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Abstract: Over the last two decades, genome-wide studies have revealed that only a small
fraction of the human genome encodes proteins; long noncoding RNAs (IncRNAs) account for
98% of the total genome. These RNA molecules, which are >200 nt in length, play important
roles in diverse biological processes, including the immune response, stem cell pluripotency,
cell proliferation, apoptosis, differentiation, invasion, and metastasis by regulating gene expres-
sion at the epigenetic, transcriptional, and posttranscriptional levels. However, the detailed
molecular mechanisms underlying IncRNA function are only partially understood. Recent
studies showed that many IncRNAs are aberrantly expressed in gastric cancer (GC) tissues,
gastric juice, plasma, and cells, and these alterations are linked to the occurrence, progression,
and outcome of GC. Here, we review the current knowledge of the biological functions and
clinical aspects of IncRNAs in GC.
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Introduction
Gastric cancer (GC) is one of the most frequently diagnosed gastrointestinal neoplasms in
East Asia, Eastern Europe, and parts of Central and South America, and the second most
lethal malignancy worldwide.! Owing to a lack of appropriate molecular biomarkers,
GC patients are often underdiagnosed. Most cases are diagnosed at an advanced stage,
at which point the prognosis is uncertain even with surgery, chemotherapy, and radio-
therapy because of the risk of relapse, distant metastasis, and chemoresistance.? A better
understanding of the molecular mechanisms underlying the development of GC may
help identify potential diagnostic and prognostic biomarkers and therapeutic targets.

The complete sequencing of the human genome showed that only 1.5%—2% of
genes encode proteins and that the remaining genes are transcribed as noncoding
RNAs (ncRNAs), which are now known to play important roles in a wide variety
of biological processes in both normal development and in disease states.’*”* Based
on their functions, ncRNAs are classified as housekeeping or regulatory ncRNAs.
The former include ribosomal RNA, transfer RNA, small nuclear RNA, and small
nucleolar RNA, and they are constitutively expressed; the latter include short interfering
RNAs, piwi-interacting RNAs, microRNAs (miRNAs), and long noncoding RNAs
(IncRNAs), and they are expressed in a spatially and temporally restricted manner.
Regulatory ncRNAs are divided into two classes based on their length: short/small
ncRNAs (<200 nt) and IncRNAs (>200 nt). In addition, IncRNAs can be categorized
as sense, antisense, bidirectional, intronic, or intergenic depending on their proximity
to the nearest protein-coding transcripts.”*

Recent studies showed that aberrant IncRNA expression is associated with
various biological processes, including proliferation, metastasis, migration, and
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epithelial-to-mesenchymal transition (EMT) in several
cancers.’ !! In this review, we briefly summarize the current
state of knowledge on the role of IncRNAs in GC. IncRNAs
that have been linked to GC cell proliferation and apoptosis
are listed in Table 1, and IncRNAs that have been linked to
GC cell invasion and metastasis are listed in Table 2.

Proliferation and apoptosis
Upregulated IncRNAs

HI19

H19 is located on human chromosome 11 (11p15.5) and is
highly expressed during embryogenesis.!>"'> Aberrant H19
expression is observed in many types of cancer, including
esophageal, cervical, bladder, lung, and breast cancers.'*?!
H19 was shown to be upregulated in GC relative to normal
adjacent tissues (NATs) as well as in five human GC cell
lines (MGC-803, BGC-823, SGC-7901, AGS, and MKN-45)
compared with the normal gastric epithelial cell line GES-1.2
H19 is considered as an oncogenic RNA that can stimulate
cell proliferation, and its overexpression induces GC cell
proliferation and inhibits apoptosis.?>** H19 induces prolif-
eration by inhibiting p53 and suppressing the expression of
the p53 target B-cell lymphoma-associated X protein.* H19
expression is induced by c-Myc, which regulates GC cell
proliferation: transfection of the GC cell lines SGC-7901
and BGC-823 with a c-Myc plasmid resulted in a 3.2- and
2.9-fold upregulation of H19, respectively.?

H19 function as the precursor of microRNA (miR)-675.%
Both are overexpressed in GC tissues and promote cell pro-
liferation in vitro and in vivo. H19 knockdown resulted in
greater inhibition of cell proliferation, implying a mechanism
other than one involving miR-675. H19 regulates isthmin
(ISM)1 directly and CALNI1 indirectly via miR-675 to pro-
mote cell proliferation.” Runt domain transcription factor
1, a tumor suppressor, was shown to be a direct target of
miR-675.%

H19 and miR-141 act as competing endogenous RNAs
(ceRNAs) in GC. H19 is upregulated, while miR-141 is
downregulated in GC tissues, and H19 and miR-141 levels
are negatively correlated, which is consistent with the fact
that miR-141 inhibits cell proliferation. H19 and miR-141
modulate cell proliferation by competing for binding to their
target genes insulin-like growth factor (Igf)2, Igf receptor 1,
and zinc finger E-box-binding homeobox 1.7

H19 is a well-known IncRNA, and many studies have
analyzed its role in GC. H19 modulates the expression of p53,
ISM1, CALN1, miR675, and miR141 in GC. However, other
proteins or IncRNAs are regulated by H19 in other cancers,

Table | IncRNAs as regulators of cell proliferation and apoptosis in gastric cancer
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such as EGR1, 17B-estradiol, and HNF1A-AS1 among
others.?®3° The H19 network should be further investigated
in the future.

