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Abstract: Interleukin-22 (IL-22) is produced by both innate and adaptive immune cells and 

specifically targets nonhematopoietic cells; this provides a unique mechanism linking host 

immunity to mucosal homeostasis and led to its establishment as a key player in the maintenance 

of barrier integrity at mucosal sites particularly in the gut. Our aim is to provide an overview 

of the role of this cytokine in maintaining gut mucosal homeostasis in the steady state and in 

disease. IL-22 has two main functions in healthy states: to help shape the gut microbial flora via 

the induction of mucins and antimicrobial peptides and to maintain barrier integrity through the 

induction of epithelial cell proliferation and/or survival. Given the risk of malignancy related 

to uncontrolled cell growth per se, it is not surprising that the expression of this cytokine is 

tightly regulated by a complex interactive signaling network. This consists of a combination of 

cytokines and various environmental signals that can be derived directly from the diet and/or 

the gut microbiota. A role for IL-22 in response to gut infection has been reported. Here, we 

will focus specifically on how reduced levels of this cytokine can exacerbate disease pathology, 

as in the case of human immunodeficiency virus infection. We will also review its association 

with inflammatory bowel disease, where its net contribution likely reflects the balance between 

its pro- and anti-inflammatory functions, as well as its role in malignancy, specifically colorectal 

cancer. Finally, we will briefly discuss the potential pros and cons of targeting IL-22 in these, 

and other, clinical situations.
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Introduction and aim
Since its discovery 15 years ago, interleukin-22 (IL-22) has emerged as a key player in the 

maintenance of mucosal homeostasis and preservation of barrier sites.1 Conversely, it has 

been linked to a number of pathologies, including autoimmune disorders2 and cancer.3

The aim of this review is to outline how IL-22 helps maintain mucosal homeostasis 

in steady-state conditions and during pathological insults, and, in turn, how this may, 

in the context of its dysregulated expression, result in pathology. As the role of IL-22 

in a range of organs and tissues has recently been reviewed in depth,4 we will focus 

here on its multifaceted role in human gut mucosa, in health and during infection, and 

the ways in which it may contribute to important gut pathologies such as inflammatory 

bowel disease (IBD) and colorectal cancer (CRC).

IL-22: a brief introduction
IL-22 was first described by Dumoutier et al5 as “IL-10-related T-cell-derived  inducible 

factor (IL-TIF).” Originally considered an IL-10 cytokine family member,5 it has 
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recently been reassigned to the IL-20 cytokine subfamily,6 

with whose other members it shares considerable structural 

homology.6,7 The IL-22 gene is located on chromosome 12q15 

in humans and chromosome 10 in mice.5 Human IL-22 is 

expressed as a 179-amino-acid protein, sharing reasonably 

high homology with its murine counterpart (79%) as well as 

25% homology with IL-10.8 The active, monomeric form of 

IL-22 is secreted as a 146-amino-acid protein9,10 consisting 

of six helices, four of which form a bundle characteristic of 

Class II cytokines, and a small N-terminal helix.7

where is IL-22 produced?
Constitutive expression of IL-22 was initially observed in the 

thymus and brain,5 with induced expression subsequently being 

observed in many other tissues such as the gut, liver, skin, lung, 

pancreas, and spleen.11 For the purposes of this review, we will 

concentrate on IL-22 in the context of the gut mucosa.

which cells produce IL-22?
Apart from a couple of reports of nonlymphoid cells produc-

ing IL-22 under specific conditions,12,13 the available human 

and murine data indicate that cells of lymphoid origin repre-

sent the primary source of this cytokine, with both innate and 

adaptive immune cells able to produce IL-22 (Table 1).5,14–24 

In terms of innate immune cell populations, an IL-22 produc-

ing innate lymphoid cell (ILC) subset, recently reclassified 

as group 3 innate lymphoid cells (ILC3),25 is extremely 

relevant,22,26 with those expressing the natural killer cell 

cytotoxicity receptor Nkp44+ being of particular importance 

in the context of human gut mucosa.21,27

It is important to note that despite some phenotypic 

differences, the various cell types that produce IL-22 also 

share some common features. In particular, they all appear 

to require the expression of the transcription factor RORγt. 

