR4 signaling, whereas its blockade led 

to reduced experimental fibrosis,115,116 supporting a model 

of endogenous Fn-EDA–TLR4 signaling axis in cutaneous 

fibrosis. Intracellular TLRs, such as TLR3, TLR7, TLR8, 

and TLR9, are sensors for nucleic acids, often of viral 

origin,121 and have been implicated in driving inflammation 

and fibrosis in SSc.110,111 Of interest, Farina et al41 reported 

an association between Epstein–Barr virus infection of SSc 

dermal fibroblasts and endothelial cells, activation of TLR, 

and upregulation of selected IRFs, IFN-stimulated genes, 

TGFβ, and several markers of fibroblast activation, such 

as smooth-muscle actin and endothelin-1. These results 

suggest that persistent injury following a viral infection of 

nonimmune cells might cause chronic inflammation and 

fibrosis. TLR activation in SSc immune cells triggers the 

production of several inflammatory cytokines, particularly 

type I IFNs. Indeed, an increased gene expression IFN “sig-

nature” has been found in peripheral blood mononuclear 

cells and in the skin of patients with SSc31,122,123 along with 

evidence suggesting TLR activity in SSc sera.124 Moreover, 

TLR activation of dendritic cells and macrophages also 

stimulates IL-1, TNFα, and IL-6 production, and these or 

other undefined mediators might drive inflammation and 

fibrosis in SSc.

Immune mediators
Several cytokines and growth factors are released by immune 

cells and are believed to play a critical role in the inflam-

matory and fibrotic processes of SSc.125,126 Abnormal levels 

of cytokines, such as TGFβ,127 TNFα, and IL-6, IL-10,128 

IL-17,129 IL-4, and IL-13,130 have been found in the serum 

and affected tissues of patients with SSc. Among other func-

tions, these cytokines are thought to promote overproduction 

of collagen by fibroblasts, resulting in excessive fibrosis.131 

Monocytes and macrophages mainly produce TGFβ, IFN-α, 

IL-13, TNFα, and IL-1. Lesional macrophages are also 

a main source of platelet-derived growth factor (PDGF). 

Numerous studies have implicated PDGF working in con-

cert with TGFβ in the development of organ fibrosis in SSc. 

These findings demonstrated the existence of a TGFβ and 

IL-1α-dependent autocrine PDGF-A/PDGF receptor α sig-

naling loop in scleroderma skin and lung fibroblasts, which 

promotes fibrogenesis.132,133

IL-6 is also involved in the pathogenesis of SSc. 

A recent study reported that serum and skin levels of IL-6 

are significantly increased in patients with early dcSSc and 

that a monoclonal anti-IL-6-receptor antibody prevents 

the development of bleomycin-induced dermal fibrosis in 

mice.134 A clinical trial with an anti-IL-6-receptor antibody 

(tocilizumab) in SSc is completed, but the results have not 
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been released (NCT01532869). B-cells are a main source 

of IL-6 in SSc,135 but endothelial cells and fibroblasts also 

produce high levels of IL-6.136

Recent studies have focused on TGFβ and to a lesser 

extent on IL-13 as major profibrotic factors in the patho

genesis of SSc. Recent advances in these studies are outlined 

below.

TGFβ has long been implicated in the pathogenesis of 

SSc.137 Based on extensive in vitro and animal data and the 

correlation observed between disease activity and increased 

expression of TGFβ-regulated genes in fibrotic skin and 

lungs of patients with SSc,137 TGFβ is considered as a key 

mediator of fibrosis in SSc. TGFβ promotes collagen syn-

thesis, secretion, processing, and cross-linking,137 as well as 

secretion of other matrix molecules, such as fibronectin and 

thrombospondin.137 Although inhibition of TGFβ represents 

an ideal therapeutic approach in SSc, a recent clinical trial 

using the anti-TGFβ mAb CAT-192 failed to show any 

change in skin thickening, measured by the Modified Rodnan 

Skin Score, between treatment groups.138 However, striking 

results were recently obtained in an open-label trial that 

used fresolimumab, a high-affinity neutralizing antibody, 

that targets all three TGFβ isoforms.139 Patients with early-

stage dcSSc treated with fresolimumab showed a rapid and 

significant decrease in Modified Rodnan Skin Score, which 

correlated closely with the inhibition of TGFβ-regulated 

gene expression. Thus, this study shows that fresolimumab 

reverses markers of skin fibrosis and holds promise as a 

potent antifibrotic agent.