HOX antisense intergenic RNA

HOX antisense intergenic RNA (HOTAIR) was first identi-
fied in breast cancer and is associated with metastasis and
poor survival.?!' It has been implicated in tumorigenesis in
lung, pancreatic, liver, and gastric cancers.’>* HOTAIR was
found to be overexpressed in GC relative to NAT as well
as in 19 of 22 GC cell lines as compared to normal gastric
RNA 3¢ However, the expression of HOTAIR in SGC-7901
cells is controversial, and Liu et al’” showed that HOTAIR
is downregulated in SGC-7901 cells. However, to confirm
these results, assessment of all cell lines and SGC-7901 cells
should be performed to ensure lack of contamination. In a
soft agar assay, cancer cells with high levels of HOTAIR
formed larger colonies than those expressing low levels of the
protein.* HOTAIR knockdown inhibited cell proliferation
in KATO III, MKN74, and MKN28, but not in AGS cells,
by arresting the cell cycle at the G /G, phase;** however,
these results are controversial, since another study found
that HOTAIR did not influence MKN74 or KATO III cell
proliferation.

Recent studies showed that HOTAIR promotes cell pro-
liferation and inhibits apoptosis in vitro and in vivo. It has
been shown to act as a sponge for miR-331-3p, which sup-
presses GC cell proliferation, thereby relieving the inhibition
of HER2 by miR-331-3p.%’

Gastric carcinoma high expressed transcript |

Gastric carcinoma high expressed transcript (GHET)I1 is
upregulated in GC relative to NAT and was shown to pro-
mote cell proliferation in vitro by using the Cell Counting
Kit 8 and colony formation assay and by ethynyl deoxyuri-
dine incorporation. GHET1 also promotes xenograft tumor
growth in vivo. RNA immunoprecipitation and pull-down
experiments demonstrated a specific association between
GHET! and Igf2 mRNA-binding protein (BP)1; GHET1
modulates the physical interaction between c-Myc mRNA
and Igf2BP1 by binding the latter, resulting in increased
c-Myc expression, which in turn promotes cell proliferation.®
Heterogeneous nuclear ribonucleoprotein U (HNRNPU),
synaptotagmin binding, cytoplasmic RNA interacting protein
(SYNCRIP), Y-box binding protein 1 (YBX1), and DEAH
(Asp—Glu—Ala—His) box helicase 9 (DHX9) were suggested
to cooperate with IGF2BP1 in promoting the stabilization of
c-Myc mRNA.* The relationship between GHET1, c-Myc

mRNA, and the RNA-BPs (mentioned earlier) requires
further investigation.

Plasmacytoma variant translocation |

Plasmacytoma variant translocation (PVT)1 expression is
upregulated in GC tissues, and PVT1 knockdown in SGC-7901
and BGC-823 cells suppresses proliferation by inducing G,
arrest and apoptosis and affects tumorigenesis in vivo. PVT1
was implicated in epigenetic regulation through association
with enhancer of zeste homologue (EZH)2, a subunit of the
polycomb repressive complex (PRC)2. Moreover, pl15 and
pl6, which control cell cycle progression, are silenced by
overexpression of PVT, resulting in cell cycle arrest via EZH2
recruitment. Therefore, PVT1 along with EZH2 regulates p15
and pl6 to promote GC cell proliferation.* These studies
indicate that PVT1 plays a role in PRC2-mediated epigenetic
regulation and is thus involved in the progression of GC.

Terminal differentiation-induced ncRNA

Terminal differentiation-induced ncRNA (TINCR) is upregu-
lated in GC tissues, and gain- and loss-of-function studies
showed that it promotes cell growth by arresting cells at
GG, phase and inducing apoptosis. The nuclear transcrip-
tion factor specificity protein 1 increases the expression of
TINCR, which recruits and binds staufen (STAU)1 to form a
complex that binds to the 3’-untranslated region of Kruppel-
like factor (KLF)2 mRNA, thereby decreasing its stability
and expression. The consequent degradation of KLLF2 down-
regulates the cell cycle inhibitory genes cyclin-dependent
kinase (CDK)N1A/P21 and CDKN2B/P15. These results
demonstrate that TINCR indirectly regulates CDKN2B/P15
and CDKN1A/P21 at the posttranscriptional level.*