This has been directly linked to the development of ILC3s,22,28 

with its expression likely regulating IL-22 production by 

other lymphoid cell subsets in the periphery.4

The IL-22 receptor
The heterodimeric receptor of IL-22 (IL-22R) belongs to 

the Type 2 cytokine receptor family and consists of the IL-

22R1 chain and the β-chain of the IL-10 receptor (IL-10Rβ, 

Figure 1).29 The former’s intracellular domain is associated 

with Tyk2 and the latter’s with Jak1 (Figure 1).

Expression pattern
IL-22R is almost exclusively expressed on nonhematopoietic 

cell populations in various tissues, including the gut mucosa,1 

skin,30 pancreas,31 lung,32 and liver.33

Downstream effects of IL-22/IL-22R 
signaling
Binding of IL-22 to its receptor leads to phosphorylation of 

the associated kinases, and consequently members of the 

STAT family, primarily STAT3, as well as activation of the 

MAP kinase and p38 pathways (Figure 1).34

In general, signaling via IL-22R is associated with promo-

tion of cell survival and/or proliferation both of which likely 

contribute to its pivotal role in tissue regeneration, a process 

observed in various models of tissue damage.33,35 It also 

mediates certain tissue-specific activities such as induction 

of antimicrobial peptides in the gut21 and skin.30 Data also 

suggest that, under certain circumstances, IL-22 can act as a 

proinflammatory cytokine.36 The unique combination of the 

cell subsets that account for the majority of IL-22 production 

(immune cells) and those which express its receptor (non-

hematopoietic cells) endows this cytokine with its distinctive 

ability to link these two compartments and act as a key player 

in maintaining homeostasis at mucosal and/or barrier sites.

Table 1 Lymphoid cell populations able to produce IL-22

Lymphoid cells References

CD4+ αβ T-cells (Th1, Th17, Th22) 5,14,15

CD8+ αβ T-cells (Tc22) 16

γδ T-cells 17
NKT cells 18
NK cells 19,20
ILC3s 14,21,22
Mast cells 23
Neutrophils 24

Abbreviations: Th, T-helper; Tc, T-cytotoxic; NKT, natural killer T-cell; ILC3s, 
Class 3 innate lymphoid cells; IL-22, interleukin-22.

TYK 2

STAT5

P38/MAPKSTAT1

STAT3

Jak 1

Extracellular space

Membrane

Cytoplasm

IL-22R1

IL-22

IL-10Rβ

Figure 1 IL-22 receptor structure.
Notes: Illustration of the heterodimeric IL-22 receptor (IL-22R), consisting of IL-
22R1 (blue) and IL-10Rβ (purple) chains and the associated signaling molecules.
Abbreviation: IL-22, interleukin-22; MAPK, mitogen-associated protein kinase.

International Journal of Interferon, Cytokine and Mediator Research 2016:8submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

2

Foxall et al

www.dovepress.com
www.dovepress.com
www.dovepress.com


Role of IL-22 in host defense
Various studies, in both mice and humans, indicate that IL-22 

can play a role in immunity to infection caused by various 

classes of pathogens, including bacteria,37–40 viruses,41–44 and 

parasites45,46 (Table 2). It is important to note that in many 

cases, the data regarding the impact of IL-22 in these contexts 

are contradictory, with reports suggesting that it can help limit 

and/or exacerbate pathology.39,40 The overall outcome in any 

given pathological context likely reflects the balance struck 

between the ability of IL-22 to mediate tissue repair and its 

proinflammatory capacity. The local cytokine environment in 

which IL-22 is being produced36,47 may also influence whether 

its effects are ultimately beneficial or deleterious.

Of note, IL-22 has been shown to induce the production 

of acute-phase proteins by hepatocytes.5,48 More recently, 

a systemic role of IL-22 in the context of infection has been 

reported, with it being shown to induce C3  production and 

augment C3-mediated phagocytosis in a murine model of 

 disseminated Clostridium difficile infection.49 Thus, it is 

 possible that this cytokine may help mediate  protection against 

infection beyond its normal tissue-specific functions.

IL-22 and the gut
Production of IL-22 has been observed throughout the gas-

trointestinal (GI) tract. Here, we will focus on its role in the 

context of the gut mucosa, particularly that of the colon, as 

this represents an ideal model to illustrate the dual nature 

of this cytokine.

