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Abstract: Oxidative stress plays a very critical role in neurodegenerative diseases, such as 

Parkinson’s disease (PD), which is the second most common neurodegenerative disease among 

elderly people worldwide. Increasing evidence has suggested that phytobioactive compounds 

show enhanced benefits in cell and animal models of PD. Curcumin, resveratrol, ginsenosides, 

quercetin, and catechin are phyto-derived bioactive compounds with important roles in the 

prevention and treatment of PD. However, in vivo studies suggest that their concentrations are 

very low to cross blood–brain barrier thereby it limits bioavailability, stability, and dissolution 

at target sites in the brain. To overcome these problems, nanophytomedicine with the controlled 

size of 1–100 nm is used to maximize efficiency in the treatment of PD. Nanosizing of phyto-

bioactive compounds enhances the permeability into the brain with maximized efficiency and 

stability. Several nanodelivery techniques, including solid lipid nanoparticles, nanostructured 

lipid carriers, nanoliposomes, and nanoniosomes can be used for controlled delivery of nano-

bioactive compounds to brain. Nanocompounds, such as ginsenosides (19.9 nm) synthesized 

using a nanoemulsion technique, showed enhanced bioavailability in the rat brain. Here, we 

discuss the most recent trends and applications in PD, including 1) the role of phytobioactive 

compounds in reducing oxidative stress and their bioavailability; 2) the role of nanotechnology 

in reducing oxidative stress during PD; 3) nanodelivery systems; and 4) various nanophytobio-

active compounds and their role in PD.

Keywords: Parkinson’s disease, phytobioactive compounds, nanotechnology delivery systems, 

nanocurcumin, nanoresveratrol

Introduction
The increase in the aging population in many countries is threatened by the second 

most common neurodegenerative disease, namely Parkinson’s disease (PD).1–3 Oxida-

tive stress plays a key role in the development of PD, including several degenerative 

reactions, such as nitric oxide toxicity, mitochondrial toxicity, and development of 

several toxic components, leading to impaired neuronal function.2,4,5 Synthetic bio-

active compounds are extensively used to reduce oxidative stress but have toxicity 

limitations. Phytobioactive compounds serve as natural antioxidants to reduce toxicity, 

and are extensively used to reduce oxidative stress, repair the central nervous system, 

and prevent PD.1,2 The phenolic compounds are the most beneficial, such as phenolic 

acids and flavonoids, which reduce disease by scavenging free radicals and limiting 

oxidative stress.2,6 In addition, flavonoids chelate metal ions, preventing formation of 

free radicals and limits limiting the onset of PD.6–8 Oral administration is the most 
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convenient for the repeated and routine delivery of bioactive 

compounds.9–11 However, it is most challenging due to the 

protection of brain by blood–brain barrier with the narrow 

diameter of approximately less than 20 nm that limits the 

entry of most bioactive molecules. Nanotechnology research 

has been utilized to enhance the permeability, solubility, and 

stability of bioactive compounds and to enhance delivery 

of phytobioactive compounds12,13 to the various target sites 

including brain.

Natural polymer-based delivery systems have been used 

to deliver a variety of nanoscaled proteins and carbohydrates, 

including gelatin, whey proteins, zein, gum arabic, and 

maltodextrin.14 These polymer-based nanoparticles are highly 

beneficial for delivering hydrophilic bioactive compounds, 

which bind to the membranes and increase the life of the 

bioactive compounds. In addition, nanosized bioactive com-

pounds can be delivered to the plasma through transcellular 

or paracellular pathways or receptor-mediated endocytosis. 