Antisense ncRNA in the INK4 locus

Antisense ncRNA in the INK4 locus (ANRIL; also known as
CDKN2B-AS1)is a 3.8 kb IncRNA that is upregulated in GC
tissues. ANRIL knockdown induces cell apoptosis and arrests
cells at G G, phase through a mechanism involving epige-
netic silencing of p15™E and p16™%4* via EZH2 binding
and H3K27 trimethylation. ANRIL may also epigenetically
regulate the expression of miR-99a/miR-449a by binding
to PRC2; ANRIL overexpression leads to the downregula-
tion of p15™K4B p16™K4A and miR-449a. Since p15™&*B and
p16™&4A are inhibitors of CDK®6, a target of miR-449a, this
results in an increase in CDK6 expression, dephosphoryla-
tion of retinoblastoma protein, and release of E2F1 from
inhibition, which induces ANRIL expression. This positive
feedback loop promotes GC cell proliferation.* ANRIL,
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as a member of PRC2-mediated epigenetic regulation, is
involved in the development of GC. Moreover, the crosstalk
between ANRIL and miRNAs at the epigenetic level is an
important discovery.

Gastric adenocarcinoma-associated positive cluster
of differentiation 44 regulator, long intergenic ncRNA
Gastric adenocarcinoma-associated positive cluster of
differentiation (CD)44 regulator, long intergenic ncRNA
(GAPLINC) is overexpressed in GC relative to NAT and is
associated with increased proliferation in vitro and in vivo.
A strong correlation between GAPLINC and CD44 expres-
sion was reported. MiR-211-3p is a target of both GAPLINC
and CD44, which compete for binding to this miRNA;
miR-211-3p downregulation inhibits the degradation of
CD44 mRNA and increases translation of the protein. Thus,
GAPLINC in conjunction with CD44 and miR-211-3p pro-
motes cancer cell proliferation.*>4¢

Colon cancer-associated transcript |

Colon cancer-associated transcript (CCAT)1 is overexpressed
in GC tissues.*”*® A correlation has been observed between
CCAT]1 and c-Myc mRNA expression; c-Myc binds directly
to E-box elements in the CCAT1 promoter to induce its
expression. Gain- and loss-of-function approaches showed
that CCAT1 promotes the proliferation of AGS and MKN45
cells.¥’

CARLo-5

CARLo-5 levels are higher in the BGC-823, MGC-803, and
SGC-7901 cell lines than in GES-1 cells, and CARLo-5
knockdown in the latter inhibits proliferation by inducing
apoptosis and G /G, arrest. CARLo-5 knockdown also leads
to the dephosphorylation and inhibition of extracellular
signal-regulated kinase (ERK) and p38 mitogen-associated
protein kinase (MAPK), indicating that CARLo-5 regulates
cell proliferation and apoptosis via modulation of ERK/
MAPK signaling.*

Sprouty 4 intronic transcript |

Sprouty 4 intronic transcript (SPRY4-IT)1 is highly expressed
in melanoma cells, trophoblast cells, clear cell renal cell car-
cinoma, and esophageal squamous cell carcinoma,*>* and
downregulated in non-small-cell lung cancer.> Its expression
and function in GC is controversial. Xie et al*® confirmed
that SPRY4-IT1 is downregulated in GC and represses cell
proliferation in the SGC-7901 and BGC-823 cell lines in vitro
and tumorigenesis in vivo. However, Peng et al*® found that
SPRY4-IT1 is significantly overexpressed in GC tissues.

MKN45 cell proliferation and colony formation were sup-
pressed by SPRY4-IT1 knockdown via a mechanism that
likely involves the regulation of cyclin D,.

In the future, additional studies should be performed
with a larger sample size and other types of cancer cells to
investigate the function of SPRY4-ITI.

Metastasis-associated lung adenocarcinoma
transcript |

Metastasis-associated lung adenocarcinoma transcript
(MALAT)1 and serine/arginine-rich splicing factor 1 (SF2/ASF)
were found to be upregulated in the SGC-7901, MKN-45, and
SUN-16 GC cell lines relative to the levels in GES-1 cells.
MALATI knockdown resulted in the downregulation of SF2/
ASF and induced SGC-7901 cell cycle arrest at G /G, phase,
thereby inhibiting proliferation. SF2/ASF acts downstream and
is a target of MALAT1. Thus, MALATT1 acts as an oncogene
in human GC and is a potential therapeutic target.”’

Highly upregulated in liver cancer

Overexpression of highly upregulated in liver cancer (HULC)
promotes the proliferation of SGC7901 cells. Interestingly,
the level of microtubule-associated protein 1 light chain 3-1I1,
an indicator of autophagy, was increased following HULC
overexpression, suggesting that HULC stimulates autophagy
in these cells, thereby inhibiting apoptosis and contributing
to proliferation.>®

Downregulated IncRNAs

Growth arrest-specific transcript 5

Growth arrest-specific transcript (GAS)5 is downregulated
in GC tissues and cell lines, including SGC7901, BGC823,
MKN45, and MKN28. GASS overexpression suppresses cell
proliferation and promotes apoptosis in vitro and inhibits
tumorigenesis in vivo, whereas knockdown of GASS induces
the expression of E2F1 and cyclin D, and inhibits that of p21.
Overexpression of E2F 1 induces tumorigenesis by stimulating
cell proliferation and p21 expression.” GAS5 was also shown
to bind to the transcriptional activator YBX1 by an RNA pull-
down assay; GAS5 knockdown reduced YBX1 protein level
by accelerating its degradation, leading to the downregulation
of p21 and progression through the G, phase of the cell cycle.
YBXI1 plays a critical role in the GAS5-mediated regulation
of the GAS5/YBX1/p21 pathway, which regulates the cell
cycle and modulates GC cell proliferation.®