The gut mucosa
The gut mucosa represents the largest body surface in contact 

with the external environment, functioning as a selective 

portal that allows the passage of nutrients while keeping 

foreign organisms at bay. An active interplay occurs between 

the gut microbiota and the cellular components of the gut 

(epithelial, stromal, and immune cells). This interaction 

shapes both ecosystems in a continuous process starting after 

birth, which ultimately helps determine the overall health of 

the host.50,51

IL-22 and gut homeostasis
IL-22 plays an important role in gut homeostasis. A key 

contribution is through the maintenance of barrier integrity, 

with ILC3-produced IL-22 being of particular importance.1,21 

IL-22 serves several functions in the gut (Figure 2). It regu-

lates epithelial cell proliferation and survival52 and plays an 

important role in wound healing.53 It induces the  production 

of a wide range of proteins required for normal gut epithelial 

function, including antimicrobial peptides and members 

of the REG, defensin, and S100 protein  families.21,54–56 

 Furthermore, recent data suggest that IL-22 may play a 

role in the maintenance and or/repair of epithelial tight 

junctions.57–59

Regulation of IL-22 production in 
the gut
There are several lymphocyte subsets of particular relevance 

in terms of IL-22 production in the gut: αβ CD4+ T-cells 

(in particular the Th17 and Th22 subsets) and δ T-cells that 

patrol the lamina propria and the gut resident ILC3s.

Given the ability of IL-22 to promote tissue prolifera-

tion and/or survival, coupled with its potential to act as a 

proinflammatory cytokine, it is not surprising that IL-22 

Table 2 IL-22 involvement in the response to pathogens

Pathogen targeted Site of action in  
infected host

Reference(s)

Bacteria
 Gram-negative species Lung 37
 Citrobacter rodentium Gut 38
 Mycobacterium tuberculosis Lung 39,40
viruses
 Hepatitis B Liver 42
 Hepatitis C Liver 41
 Rotavirus Gut 43,44
Parasites
 Malaria Liver 45
 Leishmaniasis Skin 46

Abbreviation: IL-22, interleukin-22.

Gut lumen

Mucus layer

Epithelial cell

Lamina propria

Antimicrobial peptides

Signal transduction

Cell proliferation and survival

IL-22

Figure 2 Effects of IL-22/IL-22R signaling in gut epithelial cells.
Notes: The binding of IL-22 to its cognate receptor (IL-22R) activates a signaling 
cascade that can ultimately result in the induction of cell proliferation and 
enhancement of cell survival through induction of antiapoptotic programs, as well as 
in the production of antimicrobial peptides.
Abbreviation: IL-22, interleukin-22.
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production by these cells is tightly regulated via a complex 

interactive process involving cytokines, environmental 

 factors, and soluble receptors (Figure 3).

Cytokines
Cytokines can either positively or negatively regulate IL-22 

production. Several cytokines produced by a variety of cell 

types have been shown to drive production of IL-22, either 

by directly inducing its expression or by promoting the dif-

ferentiation and/or survival of IL-22-producing populations. 

