
© 2016 Cele et al. This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php  
and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you 

hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission 
for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php).

Drug Design, Development and Therapy 2016:10 1365–1377

Drug Design, Development and Therapy Dovepress

submit your manuscript | www.dovepress.com

Dovepress 
1365

O r i g i n a l  r e s e a r c h

open access to scientific and medical research

Open access Full Text article

http://dx.doi.org/10.2147/DDDT.S95533

Per-residue energy decomposition pharmacophore 
model to enhance virtual screening in drug 
discovery: a study for identification of reverse 
transcriptase inhibitors as potential anti-hiV agents

Favourite n cele
Muthusamy ramesh
Mahmoud es soliman
Molecular Modelling and Drug Design 
research group, school of health 
sciences, University of KwaZulu-
natal, Durban, south africa

Abstract: A novel virtual screening approach is implemented herein, which is a further 

improvement of our previously published “target-bound pharmacophore modeling approach”. 

The generated pharmacophore library is based only on highly contributing amino acid residues, 

instead of arbitrary pharmacophores, which are most commonly used in the conventional 

approaches in literature. Highly contributing amino acid residues were distinguished based on 

free binding energy contributions obtained from calculation from molecular dynamic (MD) 

simulations. To the best of our knowledge; this is the first attempt in the literature using such 

an approach; previous approaches have relied on the docking score to generate energy-based 

pharmacophore models. However, docking scores are reportedly unreliable. Thus, we present 

a model for a per-residue energy decomposition, constructed from MD simulation ensembles 

generating a more trustworthy pharmacophore model, which can be applied in drug discovery 

workflow. This work is aimed at introducing a more rational approach to the field of drug 

design, rather than comparing the validity of this approach against those previously reported. We 

recommend additional computational and experimental work to further validate this approach. 

This approach was used to screen for potential reverse transcriptase inhibitors using the phar-

macophoric features of compound GSK952. The complex was subjected to docking, thereafter, 

MD simulation confirmed the stability of the system. Experimentally determined inhibitors 

with known HIV-reverse transcriptase inhibitory activity were used to validate the protocol. 

Two potential hits (ZINC46849657 and ZINC54359621) showed a significant potential with 

regard to free binding energy. Reported results obtained from this work confirm that this new 

approach is favorable in the future of the drug design industry. 

Keywords: HIV-1, reverse transcriptase, GSK952, molecular dynamic simulations, pharma-

cophore model, molecular docking

Introduction
HIV infection is the leading cause of death across the globe.1 There are two strains of 

HIV, namely, HIV-1 and HIV-2. HIV-1 is the most infectious and prevalent globally.2 

Worldwide statistics by the American foundation for AIDS Research reported that 

sub-Saharan Africa is the most affected region, with approximately 70% of adults and 

91% of children HIV positive.3 

HIV-1 reverse transcriptase (RT) is currently an essential target for US Food and 

Drug Administration (FDA) approved HIV-1 therapy4 and a prominent target of many 

approved anti-HIV drugs that are key components of highly active antiretroviral 

correspondence: Mahmoud es soliman
Molecular Modelling and Drug Design 
research group, school of health 
sciences, University of KwaZulu-natal, 
Westville campus, Private Bag X54001, 
Durban 4000, south africa
Tel +27 031 260 7413
Fax +27 031 260 7792
email soliman@ukzn.ac.za 

Journal name: Drug Design, Development and Therapy
Article Designation: Original Research
Year: 2016
Volume: 10
Running head verso: Cele et al
Running head recto: Molecular modeling study on HIV RT inhibitors as anti-HIV agents
DOI: http://dx.doi.org/10.2147/DDDT.S95533

D
ru

g 
D

es
ig

n,
 D

ev
el

op
m

en
t a

nd
 T

he
ra

py
 d

ow
nl

oa
de

d 
fr

om
 h

ttp
s:

//w
w

w
.d

ov
ep

re
ss

.c
om

/
F

or
 p

er
so

na
l u

se
 o

nl
y.

http://www.dovepress.com/permissions.php
https://www.dovepress.com/terms.php
http://creativecommons.org/licenses/by-nc/3.0/
https://www.dovepress.com/terms.php
www.dovepress.com
www.dovepress.com
www.dovepress.com
http://dx.doi.org/10.2147/DDDT.S95533
mailto:soliman@ukzn.ac.za