Tumor suppressor candidate 7
Tumor suppressor candidate (TUSC)7 is downregulated in
GC as compared to NAT and inhibits cell growth in vitro and
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in vivo. TUSC7 is activated by p53 through p53-responsive
elements in its promoter. In addition, a mutually repressive
interaction between TUSC7 and miR-23b has been reported.
The activation of TUSC7 by p53 plays a key role in cell growth
inhibition through the suppression of miR-23b in GC.*!

Maternally expressed gene 3

Maternally expressed gene (MEG)3 expression is down-
regulated in GC relative to NAT, and its expression is
lower in SGC7901, AGS, MGC803, MKN45, and MKN28
cells than in GES-1 cells. miR-148a stimulates MEG3 by
inhibiting DNA methyltransferase 1, thereby suppressing
cell proliferation and growth.®* Another study showed that
MEGS3 inhibits cell proliferation by activating p53 signaling
in GC. MEGS3 functions as a ceRNA by competitively bind-
ing miR-181ato regulate Bcl-2 and inhibit cell proliferation.®
Another research reported by Zhou et al® indicated that
MEGS3 is positively correlated with miR-141 and inversely
correlated with E2F3.

Invasion and metastasis

Upregulated IncRNAs

HOTAIR

Knockdown of HOTAIR inhibits cell invasion, motil-
ity, and migration in vitro.*>37%67 On the other hand, the
overexpression of HOTAIR in a mouse model induced
metastasis and peritoneal dissemination.’® Xu et al** found
that HOTAIR could inhibit cell invasion by decreasing the
expression of matrix metalloproteinase (MMP)1 and 3,
and loss of HOTAIR reversed EMT by suppressing Snail
expression. Liu et al’” elucidated the mechanism by which
HOTAIR regulates the expression of Snail. They found
that HOTAIR could recruit the PRC2 complex to silence
miR34a, thereby inhibiting its expression. First, Snail is a
target gene of miR34a, and the downregulation of miR34a
could directly promote Snail translation. Second, miR34a
could indirectly induce Snail gene transcription via facili-
tating C-Met transcription.®® Another study showed that
HOTAIR could promote GC metastasis by repressing poly
r(C)-binding protein (PCBP)1. They confirmed a direct
interaction between HOTAIR and PCBP1 by RNA immu-
noprecipitation experiments.” Similar to the mechanism by
which it regulates proliferation, HOTAIR regulates HER2
via sponging miR-331-3p.*’

HI19

H19 not only promotes GC cell proliferation, but also
enhances GC metastasis. Similar to the mechanism by which
it regulates proliferation, H19 controls ISM1 directly and

CLANI indirectly by modulating miR-675, thereby pro-
moting cell invasion and migration.?® In addition, miR-141
binds H19 as a ceRNA to regulate target genes involved in
cell invasion.”’

GAPLINC

Similar to its effect on cell proliferation, GAPLINC in con-
junction with CD44 and miR-211-3p promotes cancer cell
migration and GC invasion.*+¢

HULC

HULC is not only involved in GC cell proliferation, but
also promotes cell invasion and blocks EMT. HULC pro-
motes SGC-7901 cell migration and invasion in vitro, while
HULC knockdown reverses EMT through the modulation of
E-cadherin and vimentin expression.*®

AKO058003

AKO058003 is overxpressed in GC tissues, and AK058003
knockdown suppresses SGC7901 and MKN45 cell migra-
tion, invasion, and motility. GC cell migration and invasion
were shown to increase under hypoxic relative to normoxic
conditions; however, this effect was lost upon AK058003
knockdown. In addition, low levels of AK058003 expression
are linked to a decrease in the number and size of lung and
liver metastatic nodules in vivo. Synuclein gamma (SNCG),
a metastasis-related gene, is upregulated under conditions of
hypoxia and is an effector of hypoxia-induced GC metastasis,
whereas loss of AK058003 decreases SNCG expression via
methylation of the SNCG promoter.®

FRLncl

FRLncl expression is inhibited by Forkhead box protein
(FOX)M1 knockdown in MGC803 and AGS cells. Transfec-
tion of siFRLnc1- and FRLnc1-overexpressing lentiviruses
promoted cell migration. Moreover, in vivo overexpression
by direct injection of SGC7901-FRLnc1-expressing cells into
mice revealed a role in pulmonary metastasis. The regulation
of transforming growth factor 1 and Twist was found to be
regulated by FRLnc1, thus mediating its role in cell migration
and distant tumor metastasis.”

