Hemogram parameters for predicting pulmonary embolism in patients with deep venous thrombosis

Hakki Kaya
Recep Kurt
Department of Cardiology, Cumhuriyet University Medical School, Sivas, Turkey

Dear editor

We read the article of Sevuk et al., published in the August 2015 issue of your journal, with great interest. The authors concluded that percentage change in serial measurements of mean platelet volume (MPV) and platelet-distribution width (PDW) is valuable in predicting the development of pulmonary thromboembolism in patients with a previous history of deep venous thrombosis (DVT). In a similar study conducted by Braekkan et al. (Tromsø Study), MPV on admission was shown to predict pulmonary thromboembolism.

In a study by Zorlu et al., red cell-distribution width (RDW) values >14%, which is another parameter included in complete blood count, were associated with increased risk of mortality in the early period after pulmonary thromboembolism. RDW can be easily measured in routine hemograms, and indicates changes in erythrocyte-distribution width. Certain inflammatory cytokines released in response to acute heart failure occurring in acute pulmonary embolism may cause an increase in RDW values through inhibition of erythrocyte maturation by affecting bone marrow. It is realized that the study by Sevuk et al. did not include RDW in statistical analysis. Considering the fact that RDW has been previously documented to increase mortality in pulmonary thromboembolism, we suggest that RDW may be increased in patients with DVT due to acute pulmonary embolism and associated acute right heart failure and thus play a role in predicting the development of pulmonary embolism.

In conclusion, RDW, which is measured in routine hemograms together with MPV and PDW, is an easy parameter to access, so authors might include RDW in statistical analysis. We think that if RDW levels were used for this study together with MPV and PDW, RDW might change the results of multivariate analysis and might be one of the predictors of pulmonary embolism in patients with DVT.

Disclosure

The authors report no conflicts of interest in this communication.

References


Authors’ reply

Utkan Sevuk¹
Mehmet Veysi Bahadir²
Rojhat Altindag³
Erkan Baysal³
Baris Yaylak³
Nurettin Ay⁴
Firat Ayaz¹
Ertan Demirtas⁵

¹Department of Cardiovascular Surgery, Diyarbakir Gazi Yaşargil Education and Research Hospital, ²Department of General Surgery, Dicle University, ³Department of Cardiology, ⁴Department of General Surgery, Diyarbakir Gazi Yaşargil Education and Research Hospital, Diyarbakir, ⁵Department of Cardiovascular Surgery, Liv Hospital, Ankara, Turkey

Correspondence: Utkan Sevuk
Diyarbakir Gazi Yasargil Egitim ve Arastirma Hastanesesi, Klp ve Damar Cerrahisi Klinigi, 3 kat, Uckuyular, Diyarbakir 21010, Turkey
Tel +90 505 530 7095
Email utkansevuk@gmail.com

Dear editor

We read with great interest the letter to the editor written regarding our article, and appreciate the opportunity to respond to the letter.¹

Red blood cell-distribution width (RDW) is an easily available and affordable laboratory test that measures variation in red blood-cell size or red blood-cell volume. Recent studies have shown that elevated RDW was associated with the mortality rate of many disease states. Zorlu et al found that high RDW was associated with worse hemodynamic parameters and increased risk of mortality in patients with acute pulmonary embolism (PE).² In a study by Cay et al, RDW was reported to be associated with the presence and severity of deep venous thrombosis (DVT).³ Additionally, a recent report by Bucciarelli et al associated elevated levels of RDW with risk of venous thromboembolism.⁴

We agree that RDW may be associated with PE in patients with DVT, and may play a role in predicting the development of PE in patients with DVT. In future research, we plan to include RDW in our experimental design.

Disclosure
The authors report no conflicts of interest in this communication.

References