Drug Design, Development and Therapy 2016:10submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

1366

cele et al

therapies.5 The HIV-1 RT enzyme catalyzes the conversion 

of viral RNA into cDNA, which enters the host nucleus and 

is incorporated into host chromosomal DNA of the host cell 

by the IN enzyme.6 It is the sole viral enzyme required for 

the catalytic formation of cDNA generated from viral RNA, 

hence playing a central role in HIV replication,7 making it a 

prime target for HIV-1 therapy. HIV-1 RT is a heterodimer 

consisting of two subunits; a p66 subunit (DNA polymeriza-

tion site and RNase H active site), which is responsible for 

the replication of the single-stranded RNA genome found in 

virions into the double-stranded DNA; and a p51 subunit, 

which is responsible for the proper folding of p66 rather than 

enzymatic activities subunit (Figure 1).8

HIV-1 RT does not possess any proofreading activity. 

Thus, DNA synthesis prone to errors can be carried out by 

HIV-1 RT, resulting in a higher mutation rate and the pro-

duction of multiple HIV variants.2 Etravirine and rilpivirine 

are the most recent non-nucleoside reverse transcriptase 

inhibitors (NNRTIs) to which mutated RT viruses are 

resistant.9 To date, NNRTIs’ resistance still poses a chal-

lenge with regard to NNRTI therapy. Thus, there is a clear 

need for the discovery of new drugs with greater resistance 

profiles capable of inhibiting HIV-I RT mutated viruses. 

Numerous studies have made significant attempts in the 

discovery of new potent NNRTIs using pharmacophore 

model approaches.10–12 

The potential anti-HIV drug needs to be effective against 

resistant strains. The present study looked at GSK952, a 

newly discovered NNRTI. The crystal structure (Protein 

Data Base [PDB] 2YNI)8 of the catalytic domain of HIV-1 

RT enzyme bound to GSK952 is available. GSK952 shows 

high potency against the mutated Y188L strain as well as the 

mutated Y188C and K103N strains. Previous work on this 

compound confirmed it has a good inhibitory activity against 

HIV-1 RT, including the mutated viral Y188L HIV-1 RT 

strains.8 It exhibited a high antiviral profile when compared 

to a group of compounds sharing a common imidazole-amide 

biaryl ether scaffold.8 It possesses a linear arrangement of 

hydrogen bond acceptors (C=O) and donors (NH), which are 

required for binding to HIV-1 RT and to form hydrogen bonds 

with residues in the active site, including K101, K103, and 

P236.13 GSK952 forms hydrogen bonds with NH and C=O 

groups (Figure S1), which are positioned along the protein 

backbone rather than the side chains. This could explain the 

inhibitory activity against the K103N mutation.14

In this mutation, the side chain of K103 is tilted away 

from the inhibitor due to the mutation of the wild type to 

Asn103.8 GSK952 (Figure 2) has revealed an extraordinary 

antiviral activity against a wide range of NNRTI-resistant 

viruses8 and forms favorable pharmacokinetic profiles 

across multiple species. We believe it has great potential and 

deserves further exploration. Thus, it is an ideal compound 

for the current study. 

Computational tools and capability escalation have led to 

virtual screening (VS) becoming a routine method in pharma-

ceutical drug discovery.15 Numerous computational screening 

tools are accessible for mining of inhibitors with properties 

of interest.16 VS is one of the most trusted and convenient 

tools in drug design. Literature confirms its reliability in the 

discovery of novel HIV-1 RT inhibitors through VS.17 VS 

is either ligand based or structure based.18 Structure-based 

VS uses the three-dimensional (3D) structure of the receptor 

to search for potential ligands.19 Ligand-based VS (LBVS) 

explores features or properties of known bioactive ligands 

and searches for compounds with similarities.20 In LBVS, 

also known as pharmacophore-based VS, favorable features 

of a known active site are used to build a pharmacophore 

model. Among other models, pharmacophore searches are 

best at discovering a range of chemical structures with feasible 

features, hence the principal method for the initial selection 

Figure 1 ribbon representation of hiV-1 rT-gsK952 complex. 
Note: HIV-1 RT-GSK952 complex (PDB code 2YNI) with finger (blue), palm 
(magenta), thumb (cyan), connection (forest green) and rnase h (orange red) of 
p66 subunit and gsK952 (green).
Abbreviations: rT, reverse transcriptase; PDB, Protein Data Base. 