SPRY4-IT|

SPRY4-IT1 promotes cell migration and invasion. SPRY4-
IT1 knockdown strongly inhibits migration and invasion
in vitro via regulating MMP2 and MMP9 expression.*
However, other studies showed that SPRY4-IT1 plays arole
in the inhibition of GC cell migration and invasion and the
EMT process in vitro, and cell metastasis in vivo.>
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MEG3

Knockdown of MEG3 inhibits cell invasion, motility, and
migration in vitro. MEG3 upregulates Bcl-2 by competitively
binding miR-181a, which is similar to the mechanism by
which it regulates cell proliferation.®

BM742401

BM742401 is downregulated in GC relative to NAT, and
its overexpression inhibits the migration and invasion of
AGS and MKN-1 cells and suppresses metastasis in vivo, a
process involving MMP9.”! Further studies are required to
clarify the underlying molecular mechanism and to identify
the effector molecules that interact directly and indirectly
with BM742401.

FENDRR

FENDRR is expressed at low levels in GC relative to
NAT, and its expression is lower in MKN28, MKN45, and
MGCS803 cells than in GES-1 cells. Treatment with the his-
tone deacetylase inhibitor trichostatin A altered FENDRR
expression. FENDRR suppresses GC cell metastasis in vitro
and in vivo, and a negative correlation between fibronectin
(FN)1 and FENDRR expression was reported. FENDRR
likely inhibits cell migration and invasion by suppressing
the levels of MMP2 and MMP9 and FN1.7? Further insight
into the function and clinical application of FENDRR and
its regulation targets FN1 and MMP2/MMP9 may be helpful
in designing treatment strategies for GC.

Clinical applications of IncRNAs

in GC

GC is one of the most common gastrointestinal malignant
tumors worldwide, with an overall survival (OS) rate of
20%-25%.7>7* Patients are often diagnosed at late stages
of the disease, underscoring the need to identify new bio-
markers that would allow early detection before metastasis
has occurred. Aberrant expression of GC-specific DNAs,
mRNAs, miRNAs, and IncRNAs can be detected in body
fluids, including plasma or serum, gastric juice, and urine,
which can aid in the early diagnosis of GC.”>”77 We briefly
summarize the current state of knowledge on the role of
IncRNAs in GC. IncRNAs that have been linked to GC
prognosis and diagnosis are listed in Table 3.

Upregulated IncRNAs
HOTAIR expression is associated with tumor size, pathologi-
cal stage, distant and lymph node metastasis, and tumor cell

Table 3 IncRNAs as potential biomarkers in gastric cancer

References

67

Application index and detail

HOTAIRT—0S!

Plasma samples Clinical significance Biomarker

Tissues and gastric juice samples

IncRNA
HOTAIRT

Prognosis

Cell differentiation, distant metastasis,

50 paired GC tissues

lymph node metastasis

36

HOTAIRT—DFSL

Prognosis

Lymphovascular invasion depth, lymph

node metastasis, TNM stage

50 paired GC tissues

39

HOTAIRT—OS! (in the 32

Prognosis

Venous invasion, lymph node

68 paired GC tissues

diffuse type gastric cancer)

metastases (in the 32 diffuse-type

gastric cancer)

37

HOTAIRT—0S!

Prognosis

Tumor size, pathological stage, distant

78 paired GC tissues

metastasis, lymph node metastasis, cell

66
5

of LNs metastasis, AUC =0.755
Prognosis: HOTAIRT—0S{

(whole cohort of 83 patients,

Diagnosis: predict the existence
N2 stage, N3a stage)

HOTAIRT—0S!

Prognosis
Diagnosis,
prognosis

Peritoneal metastases
TNM stage, lymph node metastasis

differentiation

150 paired GC tissues
83 paired GC tissues
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differentiation, as well as lymphovascular invasion.* 367
Another study confirmed that HOTAIR expression levels
predict lymph node metastasis, as determined by an area
under the receiver operating characteristic (ROC) curve
(AUC) of 0.755.33 HOTAIR expression also predicts poor
patient outcome, with higher levels associated with a worse
prognosis. 333767

Plasma H19 levels are higher in GC patients than in
healthy controls; ROC curve analysis showed that the AUC
was 0.64, with a sensitivity and specificity of 0.74 and 0.58,
respectively. In addition, postoperative plasma H19 levels
were decreased relative to the preoperative levels.”” This was
confirmed in another study which showed that plasma H19
levels can differentiate early-stage GC from healthy patients,
with an AUC of 0.877 and a sensitivity and specificity of
0.855 and 0.801, respectively.”® As with HOTAIR, patients
with higher H19 levels had a worse prognosis.?>%

TINCR, a 3.7 kb IncRNA, is downregulated in human
squamous cell carcinoma,” whereas it is highly upregulated
in GC relative to NAT. TINCR expression level was asso-
ciated with the degree of invasiveness and tumor—node—
metastasis (TNM) stage, and it may be a diagnostic and
prognostic biomarker in GC patients, with an AUC of 0.701
and a sensitivity and specificity of 0.65 and 0.71, respectively.
The Kaplan—Meier analysis and log-rank test indicated that
GC patients with high TINCR expression had higher recur-
rence rates, suggesting that it is an indicator of disease-free
survival (DFS) in GC.®

HIF1A-AS2 overexpression in GC tissues was found
to be closely correlated with TNM stage, tumor invasion,
and lymph node metastasis, with an AUC of 0.673, and a
sensitivity and specificity of 0.7229 and 0.6024, respectively.
Kaplan—Meier analysis revealed that high levels of HIF1A-
AS2 were associated with poor outcome in GC patients.?