Of these, IL-23, a member of the IL-12 cytokine family, plays 

a key role, being able to induce expression of this cytokine in 

a number of immune cells.4 Dendritic cells (DCs) are a major 

source of IL-23, particularly in the gut, with murine CD103+ 60 

and CX3CR1+ 61 DC subsets producing it in response to patho-

gens and environmental cues. In humans, monocyte-derived 

dendritic cells have been shown to produce IL-23 on expo-

sure to commensal Gram-negative bacteria.62 Furthermore, 

IL-23 production by monocyte-derived dendritic cells was 

augmented by CD40L/CD40-mediated DC-T-cell interac-

tions.63 Proinflammatory cytokines, such as IL-1β and IL-6, 

can also induce IL-22 production. The former is particularly 

relevant in the gut, where it can directly induce IL-22 produc-

tion by ILCs,64 and indirectly through its capacity to promote 

the survival and proliferation of IL-22-producing ILCs.65 

IL-6 can also induce IL-22 production by a variety of cell 

types, including γδ T-cells17 and ILC3s.66 IL-21 drives the 

 differentiation of human naive CD8+ T-cells into Tc22 cells.16 

However, regarding ILC3s, it seems to function by regulat-

ing the interaction between the aryl-hydrocarbon receptor 

(AhR) and the IL-22 promoter, and thus may help integrate 

IL-22 inductive signals from cytokines and environmental 

factors. Recent data also suggest a reciprocal relationship 

between IL-18 and IL-22, with the former able to regulate 

IL-22 expression in the ileum and the latter inducing IL-18 

during Toxoplasma gondii infection.67

Conversely, several cytokines have been implicated in 

the suppression of IL-22 production, although the underly-

ing mechanisms differ. Thus, IL-25 may indirectly target 

IL-22 production by suppressing the production of IL-23.68 

On the other hand, Transforming growth factor (TGF)-β 

appears to function more directly: although linked with 

Th17 differentiation,69 it can suppress IL-22 production70 in 

a c-maf-dependent manner.71 IL-27, a member of the IL-12 

cytokine family that is known to have anti-inflammatory 

properties72 also directly blocks IL-22 production by human 

T-cells, in an suppressor of cytokine signaling 1 (SOCS1)-

dependent manner.73

Environmental factors
Pathogen-associated molecular patterns, a broad class of mol-

ecules including both structural components, such as bacterial 

Gut lumen

Tight junction

Aryl-hydrocarbon receptor ligands

Aryl-hydrocarbon receptor (AhR)

Dendritic cell (DC)

IL-23 receptor (IL-23R)

Type 3 innate lymphoid cells (ILC3s)

αβ T-cells

γδ T-cell

IL-22-binding protein (IL-22BP)

IL-22 receptor

Microbial/dietary metabolites

Pattern recognition receptor (PRR)
Mucus layer

Epithelial barrier

Lamina propria

DC

DCs

TGF-β
IL-27

IL-23

IL-25

IL-22

Microbiota and related
pathogen-associated molecular patterns

Figure 3 IL-22 production and regulation in the gut mucosa.
Notes: IL-22 is produced by both innate (ILC3s and γδ T-cells) and adaptive (αβ CD4+ Th17 and/or Th22 as well as CD8+ Tc17 and/or Tc22 subsets) immune cells in the 
gut. This occurs in response to a variety of signals, including cytokines; most importantly, IL-23 produced by DCs in response to environmental factors, including AhR ligands, 
dietary-derived compounds, and bacterially derived products featuring PAMPs recognized by PRR. In addition, environmental factors can also regulate IL-22 production by 
directly targeting IL-22-producing cell populations. Cytokines can also suppress IL-22 production directly, by antagonizing its production (TGF-β and IL-27), or indirectly, by 
suppressing IL-23 production (IL-25). IL-22-binding protein (IL-22BP), a soluble IL-22 receptor, binds IL-22 and prevents it from signaling its target cell populations.
Abbreviations: AhR, aryl-hydrocarbon receptor; DC, dendritic cell; IL, interleukin; PAMP, pathogen-associated molecular pattern; PRR, pattern recognition receptor; 
TGF-β, Transforming growth factor beta; IL-22, interleukin-22.
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lipopolysaccharide, and nucleic acids, are recognized by 

several classes of invariant pattern recognition receptors, such 

as the Toll-like receptor family.74 They have been shown to 

trigger IL-22 production both indirectly by inducing IL-23 

production by DCs60 and directly via TLR2 expressed on IL-

22-producing immune cells such as ILC3s75 and γδ T-cells.76 

In the gut, pattern recognition receptors are expressed on the 

basal surface of the epithelial cells,77 ensuring these cells 

only respond to pathogen-associated molecular patterns 

when the epithelial barrier is disrupted.78 The capacity of gut 

DCs to sample the gut lumen79 and the two-way conversation 

between the microbiota and ILC3s80 also help regulate IL-22 

production, further ensuring it is restricted to situations where 

epithelial damage and/or shifts in microbiota populations 

(dysbiosis) has occurred.