Figure 2 The 2D structure of ligand gsK952 used to generate the pharmacophore 
model.
Abbreviation: 2D, two dimensional.
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of compounds.21 Ligand-based pharmacophore approaches 

generate libraries based on a set of known ligands illustrative 

of crucial interactions between the ligands and a particular 

target;22 whereas structure-based pharmacophore models are 

based on the knowledge of the 3D structure of the target.23 

Numerous studies have combined LBVS and structure-

based VS with the aim of improving the VS process.24,25 A 

number of studies have attempted to improve VS and phar-

macophore models.26–30 A previous study proposed a target-

bound generated pharmacophore model to further improve 

pharmacophore-based VS. It has been confirmed that target-

bound pharmacophore-based VS is a more rational approach.19 

Yet to this date, general standards for VS with regard to 

method evaluation are insufficient. The aim of this work is to 

identify more potential NNRTIs by exploiting the structural 

features of GSK952 using a pharmacophore model.

We propose implementing an approach that aims to 

improve and refine the current pharmacophore approach. This 

approach is centered on the type of interactions witnessed at 

a molecular level, which includes hydrogen bonding, charge, 

and hydrophobic interactions (HPIs).31 This approach will 

search for compounds that interact with the highly contribut-

ing residues based on the free binding energy (FBE). 

In this study, we performed molecular dynamic (MD) 

simulations, pharmacophore-based VS and per-residue 

energy decomposition (PRED) analysis for residues with the 

greatest FBE contributions. VS depends primarily on docking 

calculations, although results based exclusively on docking 

calculations are rather questionable.32 To test the validity of 

our proposed approach, we applied the same docking pro-

cedure to a set of experimentally determined inhibitors with 

known HIV-1 RT inhibition activity. In our approach, we 

intend to unshackle the limitations of previous approaches, 

such as using noncrucial residues, which retrieves a large 

number of hits with assumed activity. In an attempt to enhance 

the accuracy of the pharmacophore model, we only selected 

highly contributing amino acid residues (HCAAR). A target-

bound ensemble was employed in the current study, in the 

hope of implementing a better approach. A pharmacophore 

model was created using HCAAR in the protein’s active site, 

whereas conventional methods use pharmacophore maps cre-

ated without considering the energy contributions of interact-

ing residues. Only potential pharmacophore moieties were 

considered; thus, the library of potential compounds generated 

is more concise and direct. In our approach, the energy-based 

pharmacophore map is generated using the FBE calculated 

from MD, which is a more reliable approach, compared to the 

conventional approach using the docking score. We believe 

this approach will be more effective than the conventional 

approach due to these key factors highlighted earlier. The 

refinement of the method proposed in this study could be 

implemented as a potential tool for medicinal chemists in the 

search for more potent HIV-1 RT inhibitors.

Computational methodology
The computational tools implemented in this study are 

represented in the workflow in Figure 3. A diagrammatic 

representation of the pharmacophore model used in this 

study is shown in Figure 4. The residues with the highest 

energy contributions are numbered and ranked from 1 to 6, 

with 1 being the highest FBE contributing residue (Figure 4).  

Figure 3 A schematic representation of the VS workflow used in the current study.
Abbreviations: Vs, virtual screening; PDB, Protein Database; MD, molecular 
dynamic; MMPBsa, molecular mechanics/Poisson–Boltzmann surface area; PreD, 
per-residue energy decomposition; hcaar, highly contributing amino acid residues; 
FBe, free binding energy.
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The highest ranked contributors were used to select the 

corresponding pharmacophore moieties on the ligand to 

generate a pharmacophore model used to screen a database 

for potential hit compounds.

ligand and receptor preparation
The crystal structure of HIV-1 RT-GSK952 complex was 

obtained from PDB (2YNI).8 The steepest decent method and 

MMFF94S force field in Avogadro software33 were used to 

minimize conformation of HIV-1 RT-GSK952 complex. The 

crystal structure was opened on UCSF chimera34 to delete chain 

B and solvents (H
2
O, MG [magnesium atoms] and TAR [tar-

taric acid]). GSK952 was selected and deleted. GSK952 was 

prepared by adding hydrogen. The ligand was prepared using 

Antechamber and tLeap of Amber1435 to optimize both HIV-1 

RT (enzyme) and GSK952 (ligand), respectively, to ensure 

all parameters are present for MD simulations. Topology files 

generated were submitted for MD simulation.