GAPLINC, a 924 bp intergenic ncRNA, is highly
expressed in GC tissues; patients with high GAPLINC
expression have on average larger tumors and more frequent
occurrence of lymph node invasion than those with low
expression. The AUC was 0.758. In addition, GAPLINC
levels are associated with patient survival, supporting its
utility as a biomarker for GC diagnosis and prognosis.*

Urothelial carcinoma-associated (UCA)1, which was first
identified in urinary bladder cancer tissue and found to be
linked to increased tumorigenicity and invasion, is upregu-
lated in GC tissues. UCALI levels are higher in SGC-7901,
BGC-823, MKN-28, and AGS cells than in GES-1 cells.
UCAL levels were associated with cancer differentiation,
tumor size, invasion, and TNM stage. The levels of UCAL1 in

gastric juice were found to be higher in GC patients than in
normal individuals, with an AUC of 0.721 and a sensitivity
and specificity of 0.672 and 0.803, respectively. Kaplan—
Meier analysis showed that increased UCA1 expression
contributes to poor OS and DFS in GC patients, whereas
multivariate survival analysis showed that UCALI is an
independent prognostic marker for GC.*

GHET]1 is overexpressed in GC tissues and is correlated
with tumor size and invasion, as well as GC patient outcome,
with high GHET] levels associated with short OS.*

Long stress-induced noncoding transcript (LSINCT)5
was found to be overexpressed in GC relative to NAT as well
as in five GC cell lines relative to GES-1 cells. LSINCTS5
levels are associated with tumor size, tumor invasion, lym-
phatic metastasis, and TNM stage. Patients with high levels
of LSINCTS5 have worse outcomes, including shorter OS and
DFS, than those with lower LSINCTS5 expression.®

PVTI is upregulated in GC, and its expression is cor-
related with lymph node invasion and TNM stage. PVT1
is associated with poor prognosis, as GC patients with high
PVTI expression levels have worse OS and DFS than those
exhibiting low PVT1 levels. Uni- and multivariate survival
analyses indicated that PVT1 expression is an independent
prognostic factor for GC.4283

E2 ubiquitin-conjugated protein (UBC)1 is upregulated
in GC, and high levels of UBCI are associated with poor
prognosis in GC as well as with lymph node metastasis,
tumor size, and TNM stage.®

ANRIL is a 3.8 kb ncRNA that is upregulated in GC
tissues relative to NAT in 77.5% of cases and is strongly
associated with advanced TNM stage and tumor size. GC
patients with low levels of expression of ANRIL have better
OS and DFS than those with high levels.*

MALAT?2 overexpression in GC tissues is correlated
with lymph node metastasis and tumor stage, as well as with
shorter DFS.%

BRAF-activated noncoding RNA (BANCR) levels are
higher in GC than in NAT, and its expression is associated
with clinical stage, tumor depth, and lymph node and distant
metastasis. Kaplan—Meier analysis and log-rank test showed
that higher BANCR expression in GC tissues is associated
with shorter OS in GC patients.®

GACATS3, also known as AC130710, is upregulated in
GC relative to NAT, and its expression levels are associated
with tumor size, TNM stage, distant metastasis, and tissue
carcinoembryonic antigen (CEA) expression level ¥

LINCO00152 expression in gastric juice, plasma, and tissue
may also provide useful information for the diagnosis of GC.
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Plasma and gastric juice LINC00152 levels are higher in GC
patients than in normal controls. ROC curve analysis revealed
an AUC of 0.657, with a sensitivity and specificity of 0.481
and 0.852, respectively. Postoperative plasma LINC00152
levels are higher than preoperative levels, and LINC00152
upregulation in GC tissues is correlated with greater invasive-
ness, with an AUC of 0.645 and a sensitivity and specificity
0f 0.625 and 0.681, respectively.®

SPRY4-IT1 expression was shown to be elevated in GC
compared with that in NAT as well as in six GC cell lines
relative to GES-1 cells. Moreover, SPRY4-IT1 expression
is positively correlated with tumor size, invasion, distant
metastasis, and TNM stage. ROC curve analysis revealed
an AUC 0f 0.7332, and GC patients with higher SPRY4-IT1
expression had worse prognosis. SPRY4-IT1 expression is
an independent prognostic factor for OS and DFS and may
also be a useful diagnostic and prognostic marker in GC
patients.* In contrast with these findings, Xie et al** found
lower expression of SPRY4-IT1 in GC tissues compared
with NAT and also demonstrated an association with poor
prognosis.