Multiple studies indicate that the immunopathological 

response in SSc is dominated by type 2 cytokines, such as 

IL-4 and IL-13.86,126 Type 2 cytokines are important regulators 

of ECM remodeling, leading to enhanced collagen deposi-

tion and tissue fibrosis. Animal studies provide support for 

the role of a polarized immune response in the pathogenesis 

of fibrosis.140,141 Transcriptome analysis in animal models of 

inflammation has shown that genes involved in wound healing 

and fibrosis are associated with Th2-polarized responses,142,143 

and IL-13 was shown to have an important role in the mouse 

model of bleomycin-induced fibrosis.141 Increased levels of 

type 2 cytokines have been found in the serum and affected 

tissues of patients,88,125,130 and we and others established that 

T-lymphocytes88 and macrophages144 are the major cellular 

source in SSc. We demonstrated that dysregulated production 

of profibrotic IL-13 by peripheral blood effector CD8+ T-cells 

correlates with more severe skin thickening in SSc145 and is 

associated with defects in the molecular control of IL-13 pro-

duction, such as the aberrant expression of the transcription 

factor GATA-3.146 Circulating CD8+IL-13+ T-cells express 

skin-homing receptors and induce a profibrotic phenotype 

in normal dermal fibroblasts, which is inhibited by an anti-

IL-13 antibody.88 High number of CD8+IL-13+ T-cells were 

also found in the skin lesions of patients, particularly in the 

early inflammatory phase of the disease88 and potentially 

contributing to the development of sustained profibrotic and 

inflammatory autoimmune responses. Two Phase II double-

blind, randomized, placebo-controlled trials were started in 

SSc-related interstitial lung disease (ILD) and IPF with a fully 

human monoclonal antibody against human IL-13 (Clini-

cal Trial Registration Number: NCT00581997). However, 

the study was terminated early due to concerns with risks 

associated with the bronchoscopy procedure involved, and 

no results ensued.

Chemokines play a crucial role in the inflammatory, vas-

cular, and fibrotic processes of SSc. In all cases, chemokines 

provide a chemotactic signal to cells by binding to their 

specific cell-surface receptors. Chemokines, such as CCL18, 

CCL19, and CXCL13, were found upregulated in the skin 

of patients with dcSSc. Expression of CCL19 correlated 

with markers of vascular inflammation and macrophage 

recruitment and may represent a marker for the perivascular 

inflammation and immune cell recruitment in dcSSc skin 

disease.147 Serum and tissue levels of CCL2, CCL3, and 

IL-8 are also increased in patients with SSc and correlate 

with disease severity and can predict progression.148–150 

Plasmacytoid dendritic cells from patients were found 

to secrete high levels of CXCL4 (or platelet factor 4),151 

a  chemokine with antiangiogenic function. Plasma levels 

of CXCL4 are increased in SSc and correlate with disease 

severity,151 including lung fibrosis and pulmonary arterial 

hypertension.151 A recent study shows that the expression 

and function of CCR1, CCR2, and CCR3 are upregulated in 

monocytes from patients with SSc via molecular mechanisms 

involving caveolin-1, Src/Lyn, and MEK/ERK signaling and 

represent promising targets for novel treatments for fibrotic 

diseases, such as SSc.152

Autoantibodies
Serum autoantibodies directed against a variety of intracellular 

antigens are present in nearly all patients and are considered a 

hallmark of SSc.153 Many of these autoantibodies are specific 

to nuclear antigens and play no role in the pathogenesis of 

the disease. However, they represent important diagnostic 

and prognostic agents and exhibit a strong association with 

distinct clinical subsets, which has been confirmed in many 

independent patient cohorts.153 More recently, autoantibodies 
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targeting cell-surface antigens and/or extracellular proteins 

have been detected in the serum of patients with SSc. These 

autoantibodies have been shown in some studies to be func-

tional, as they were capable of triggering receptor activation 

and eliciting profibrotic responses. Several patients have been 

reported to have circulating autoantibodies against the PDGF 

receptor.154 These antibodies were shown to generate reactive 

oxygen species and stimulate myofibroblast differentiation 

and type 1 collagen production. Autoantibodies against the 

angiotensin II receptor type 1 and endothelin receptor type 

A have been recently identified in patients with SSc and are 

believed to stimulate production of IL-18 and CCL18 by 

mononuclear blood cells.155 Antiendothelial cell antibodies 

have been detected in the sera of some patients with SSc 

and have been shown to induce endothelial cell apoptosis in 

vitro.156–158 Finally, antibodies against fibroblasts,159,160 fibril-

lin,161 and matrix metalloproteinases-1162 and -3163 were found, 

which are also believed to carry biological activities.