Lipid-based delivery systems have been used to enhance 

delivery of a variety of digestible lipids, such as tocopherols, 

flavonoids, polyphenols, and oil soluble vitamins.15,16 These 

digestible lipids greatly enhance the delivery of bioactive 

compounds in the small intestine by increasing the number 

of mixed micelles, which generally enhance solubility and 

transport of hydrophobic bioactive compounds.17–23

Many studies have focused on the health beneficial 

aspects of nanophytobioactive compounds to reduce oxi-

dative stress and treat neurological disorders and PD.24–28 

Nanocurcumin shows a higher mean residential time in 

the mice brain than that of natural curcumin.29 In addition, 

co-delivery of bioactive compounds greatly enhances the 

delivery rate of curcumin in the plasma.30–32 Similarly, nano-

resveratrol greatly reduces the oxidative stress of various 

cell and animal models of PD.33–35 Bioactive nanoparticles 

enhance release of antioxidants to the brain with physical 

carrier properties of high biodegradability and lower toxic-

ity. This review focuses on three main objectives: 1) the role 

of phytobioactive compounds in PD and their limitations;  

2) nanotechnologies involved in the development of bioactive 

nanoparticles; and 3) the role of bioactive nanocompounds 

in reducing the rates of neurodegenerative diseases.

Phytobioactive compounds and PD
PD is a multifactorial neurological disorder characterized 

by loss of dopaminergic neurons leading to subsequent 

loss of dopamine in the midbrain region.36 This causes 

an imbalance in neurotransmitters, such as dopamine and 

acetylcholine, which leads to various symptoms of PD. The 

major symptoms of PD include tremor, speech and writing 

changes, slowed movement, and rigid muscles.37–39 Bioac-

tive compounds play a major role in sustained protection 

against loss of dopaminergic neuron due to oxidative stress, 

among the various treatments to improve these symptoms 

in patients with PD.3,36,40–43 Extensive animal model studies 

have been conducted about the sustained protective role of 

different synthetic and natural bioactive compounds against 

dopaminergic neuron loss in PD.44–49 Based on limitations 

for using synthetic compounds,50–52 natural phytobioactive 

compounds play an important role in preventing PD.38,48 

Phytobioactive compounds from various medicinal plants 

show neuroprotective effects in various animal models.8,26

Phytobioactive compounds are secondary metabolites 

with higher health beneficial activity that occurs in smaller 

amounts in various plant parts, such as leaves, fruits, seeds, 

nuts, and roots.42,53–57 These include polyphenols, flavonoids, 

and triterpenoids, which contain one or more hydroxyl groups 

in their phenolic ring that scavenge free radicals and act as 

strong antioxidants. A diet rich in these bioactive compounds 

has a greater protective effect against neurodegenerative 

disorders.3,58,59 Consuming tea rich in flavonoids reduces the 

risk of PD in human trials. Similarly, older rats fed a diet rich 

in fruits, such as blueberries and strawberries, and vegetables, 

such as spinach, showed had better cognitive function.60 

Figure 1 shows the possible preventive role of nanobioactive 

compounds in reducing oxidative stress and the onset of PD. 

Most polyphenols occur as methoxylated, hydroxylated, or 

glycoxylated derivatives and the linking sugars are glucose, 

galactose, or rhamnose.61 The polyphenol is absorbed either 

in the small intestine or in the colon depending on the sugar 

linked to the polyphenolic group.61,62 The activities of most 

polyphenols are linked with the number of hydroxyl groups 

present at the active site. For example, the hydroxyl groups 

present in the third and sixth positions determine the anti-

oxidant potential of bioactive compounds. However, some 

hydroxyl groups present in the fifth and seventh dihydroxyl 

and fourth hydroxyl positions readily undergo degradation. 

Some acetylated flavonoids, such as epicatechin and epi-

galocatechin, are readily absorbed without hydrolysis.63,64  

A diet rich in plant foods with more bioactive compounds 

has a greater potential neuroprotective effect.38,65

Bioavailability of phytobioactive 
compounds
Most of the health benefits of bioactive phytobioactive 

compounds in vitro are associated with their capacity to 

scavenge free radicals, quench nitrogen species, and chelate 
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metal ions.9,58,63 Different concentrations of various bioac-

tive compounds that exert health beneficial activities in vitro 

are unlikely to be beneficial in vivo.9 Individuals prefer the 

oral route for consuming bioactive compounds with higher 

health beneficial activities. Bioactive compounds undergo 

breakdown and antioxidant activity in the intestinal system, 

which limits their bioavailability to the brain.9,62 Resveratrol-

rich foods have higher absorption rates in humans but lower 

bioavailability in its active form in plasma.66 Unlike other 

organs, the brain is well protected by the blood–brain barrier, 

which selectively filters molecules in and out of the brain. 