HULC is overexpressed in GC tissues and is associated
with lymph node and distant metastasis and TNM stage with
an AUC of 0.769 and a sensitivity and specificity of 0.707
and 0.724, respectively. Therefore, HULC is a novel potential
prognostic biomarker in GC.*

Small ubiquitin-like modifier 1 pseudogene (SUMO1P)3
can also provide useful information for GC diagnosis;
SUMOI1P3 levels are higher in GC than in NAT, and its
expression is associated with tumor size, differentiation,
lymphatic metastasis, and invasion. The AUC was 0.666,
with a sensitivity and specificity of 0.659 and 0.636,
respectively.”

ABHDI11-AS1 was found to be overexpressed in 64% of
GC tissue samples compared with NAT in one study; this was
associated with differentiation, histological classification,
and CA19-9 levels. The AUC was 0.613 and sensitivity and
specificity were 0.67 and 0.64, respectively.’!

ncRuPAR expression is higher in GC than in NAT, and its
expression is associated with TNM stage, tumor invasiveness,
lymph node and distant metastasis, and tumor size with an
AUC of 0.84; therefore, ncRuPAR can serve as a biomarker
to differentiate GC from normal tissue.”

Downregulated IncRNAs

Fer-1-like protein (FER1L)4 expression in GC tissues is
linked to tumor diameter, differentiation, general classifica-
tion, invasion, lymphatic and distant metastasis, TNM stage,

vessel or nerve invasion, and serum levels of the tumor
marker carbohydrate antigen (CA)72-4. The AUC was 0.778,
and sensitivity and specificity were 0.672 and 0.803, respec-
tively. Postoperative plasma FER1L4 levels are reduced
relative to preoperative levels.”

AC138128.1, a 1,981 nt antisense IncRNA, is located on
chromosome 19 along with FBJ murine osteosarcoma viral
oncogene homologue B. Its expression is decreased in 70%
of GC samples compared with NAT specimens; on average,
the level was 0.548-fold lower in cancerous tissue, with an
AUC of 0.688.%*

AA174084 levels in the gastric juice of GC patients are
higher than those in the normal mucosa or in patients with
minimal gastritis, gastric ulcers, or atrophic gastritis. The
AUC was 0.848, with a sensitivity and specificity of 0.46
and 0.93, respectively. AA174084 expression in gastric
juice is associated with tumor size, tumor stage, histologi-
cal type, and gastric juice CEA levels. In addition, plasma
AA174084 levels decline by 76% postoperatively compared
with preoperative levels in GC patients; this reduction is asso-
ciated with invasion and lymphatic metastasis, while high
postoperative plasma AA174084 levels are linked to poor
prognosis. On the other hand, AA174084 expression was
found to be lower in GC tissues than in NAT, with an AUC
of 0.676 and a sensitivity and specificity of 0.57 and 0.73,
respectively. Tissues AA174084 levels are associated with
various clinicopathologic factors, including age, Borrmann
type, and perineural invasion. Therefore, AA174084 is a
candidate biomarker for early diagnosis and for predicting
prognosis in GC.*

MEG?3 expression is lower in GC tissues than in NAT,
and MEG3 level is correlated with tumor size, TNM stage,
and invasion. Kaplan—Meier survival analysis and log-rank
test revealed that lower MEG3 expression is correlated with
worse prognosis in GC patients.®

Gastric cancer-associated transcript (GACAT)1, also
known as AC096655.1-002, is downregulated in GC tissues,
and its expression is associated with lymph node and distant
metastasis, TNM stage, and differentiation, suggesting that
it plays an important role in GC metastasis. The AUC was
0.731, with a sensitivity and specificity of 0.513 and 0.872,
respectively. Therefore, GACAT!1 expression can predict
GC progression.”®’

GACAT?2, also known as HMIlincRNA717, is downregu-
lated in GC compared with NAT as well as in five GC cell
lines relative to GES-1 cells. Its expression was found to be
associated with distant metastasis and venous and perineural
invasion.®
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LET expression is reduced in several cancers including
hepatocellular carcinoma, cervical and gallbladder cancers,
and GC. Kaplan—Meier analysis and log-rank test showed that
lower LET expression levels are associated with decreased
OS. In addition, a Cox proportional hazards model showed
that LET expression was an independent prognostic marker
for predicting poor outcome in GC patients.”

GASS5 was also a prognostic biomarker for GC. Its levels
were found to be lower in GC tissues than in NAT in 89% of
cases. In addition, GASS expression was closely correlated
with tumor size and pathological stage. Patients with higher
GASS levels have longer OS and DFS. GASS expression was
also an independent risk factor for GC prognosis.*’

TUSC?7 is downregulated in GC relative to NAT, and
TUSCY7 levels are associated with histological grade and
tumor invasion, including invasion of the nervous system.
Patients with high levels of TUSC7 show longer disease-
specific survival and DFS, indicating that TUSC?7 is a prog-
nostic marker for GC.'