Various food-derived compounds can regulate IL-22 

production. Vitamin D can modulate DC cytokine production 

and indirectly promote the differentiation of IL-22-producing 

cells.81 Gut microbiota also plays an important role in this 

respect, either indirectly through the release of metabolites82 

or directly via inducing retinoic acid production (a metabolite 

of vitamin A) by DCs,83 which can, in turn, induce IL-22 

production by ILC3s and δ T-cells.84 Conversely, retinoic 

acid can negatively regulate IL-22 production via the induc-

tion of IL-22-binding protein (IL-22BP) by DCs85 and IL-25 

production by enterocyte.86

AhR
AhR is a key regulator of IL-22 production in the gut. It is a 

cytoplasmic receptor with several immune-regulatory func-

tions.87 Although initially shown to bind environmental toxins 

such as Dioxin, a range of endogenously derived ligands have 

subsequently been identified, originating from both dietary 

sources and the microbiota.88

Not only is AhR able to drive IL-22 production by 

ILC3s,89 it also regulates their development.90 This is particu-

larly important given the key role ILC3s play in controlling 

intestinal immunity and inflammation.89 AhR has also been 

linked to IL-22 production by several other cell types, such 

as Vγ2 subset of γδ T-cells,76 Th22 cells,15 and neutrophils.24 

It is important to note that the AhR is also expressed in DCs 

and macrophages,91 and thus, its activation in these cells may 

be able to indirectly regulate IL-22 induction.

IL-22BP
This is a soluble form of the IL22R1 receptor chain, encoded 

by a separate gene,92 rather than generated by alternative 

splicing. IL-22BP expression has been observed in various 

tissues, including the gut.93 DCs are the major, but not the 

sole producer, of this soluble receptor.85,93

The binding footprint of IL-22BP on IL-22 overlaps that 

of the IL22R1, allowing it to directly interfere with the bind-

ing of IL-22 to its membrane-bound receptor.94 The inhibitory 

effect of IL-22BP is enhanced by the fact that the affinity 

of its interaction with IL-22 is ~1,000-fold higher than that 

of IL-22 and the membrane bound form of IL-22R1.95 As 

discussed later, IL-22BP interaction with IL-22 may play a 

role in both IBD96 and colon cancer.97

Overall, it is clear that this complex network, involving a 

fine balance between the microbiota, immune system, and the 

epithelial barrier, is vital in maintaining homeostasis in the 

context of the gut, with disruption of this system potentially 

leading to inflammation and associated pathologies.

IL-22 and gut immunity
The role of IL-22 in mediating antibacterial immunity in the 

context of the gut has been widely reported. In particular, it 

is vital in orchestrating the immune response to Citrobacter 

rodentium in mice, an experimental model of pathogenic 

Escherichia coli infection.38 IL-22 in this context seems to be 

initially derived from ILC3s, although its production by adap-

tive immune cells appears necessary in the later stages of infec-

tion to allow for effective resolution of the disease.38,80,98,99

Of note, IL-22 also helps regulate immune responses to 

commensal microbiota, such as those targeting segmented 

filamentous bacteria,100 with recent data indicating an impor-

tant role of IL-23 in regulating this process.101,102

IL-22 also plays a role in the host response to viral infec-

tions in the context of the gut.

It was recently identified as a key player in the response 

to rotavirus infection in both mice43 and humans.44

Human immunodeficiency virus-1 
infection and the gut: the role of IL-22
A good example highlighting the importance of IL-22 in 

maintaining gut homeostasis in humans is provided by human 

immunodeficiency virus-1 (HIV-1) infection.

HIV-1 infection is characterized by rapid and profound 

depletion of CD4 T-cells from the GI mucosa, structural dete-

rioration of the gut epithelium, and translocation of microbial 

products from the gut lumen into the systemic circulation. 

The combination of these factors is thought to contribute 

to chronic hyperimmune activation,103 which we and others 

have shown to be a hallmark of HIV infection and a major 

determinant of disease progression.104,105 It is also important 

to note that the interaction between HIV and mucosal barriers 
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has important consequences not only for disease pathogenesis 