Immunosuppressive and 
immunomodulatory therapies in SSc
Therapeutic options in SSc are limited due to the multi-

system involvement of this disease and the wide spectrum 

of clinical features. Current therapeutic strategies include 

general immunosuppression and organ-based therapies for 

the improvement of symptoms. More specific therapies for 

SSc are currently unavailable. Current or completed clinical 

studies of immunotherapeutic candidates are reported in 

Table 1.

Immunosuppressive therapy has been commonly used to 

control the inflammatory phase of patients with progressive 

or early-stage disease. However, multiple studies have 

demonstrated the inefficacy of this therapy in affecting 

the fibrotic manifestations and the potential for severe 

secondary effects. Immunosuppressive agents have been 

used on more aggressive forms of SSc skin disease, such as 

early dcSSc.164 However, no conclusive trials are currently 

available to guide management of SSc skin involvement. 

This is due to the lack of sensitive and specific outcome 

measures and to the normally variable history of SSc.165 An 

improvement in skin score was observed in two multicenter, 

randomized, controlled trials in which methotrexate166 and 

cyclophosphamide167 were used. In addition, two case series 

at scleroderma centers indicated the efficacy of mycopheno-

late mofetil in the treatment of skin disease.168,169

Immunosuppressive therapy has shown benefits in 

the treatment of SSc-ILD in those patients with severe 

lung involvement. Several clinical trials have shown the 

efficacy of cyclophosphamide in improving167,170,171 and/or 

stabilizing172–176 lung function parameters. Other frequently 

used immunosuppressants in ILD include mycophenolate 

mofetil and azathioprine.177 While immunosuppressive 

therapy is advised for patients with early stage, progressive 

SSc, lung transplantation can be considered for end-stage 

disease.178

Imatinib is a powerful inhibitor of PDGF and TGFβ 

signaling pathways and has been evaluated in multiple clinical 

studies to establish effectiveness on skin179,180 and lung181,182 

fibrosis. Outcomes from these studies provided controversial 

results on efficacy and demonstrated the poor tolerability of 

this drug. In a recent study, low-dose imatinib was used in 

a cohort of patients with SSc-ILD with active pulmonary 

disease and unresponsive to cyclophosphamide.182 Of note, 

73% of the 30 patients treated had improved or stabilized 

pulmonary disease after 6 months’ treatment. Despite these 

encouraging results, the risk/benefit ratio for the use of ima-

tinib needs to be determined in larger controlled trials.

Rituximab, an inhibitor of B-cell function, has also shown 

promise as a new therapeutic option in various manifesta-

tions of SSc, particularly ILD. In an open-label clinical trial, 

rituximab treatment improved skin scores and preserved 

the pulmonary function of patients with early progressive 

dcSSc.183 Moreover, rituximab was well tolerated by patients 

even after repeated courses of treatment.183 As no control 

group was used in this study, a double-blind, randomized 

control trial is going on to confirm these results. Efficacy 

on skin thickness and lung function was also observed 

after rituximab treatment in a case–control study using the 

European Scleroderma Trial and Research cohort.184

Intravenous immunoglobulin (IVIG) is another potential 

agent for skin involvement. The role of IVIG in SSc is cur-

rently unknown. However, IVIG has demonstrated to have 

immunomodulatory and anti-inflammatory effects in other 

autoimmune disorders as well as an antifibrotic effect in 

several animal models.185 Multiple courses of IVIG treat-

ment were employed in a multicenter, randomized, controlled 

clinical trial.186 The outcome of this study demonstrated 

a beneficial effect on skin score. Similarly, improvement 

in skin involvement was also observed in a single-center 

retrospective study, in which patients with active refractory 

dcSSc received monthly courses of IVIG (with or without 

immunosuppressive therapies).187

High-dose immunosuppressive therapy followed 

by autologous hematopoietic stem-cell transplantation 

(HSCT) is an emerging treatment option for patients with 

early progressive SSc who are refractory to conventional 
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treatments.177–181 Clinical trials, such as the American 