FENDRR expression is lower in GC than in NAT and is
correlated with tumor invasion, tumor stage, and lymphatic
metastasis. Patients with high FENDRR expression have a
lower recurrence rate and longer OS than those with low
FENDRR expression. Uni- and multivariate analyses showed
that low FENDRR levels were an independent prognostic
factor for OS and DFS.”

AlI364715 is downregulated in GC relative to NAT and
gastric precancerous lesions, and AI364715 expression
is associated with tumor size, differentiation, and venous
invasion. Poorly differentiated GC and a large tumor size
are correlated with poor prognosis, and A1364715 expression
also serves as a potential biomarker for GC prognosis.!®

Zinc finger matrin-type (ZMAT)I transcript variant 2 is
downregulated in GC tissues compared with NAT, and its
expression was associated with tumor invasion, lymph node
metastasis, and TNM stage. Real-time reverse transcriptase
polymerase chain reaction (RT-PCR) analysis showed that
ZMATI transcript variant 2 expression was 70.3% lower in
metastatic than in matched nonmetastatic lymph nodes, indi-
cating that it could be a biomarker for predicting lymph node
metastasis. The AUC was 0.781, and patients at N2 and N3a
stages exhibiting higher levels of ZMAT1 transcript variant 2
had better OS than those with lower expression.'”!

RP11-119F7.4, an antisense IncRNA located on chromo-
some 10 with a length of 349 bp, was found to be downregu-
lated in GC tissues compared with NAT, with an AUC of
0.637 and a sensitivity and specificity of 0.448 and 0.823,
respectively. RP11-119F7.4 expression level was associated

with macroscopic tumor type, histological grade, and inva-
sion into lymphatic vessels.'?

Conclusion

IncRNAs regulate gene expression at the transcriptional, post-
transcriptional, and epigenetic levels, and they are implicated
in the occurrence, development, and progression of GC.
Dysregulation of IncRNAs in GC is associated with tumor
size, macroscopic type, histological grade, tumor invasion,
and metastasis. A broad range of IncRNAs have been identi-
fied as potential markers for the early detection of GC and for
predicting patient outcome, with some already being used in
clinical trials. The utility of IncRNAs for cancer diagnosis and
prognosis and as therapeutic targets requires further explora-
tion; this knowledge can contribute to the development of more
effective IncRNA-based therapies for the treatment of GC.

Future directions
IncRNAs have recently attracted the interest of researchers
worldwide. Some IncRNAs have been suggested for use
in clinical applications, such as diagnosis, prognosis, and
treatment.'”® However, the relationship between IncRNAs
and GC has only recently begun to be studied in detail.

Health organizations from many countries have focused
on preventing the occurrence of GC. Helicobacter is regarded
as the pivotal causative agent of gastritis and GC.'** How-
ever, there are currently few studies analyzing the relation of
the immune response to Helicobacter pylori infection with
IncRNAs. Mizrahi et al*® reported that CCAT1 is upregu-
lated in GC tissues compared with NATSs, and they further
studied the relationship between H. pylori infection and GC.
The results showed no significant differences in CCAT1
expression between H. pylori-negative and -positive patients.
Yang et al'® identified 23 upregulated and 21 downregulated
IncRNAs from microarray data. Further quantitative RT-PCR
was used to evaluate the expression of five IncRNAs,
which showed that XLOC_004562, XLOC_005912, and
XLOC_000620 were upregulated, whereas XLOC_004122
and XLOC_014388 were downregulated in the gastric
mucosal tissues of H. pylori-positive patients. These
IncRNAs may provide novel targets for the treatment of
H. pylori infection, which could contribute to reducing the
incidence of gastritis and GC.'®

IncRNAs have more restricted tissue-specific expres-
sion than protein-coding transcripts in different types of
tissues. ' Therefore, researchers should validate and explore
novel IncRNAs that may play a role as biomarkers with high
specificity, similar to the use of AFP to diagnose liver cancer
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with high specificity.'!% Furthermore, IncRNAs play a role
in the occurrence, development, and progression of GC.'”
Therefore, the expression levels and functions of IncRNAs
differ during the different stages of GC. In particular, in
the early stages of GC, when tumor sizes are too small for
accurate detection using imaging modalities, the levels of
IncRNAs could be of value to distinguish patients with
early GC from healthy individuals. In the future, researchers
should use large sample sizes to verify the utility of IncRNAs
as biomarkers in large cohorts. As a noninvasive method,
measuring the expression levels of IncRNAs in plasma, gas-
tric juice, and urine could be a new novel strategy to screen
cancer patients and healthy individuals.'%!!

The identification of therapeutic targets is still a new
field, and more studies and efforts in the future are needed
to explore the function and molecular mechanism of
IncRNAs. The interaction network of IncRNA-miRNA—
protein provides additional information and provides novel
ideas for GC-targeted treatments. New therapeutic targets of
IncRNAs can be identified for drug development. However,
the delivery of IncRNAs into cancer cells directly is difficult
by conventional RNA interference (RNA1) methods because
of the large size and extensive secondary structures of these
IncRNAs. Screening for appropriate therapeutic targets and
targeting them to cancer cells with high specificity should
be the research strategy in the future.
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