MD simulations
Solvation of MD simulations36 was performed on HIV-1 RT-

GSK952 using the graphics processing units version of the 

Figure 4 a diagrammatic representation of the pharmacophore model.
Notes: (A) PreD contributions, (B) 2D ligand interaction plot, and (C) pharmacophore features responsible for FBe contributions.
Abbreviations: PreD, per-residue energy decomposition; FBe, free binding energy; vdW, van der Waals; elec, electrostatic; 2D, two dimensional.
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PMEMD (Particle Mesh Ewald Molecular Dynamics) engine 

integrated with Amber14.35 Leap module in Amber 1435 was 

used to add hydrogen atoms to the proteins. The standard Amber 

force field was employed to treat the receptor for bioorganic 

systems (ff99sb).37 A box with equilibrated TIP3P38 water mol-

ecules that were arranged around the receptor at a distance of  

10 Å around the enzyme and Cl- ions was added to neutralize the 

systems. Cubic periodic boundary conditions were employed,  

and particle-mesh Ewald method39 applied in Amber12 was 

used to treat the long-range electrostatic interactions with 

nonbonding at 2fs integration step. The initial minimization of 

the system was carried out using the steepest descent method 

for 1,000 steps. A canonical ensemble (amount of substance 

volume temperature [NVT]) MD was carried out for 50 ps, 

during which the system was progressively heated up from 0 to 

300 K by means of a Langevin thermostat.40 The system was 

then equilibrated at 300 K under 1 atm pressure while preserv-

ing the force constants on the restrained solute. Throughout all 

MD simulations, the SHAKE algorithm41 was employed on 

atoms covalently bonded to a hydrogen atom. A production 

run was achieved, with no restraints, for 5 ns in an isothermal 

isobaric (amount of substance, pressure, and temperature 

[NPT]). ensemble employing a Berendsen barostat.42 Trajectory 

exploration including the root-mean-square deviation (RMSD), 

root-mean-square fluctuation (RMSF), and radius of gyration 

(Rg) were carried out using PTRAJ (process trajectory) and 

CPPTRAJ modules applied in AMBER14.35

The trajectory was saved every 1 ps and examined every 

1 ps using the PTRAJ module applied in Amber14.35 The 

structure was visualized using graphical user interface of 

the UCSF chimera package.34 Data were plotted using the 

GUI of Microcal Origin data analysis software Version 6 

(www.originlab.com).

Molecular docking
AutoDock Vina was used for docking calculation.43 Geister par-

tial charges were allocated during docking. AutoDock Graphi-

cal user interface provided by MGL tools were used to outline 

the AutoDock atom types.44 The docked conformations were 

obtained using the Lamarckian genetic algorithm.45 The magni-

tude of the grid box was x =14 Å, y =14 Å, z =18 Å, enclosing the 

anticipated active site residues including the highest contributing 

Leu100, Lys102, Lys103, Val106, Try188, and Phe227 residues. 

The classification of the compounds was in accordance with 

their docking score (DS) in a descending order.

FBe calculations
The FBE of the docked complexes was calculated to support 

the docking calculations and to predict the binding efficiencies 

of the HIV-1 RT against the targets. The FBE predictions are 

performed using molecular mechanics/Poisson–Boltzmann 

surface area (MMPBSA) that incorporates Equation 146 and 

molecular mechanics/generalized-Boltzmann surface area 

(MMGBSA) method that incorporates Equation 2.47

∆G
bind

 =  G
complex

 - G
protein

 - G
ligand

= ∆E
MM

 + ∆G
PB

 + ∆G
nonpolar

 - T∆S (1)

	 ∆G
bind

 = ∆E
MM

 + ∆G
solv

 + ∆G
SA

 (2)

Here, ∆E
MM

 is the difference between the minimized energies 

of the HIV-1 RT-GSK952 complex and the total energies of the 

HIV-1 RT and HIV-1 RT inhibitor including the electrostatic 

and the van der Waals energies, T∆S is the change in entropy 

of the ligand binding conformations, ∆G
solv

 is the difference 

in the P/GBSA solvation energies of the HIV-1 RT-GSK952 

complex and the sum of the solvation energies of the HIV-1 RT 

and HIV-1 RT inhibitor, ∆G
SA

 is the difference in the surface 

area energies for the HIV-RT enzymes and HIV-1 RT inhibitor. 