Scleroderma Stem Cell versus Immune Suppression Trial188 

and the Autologous Stem-Cell Transplantation International 

Scleroderma trial,189 have shown efficacy in preventing 

disease progression. In both trials, HSCT was shown to 

cause an improvement in skin and lung involvement as well 

as vasculopathy and was able to correct immune abnor-

malities. Despite its potential benefits, HSCT is a dangerous 

therapeutic option, which is associated with a high risk of 

treatment-related mortality and an increase in serious adverse 

events. Its use, therefore, is limited to severe cases of SSc and 

administered only as a part of a research protocol. Two large 

multicenter trials are going on. One trial compares monthly 

intravenous cyclophosphamide to myeloablation with 

cyclophosphamide and total body irradiation (Scleroderma: 

Cyclophosphamide or Transplantation) (ClinicalTrials.gov 

identifier NCT00114530). The second trial (Scleroderma 

Treatment with Autologous Transplant) includes myeloabla-

tion followed by HSC transplantation and long-term immu-

nosuppression (mycophenylate) for dcSSc (ClinicalTrials.

gov identifier NCT01413100).

Mesenchymal stem cell (MSC)-based therapy represents 

an alternative potential therapeutic approach for SSc, with 

fewer long-term side effects.190–192 Several in vitro studies 

have demonstrated that MSCs display specific immuno-

modulatory and immunosuppressive properties as well as 

regenerative potential.193–195 Their most important immuno-

suppressive effects are on T-cell proliferation and dendritic 

cell differentiation191,192,196–199 as well as the production of 

immunosuppressive mediators, such as TGFβ,200 prosta-

glandin E2, and indoleamine 2,3-deoxygenase.201 A recent 

report demonstrated that MSCs from patients with SSc while 

supporting normal hemopoiesis and retaining their immuno-

suppressive properties on T-cells also exhibit an increased 

expression of TGFβ receptor type II compared to MSCs 

from healthy donors, which leads to increased activation 

of TGFβ signaling and synthesis of COL1A1,200,202 thereby 

contributing to SSc pathogenesis. While this defect limits 

the clinical use of autologous MSCs in SSc, it supports the 

use of allogeneic MSCs instead. Two recent clinical case 

studies203,204 describe the use of allogeneic MSCs in patients 

with severe refractory SSc. In one study, a significant 

decrease in the number of digital ulcers and skin thickness 

was observed after 3  months and 6  months, respectively, 

from intravenous injection of a patient with MSCs.203 The 

second study reported skin improvement in two out of the 

four cases analyzed and observed no major side effects for 

several months from MSCs’ injections.204 Although these 

results are encouraging, no conclusions about the efficacy 

of allogeneic MSCs in SSc can be yet drawn because of 

the limited number of patients tested. Moreover, additional 

studies are necessary to better understand the underlying 

MSC-immunomodulatory mechanisms as well as the role of 

MSCs in the pathogenesis of SSc. Furthermore, preclinical 

and clinical data that underlie the therapeutic potential of 

MSCs in patients with SSc are also necessary.

Conclusion
SSc is a complex multisystem disorder with heterogeneous 

clinical features that results from individual genetic back-

ground and exposure to environmental triggers. Pathogenesis 

of SSc is dominated by a complex interrelation between 

vascular, immunologic, and fibrotic processes, and it is poorly 

understood. Clinical outcomes in SSc have improved consid-

erably in recent years, which may reflect improvements in the 

early detection and better management of significant compli-

cations, such as renal crisis or pulmonary arterial hyperten-

sion. However, SSc continues to exhibit high mortality, and 

it is still considered an incurable disease. Research efforts 

toward understanding the cellular and molecular basis of 

scleroderma aim to reveal novel molecular targets and diag-

nostic agents, leading to early and accurate diagnosis and 

innovative therapies against this disease. Next-generation 

sequencing and other cutting-edge technologies applied to 

affected tissues or cells will be crucial for the identification 

of biomarkers and pathways that are uniquely expressed in 

patients and are associated with disease form and/or stage. 

The development of preclinical models, including animal 

models that accurately recapitulate human disease, will be 

essential tools for the ultimate goal of finding a cure for this 

disease.

Personalized medicine offers interesting opportunities 

in SSc. Genomic and proteomic studies coupled with novel 

computational approaches have led to the identification of 

several biomarker signatures in patients with SSc,15,205–208 

which allowed the classification of related patients for more 

specific treatment. Advances in personalized medicine could 

be used for objective assessment of responses to clinical trials 

as well as for developing more effective therapies tailored to a 

patient’s genome or to the molecular and cellular contents.
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