but also for transmission.106

HIV-1 infection appears to impact on important IL-22-

producing cell populations. A loss of IL-22-producing T-cells 

in the peripheral blood of antiretroviral therapy (ART)-naive 

HIV-1+ individuals has been reported.107,108 Circulating ILC3s 

have also been shown to be depleted in HIV-1+  individuals.109 

In simian immunodeficiency virus-infected macaques, 

a widely used model of HIV-1 infection, depletion of ILC3s 

was observed in mucosal and systemic lymphoid tissues.110 

Furthermore, loss of IL-22-producing cells was associated 

with mucosal damage in this model.111 The limited human 

data available suggest that mucosal IL-22 production is 

reduced in chronic HIV-1 infection.57,112

No consensus has yet been reached as to whether success-

ful ART can result in the restoration of normal gut function.113 

Data suggest that disturbances in gut homeostasis persist 

in the context of ART.57,114,115 We have not only shown that 

Th22 are depleted in colon biopsies from long-term treated 

individuals but also observed that the frequency of ILC3s 

was similar in ART-treated HIV-1 and seronegative individu-

als.116 This observation, coupled with an apparent lack of gut 

disturbances in ART-treated individuals, led us to conclude 

that ART allowed for ILC3 recovery, which, in turn, was 

sufficient to restore gut homeostasis.116

Nevertheless, long-term ART-treated HIV-1+ individuals 

still show persistent immune activation that is related to a 

variety of comorbidities,117 with continued alterations at the 

level of the gut, such as persistence of microbial dysbiosis.118 

Recent data suggest that initiation of ART during the early 

phase of HIV-1 infection may be more efficient in restoring/

preserving normal gut function.112

HIV-1 has also been shown to directly disrupt epithelial 

tight junctions in an infection-independent manner.119 Kim 

et al57 demonstrated that IL-22 was able to abrogate this effect, 

further emphasizing the importance of IL-22’s capacity to 

interact with epithelia in helping maintain gut homeostasis 

in the context of HIV infection.

Overall, HIV-1 appears to directly impact on key IL-22-

producing lymphocyte populations, with evidence suggesting 

that ART may allow for the recovery of some of them, at least 

in the context of long-term treatment, and thus enable some 

degree of recovery of gut homeostasis.

IL-22 and IBD
IBD encompasses a range of chronic relapsing disorders of 

the GI tract that are primarily characterized by excessive 

inflammation. Among them, Crohn’s disease (CD) and 

ulcerative colitis (UC) are of particular clinical relevance 

in the developed world.120 In general, IBD can be viewed 

as a disruption of the complex interactions between the 

gut immune system and its resident microbial flora. Under 

normal conditions, this allows for tolerance to food-derived 

antigens as well as to those of commensal bacteria beneficial 

to the host, while still permitting the generation of immune 

responses to invading pathogenic species and/or pathobionts. 

The loss of this fine balance can result in inflammation that, 

rather than resolving, persists, eventually resulting in a state 

of chronic intestinal inflammation that typifies IBD.

As recently reviewed by Geremia et al,121 IBD can involve 

both the innate and adaptive arms of host immunity. Further-

more, cytokines, including IL-22, play a critical role in its 

pathogenesis.122

However, the role of IL-22 in IBD is complex. Evidence 

supports a role of IL-22 in driving IBD, through its ability 

to function as a proinflammatory cytokine.123–125 Certainly, 

IL-23, a potent inducer of IL-22 production,4 has a key role,126 

with an expansion of IL-23-responsive ILCs observed in the 

context of IBD.127 It is also important to note that Th17 cells 

can produce both IL-22 and IL-17, with the latter also being 

associated with the IBD pathogenesis.126 Moreover, a recent 

study demonstrated that IFN-γ/IL-17-coproducing CD4+ 

T-cells specifically enriched in the inflamed mucosal tissue 

of patients with IBD also showed high expression levels of 

IL-22.128

However, data from mouse models support an important 

protective role of IL-22 in IBD.35,129 In humans, a loss of the 

Th22 subset has been reported in the colon of patients with 

UC,130 whereas IL-22 production by ILCs has been seen 

to be impaired in inflamed tissue of patients with CD;58 

increased production of IL-22BP, a negative regulator of 

IL-22 function, has also been observed in human IBD.96 

A protective role of IL-22 in human IBD; in this case, UC 

is further supported by the report of amelioration of symp-

toms in an individual who deliberately infected themselves 

with  Trichuris trichiura, resulting in an expansion of IL-22-

producing CD4+ T-cells.131

Thus, it seems that IL-22 can also be beneficial in the 

context of IBD, which is perhaps not surprising given its 

capacity to directly interact with gut epithelia and mediate 

tissue repair in this context.53 However, the suggestion that 

IL-22 represents a potential therapeutic candidate for IBD129 

has to be balanced against the evidence supporting a role of 

this cytokine in IBD pathogenesis.
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IL-22 and cancer
Just as for IBD, IL-22’s role in cancer is complex. Recent 