Both MMPBSA and MMGBSA methods have been realized to 

ensure the accurate ranking of inhibitors based on their FBE, and 

hence can serve as a powerful tool in drug design research.

Results and discussion
PreD pharmacophore model
The pharmacophore model exploits both the structural 

features of the proteins as well as the chemical features of 

ligands. To generate a PRED-based pharmacophore model, 

PRED decomposition was computed from MMPBSA cal-

culations after 5 ns MD simulations of the (2YNI-GSK952) 

complex. Residues Leu100, Lys102, Lys103, Val106, 

Try188, and Phe227 were found to be the highest contributing 

residues that interact with the ligands (Table S1). The phar-

macophoric features of the ligands’ HPI, hydrogen acceptor, 

and hydrogen bond interactions were found to interact with 

Leu100, Lys102, Val106, Try188, Lys103, Phe227, and 

Lys103, respectively. These ligand features were set as a 

query to generate a PRED-based pharmacophore model in 

ZINCpharmer.48 Furthermore, the PRED-based pharmacoph-

ore model (Figure S2) was used to screen the ZINC database49 

for compounds with similar features to obtain the novel hits. 

Additionally, a further selection criterion was implemented 

when screening ZINCpharmer database. Seven hundred and 

eighty-eight hits were obtained from the ZINC database.

Molecular docking
All 788 hits were docked into the crystal structure (2YNI) 

to assess their chemical and physical feasibility. Thus, only 
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ones with the correct pose and physical properties were 

selected for further consideration. This provided valu-

able insights into the nature of the binding site and the 

key ligand–protein interactions that are responsible for 

the molecular recognition and served as a validation step 

in the proposed workflow. A set of four compounds with 

experimentally determined activity (half maximal inhibi-

tory concentration [IC
50

] values) was selected to further 

validate our findings. These four compounds were docked 

into the crystal structure of 2YNI as described earlier in the 

Molecular docking section. Calculated DS were correlated 

against the inhibitors’ experimentally determined IC
50

 val-

ues (Table 1). DS correlated (R2=0.62128) (Figure 5) with 

the IC
50

 values. The comparison by means of correlation 

serves as an additional validation step and adds robustness 

and validity to the docking protocol used in the current 

study. After the validation, molecular docking was carried 

out for all 788 hits.

The top ten compounds with the highest DS were 

selected from the library of 788 hits. The DS for the top ten 

compounds ranged from -11.5 to -12.4 kcal/mol (Table 2). 

It should be noted that there is not much difference in the 

binding energy of the top ten compounds with a rough range 

of 0.9 kcal/mol. Hit compounds were found to be more stable 

due to conservation of vital pharmacophoric properties when 

generating the pharmacophore model. 

It is of high importance to consider residues that are 

directly accountable for the efficacy of HIV-1 RT when 

evaluating whether the molecules bind strongly with HIV-1 

RT. This will ensure effective inhibition. Lig-plot analysis 

is best suited for displaying the two-dimensional interac-

tion between the ligand and the residue contributing to the 

ligand binding. Lig-plot shows the interacting residues with 

Leu100, Lys102, Lys103, Val106, Tyr188, and Phe227 with 

the highest FBE contributing to the ligand binding. Leu100, 

Lys102, Val106, Phe227, Pro229, and Y188 have HPIs 

whereas Lys103 displays a hydrogen interaction with the 

inhibitor (Figure 4). The PRED calculations presented in 

this study are valuable tools that can be employed to high-

light the most significant residues involved in the binding 

of the inhibitor.

As a result, this will serve as a guidance in the design of 

drug candidates that can strongly bind with such residues. 

The anti-HIV activity of the top ten hits is not evidenced, as 

the FDA-approved anti-HIV drugs were omitted through-

out the entire screening process to guarantee the design of 

compound libraries grounded on novel structural scaffolds. 

Such findings verify the refined pharmacophore approach 

adopted in this work, rendering the suggested concept secure 

and dependable enough for the mining of novel drug candi-

dates against the enzyme of interest. We believe the conveyed 

methodology in this current work can be applied to more 

biological drug targets with determined protein structures 

and binders that are recognized. 