data from human studies have linked IL-22 to cancers as 

diverse as multiple myeloma132 and glioblastoma.133 Here, 

we will focus on IL-22’s role in CRC. The fact that chronic 

intestinal inflammation is a widely accepted risk factor for 

CRC development134 and that, as discussed earlier, IL-22 is 

upregulated in the context of IBD provides strong circumstan-

tial evidence of a role of this cytokine in CRC. Furthermore, 

genetic polymorphisms in the IL-22 gene have been identi-

fied as a colon cancer risk factor.135 A complex network of 

cytokines, including IL-22, underlies CRC.3 Murine studies 

provide evidence for a role of IL-22 in CRC.136 Data from 

IL-22BP–/– mice indicating increased intestinal tumorigen-

esis also support a role of augmented IL-22 levels in driving 

tumor development at this site.97 In humans, Jiang et al137 

reported an accumulation of tumor-infiltrating lymphocytes 

that are able to produce IL-22, with IL-22-mediated STAT3 

induction promoting tumor growth and metastasis in an in 

vivo system.137 Similarly, Th22 cells were found to accu-

mulate in CRC tissue, with subsequent in vitro and in vivo 

studies again implicating the IL-22/STAT3 signaling axis 

in cancer cell proliferation and survival.138 A recent report 

suggested that IL-22 enhances stemness in the context of 

CRC by upregulating core stem cell genes such as Nanog. 

This, in turn, enhanced tumorigenecity, with an association 

between increased expression levels of these genes and poor 

patient prognosis also observed.139 This may be a particularly 

important role of IL-22 in CRC, given this cytokine’s role in 

maintaining intestinal stem cell viability in mice.140

Increased serum IL-22 has been associated with resis-

tance to chemotherapy in patients with CRC,141 with an ability 

to enhance in vitro chemoresistence in CRC cell lines also 

being reported.142

This subject has been recently reviewed in depth.143 

According to the author’s proposed model, IL-22 could exert 

anticancer effects through its ability to promote pathogen 

clearance, mediate short-term inflammation, and help both 

resolve this and promote tissue repair. However, its continued 

expression could drive tissue dysplasia and, subsequently, 

tumor formation. Several of its functions could then augment 

tumor growth, by aiding angiogenesis, tissue invasion, and 

ultimately metastasis.

Conclusion
IL-22 production and signaling require strict regulation in the 

gut mucosa to guarantee an adequate balance of its beneficial 

and potentially deleterious properties, and hence maintain 

mucosal homeostasis and repair.

In steady-state conditions, it is required to help maintain 

epithelial cells, which provide the barrier between the host 

and the external environment. The interactions between a 

range of lymphoid cells, the microbiota, and other environ-

mental signals ensure the fine tuning of IL-22 levels, such 

that they maintain barrier function without provoking overt 

inflammation (Figure 3). It is also interesting to note that the 

persistent disruption of gut homeostasis observed in HIV 

infection103 is linked to a loss of IL-22-producing subsets,57,112 

further highlighting the importance of this cytokine in main-

taining a healthy gut environment.

However, it is easy to imagine that IL-22 could have 

deleterious effects in the gut, particularly given its ability 

to enhance epithelial cell survival and/or proliferation.52,53 

Thus, circumstances where IL-22 production is dysregulated 

and/or prolonged could lead to epithelial hyperplasia and 

ultimately cancer.143

As IL-22 has been linked to a variety of pathologies 

outside of the gut,2 particularly inflammatory skin disorders 

such as psoriasis and atopic dermatitis,144 and it has been 

suggested that it could represent a viable therapeutic target. 

However, whether its expression would require augmenting 

or reducing will likely be dictated by the particular clinical 

situation.11

Thus, blocking IL-22 may be of benefit in cancer or auto-

immunity, whereas enhancing its expression in the context of 

certain gut infections or IBD may be beneficial; the latter is 

supported by data indicating that local delivery of the IL-22 

gene to inflamed colonic tissue results in the amelioration 

of inflammation in a Th2-mediated mouse colitis model.145 

However, it would be vital to ensure that modulation of 

IL-22 be restricted to the target tissue to avoid damaging 

“off-target” side effects.
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