MD simulations and MMPBsa 
calculations
As previously mentioned, docking alone cannot provide 

reliable results. Hence, it is of high importance to correlate 

docking results with MD simulations. MD simulation (5 ns) 

was performed on the top ten screened hits from the molecu-

lar docking to confirm the change in mobility resulting from 

the binding of each hit to HIV-1 RT. Common MD-type force 

fields were employed to evaluate and rescore the docked com-

plexes, this will lead to more accurate estimates of the binding 

affinities. All the free energy components are representative 

of average values over the 5 ns MD simulations calculated 

using the MMPBSA approach shown in Table 3. Among the 

top ten, ZINC54359621 and ZINC46849657 resulted in the 

highest FBE. The total calculated FBE (∆G
bind

) of GSK952 

against HIV-1 RT protein is -58.8 kcal/mol compared 

to -58.5 kcal/mol and -59.0 kcal/mol of ZINC46849657 

and ZINC54359621, respectively. These findings are 

more reliable than the energy contributions obtained from 

the docking calculations. It was also observed that the 

Figure 5 Validation of molecular docking: docking score vs half maximal inhibitory 
concentration (ic50).

Table 1 Validation of molecular docking approach

Compound  
number

Compound  
code

DS  
(kcal/mol)

IC50  
(nM)

1 3M8Q -8.8 0.6
2 2Ban -8.4 1
3 3irX -9.2 1
4 2rF2 -7.9 3.5

Abbreviations: Ds, docking score; ic50, half maximal inhibitory concentration.
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Table 2 representation of the top ten compounds displaying 3D shapes, hBD, hBa, xlogP, MW, and calculated Ds and rB

Zinc ID 2D structure xlogP DS HBA HBD MW RB

Zinc15175251 O O
N+

N

O–

O

4.79 -12.4 6 0 344.32 5

Zinc60349595 O O

N+

N

O

O–

5.17 -12.3 6 0 358.35 5

Zinc07980692 5.17 -12.3 6 0 358.35 5

Zinc04952707 3.90 -12.0 7 0 397.40 6

Zinc09490236 4.07 -11.9 5 1 361.42 5

Zinc00868209 5.43 -11.7 6 0 375.3 7

Zinc60462497 3.90 -11.7 7 0 397.40 6

(Continued)
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Table 3 A comparison of GSK952’s binding affinity with that of 
the top two hits Zinc54359621 and Zinc46849657

Ligand ∆Total ∆EvdW ∆Eelec ∆Gbind ∆Ggas ∆Gsolv

gsK952 -58.8 -61.2 -21.4 30.9 -82.6 23.8 
Zinc46849657 -58.5 -67.1 -21.0 37.1 -88.1 29.6
Zinc54359621 -59.0 -67.6 -20.2 36.4 -87.9 28.8

Abbreviations: vdW, van der Waals; elec, electrostatic; solv, solvation.

Table 2 (Continued)

Zinc ID 2D structure xlogP DS HBA HBD MW RB

Zinc46849657 4.72 -11.6 8 0 467.53 5

Zinc54359621 -1.62 -11.6 3 0 317.34 4

Zinc89797911 4.07 -11.5 5 1 361.42 5

Abbreviations: 3D, three dimensional; hBD, hydrogen bond donor; hBa, hydrogen bond acceptor; MW, molecular weight; Ds, docking score; 2D, two dimensional; rB, 
rotatable bond.

∆E
vdW 

of ZINC54359621 and ZINC46849657 was higher 

(Table 3; Figure 6), which is advantageous and a contributing 

factor toward the high binding affinity.50 Electrostatic forces 

contribute to inhibitor molecules gaining binding energy.51 

ZINC54359621 and ZINC46849657 electrostatic interactions 

are similar to that of GSK952, which explains their higher 

binding affinity and stability.

PRED of the top two hits showed consistency compared 

to that of GSK952. The residues that contributed to the bind-

ing of GSK952 to HIV-1 RT protein also contributed to the 

binding of the top two hits (Figure 6). 

It is noted that ZINC54359621 has a hydrogen bond 

between the oxygen atom of Pro236 and the NH group of 

the aromatic ring, NH group of Lys103 and the oxygen atom 

of the aromatic ring. ZINC46849657 has a hydrogen bond 

between the oxygen atom of Pro236 and the NH group of 

the aromatic ring, the NH group of residue Lys103 and the 

oxygen atom of the aromatic ring (Figure 7). These are one of 

the key interactions required for the binding to HIV-1 RT. This 

indicates the compounds’ suitability as an RT inhibitor. 

HIV-1 RT is highly flexible in nature,52,53 and there-

fore the stability of the system during MD simulation was 

analyzed by computing 1) RMSD (Figure S3A) and 2) 

RMSF (Figure S3B). The average values of RMSD for 

ZINC54359621 and ZINC46849657 are 3.12 Å and 2.58 Å, 

respectively. Literature on HIV-1 RT with RMSD with a 

similar behavior as RMSD (Figure S3A) validates the sys-

tem’s stability54,55 due to the high flexibility of HIV-1 RT. 

RMSF shows good stability of all residues interacting with 

the ligands from residues 100 to 236. The average values 

of RMSF for ZINC54359621 and ZINC4684965 are 1.87 

Å and 1.53 Å, respectively. Further, the compactness of the 

system was analyzed by computing Rg of the systems. The 

average values of Rg for ZINC54359621 and ZINC46849657 

are 51.2 Å and 51.2 Å, respectively. Results show that the 

target protein folded correctly and was able to retain a stable 

compact structure (Figure S3C). 

Conclusion
VS was carried out to identify the potential inhibitors against 

mutated HIV-1 RT based on 1) PRED-based pharmacophore 

model, 2) molecular docking and, 3) MMPBSA approaches. 

The study identified two novel hits ZINC54359621 and 

ZINC46849657. These compounds may be representatives 

of a new series of NNRTIs possessing high resistance pro-

files against mutated HIV viruses. They have the potential to 

inhibit the transcription of the viral RNA by binding to the 

active site of the RT’s p66 subunit, thereby decreasing the rep-

lication rate of the virus. The pharmacophore approach was 

further refined, where the candidate molecules for structure-

based VS were chosen based on their orientation and chemical 

features in relation to the 3D structure. The PRED was also 
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Figure 7 Binding mode of compounds.
Notes: (A) Zinc54359621 and (B) Zinc46849657 to hiV-1 rT enzyme, respectively. 
Abbreviation: rT, reverse transcriptase.

Figure 6 The per residue graphs showing FBe contribution for both Zinc54359621 and Zinc46849657. 
Notes: (A) Top hit 1, Zinc54359621 with the highest total binding energy. (B) Top hit 2, Zinc46849657 with the second highest total binding energy.
Abbreviations: FBe, free binding energy; vdW, van der Waals; elec, electrostatic.
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calculated in order to obtain more insights into the crucial 

protein residues involved in ligand binding. This will poten-

tially aid in the design of potent inhibitors that bind to these 

HCAAR. The results presented in this study present a map to 

the innovation and design of potent drug candidates against 

different biological targets. Results have shown that choosing 

highly contributing FBE candidates from a library of com-

pounds generated from a PRED target-bound pharmacophore 

map is a more reliable and accurate approach.
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Supplementry materials

Figure S2 PreD-based pharmacophore model.
Abbreviations: PreD, per-residue energy decomposition; hPi, hydrophobic interaction; ha, hydrogen acceptor.

Figure S1 Two key binding interactions exist between gsK952 and the backbone nh and c=O groups of lys103 of hiV-1 rT.
Abbreviation: rT, reverse transcriptase.
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Table S1 PreD of highly interacting residues

Residue number Highly interacting residues FBE (kcal/mol)

1 Val106 -3.556
2 lys103 -3.311
3 Tyr188 -3.144
4 lys102 -2.243
5 leu100 -2.057
6 Phe227 -1.879

Abbreviations: PreD, per-residue energy decomposition; FBe, free binding energy.

Figure S3 MD simulation results of Zinc54359621 and Zinc46849657. 
Notes: (A) rMsD (average of 3.12 Ǻ and 2.58 Ǻ, respectively), (B) rMsF (average of 1.87 Ǻ, and 1.53 Ǻ, respectively), and (C) rg (average of 51.2 Ǻ and 51.2 Ǻ, 
respectively).
Abbreviations: MD, molecular dynamic; RMSD, root-mean-square deviation; RMSF, root-mean-square fluctuation; Rg, radius of gyration.
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