Oral administration of 100 mg/kg curcumin to mice results 

in only 0.4 µg curcumin/g brain.67 Nanotechnology is an 

alternative approach to overcome these bioavailability chal-

lenges. Modifying phytobioactive compounds to a nanosize 

of 1–1,000 nm enhances their availability to cells, thereby 

enhancing activity. Trans-resveratrol loaded nanoparticle 

systems and optimized self nanoemulsifying systems enhance 

bioavailability fivefold to various target sites because of the 

optimum formulation.68,69 Recently, nanotechnology-based 

approach of treatment gained more importance for the 

enhanced crossing blood–brain barrier through its unique 

nanosize to various brain diseases, such as PD, brain cancer, 

and Alzheimer’s disease.70

The role of nanotechnology in reducing 
oxidative stress in PD
Nanotechnology plays a very significant role in reducing 

oxidative stress that occurs in various diseases, including 

cancers, Alzheimer’s disease, and PD.23,24,29,34 However, the 

role of this technology in various other diseases has not been 

elucidated. Among various ways of developing nanobioac-

tive compounds, nanoparticles play a very significant role in 

reducing disease by reducing oxidative stress through their 

antioxidant mechanism.71 The most common nanoparticle anti-

oxidant mechanism involves reduction of the natural bioactive 

molecule (curcumin, resveratrol, or vitamin E) to a nanosize 

that can be readily absorbed and reach the target site without 

much loss in activity.16,29,35 Nanosized bioactive compounds 

vary in the size from 10 to 1,000 nm, which increases bioac-

tivity and target specificity, reduces toxicity, and enhances 

safety.17,29,33,34,68,72,73 The most important characteristics of 

nanoparticles delivered to the PD brain include the size of the 

bioactive compound, surface activity, and carrier toxicity.17,33,73 

Figure 1 Nano phytobioactive compounds mechanism of action against Parkinson’s disease pathway.
Notes: Phytobioactive compounds of its unique nanosize successfully cross the blood–brain barrier thereby inhibit the caspases activity and oxidative stress thereby inhibit 
further activation of glial cells and diseased dopaminergic neurons; also exhibit enhancement of endogenous antioxidant enzyme levels; inhibit the inflammatory cascade. 
These actions confirmed that phytobioactive compounds will be a successful therapeutic agent for Parkinson’s diseases.
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Smaller bioactive nanoparticles release faster to the brain 

target compared with larger bioactive nanoparticles.17 Hydro-

philic coatings on nanobioactive compounds protect against 

phagocytosis. The carrier should also be highly biodegradable 

and nontoxic.20 Nanoparticles or nanobioactive compounds 

can be placed in the core or on the surface, which depends 

on the method used to prepare the nanobioactive compound. 

The oxidization or hydroxylation of curcumin in the body can 

be prevented using nanocapsules in which curcumin is the 

core material.13 Some nanobioactive molecules are designed 

on the surface, such as thiamine-coated nanoparticles, which 

enhances delivery of the antioxidant to the brain.74,75

Nanotechnological delivery systems used 
to develop nanobioactive compounds
Careful design of the delivery method is important for various 

neurodegenerative disorders.13,22–24 The best nanotechnologi-

cal methods deliver the bioactive compound efficiently to the 

target site without any side effects.22,73 The activity of the 

bioactive compound also depends on the physicochemical 

properties at the target site. Numerous methods have been 

developed, such as solid lipid nanoparticles, liposomes, poly-

meric nanoparticles, nanoemulsions, and nanoniosomes.16,24,76 

The method is classified based on whether the compound is 

a solid or liquid, and each has distinct advantages and dis-

advantages based on the activity of the bioactive molecule. 

A few of these methods are shown in Figure 2.

Bioactive nanoparticle delivery systems
Solid lipid nanoparticles
Solid lipid nanoparticles contain solid lipid as triglycerides, 

which incorporate the bioactive compounds in a lipophilic 

and hydrophilic shell surrounded by a phospholipid layer for 

controlled delivery of the bioactive compound to the target 

site.72,77–81 The mobility of the bioactive compound is greatly 

reduced with a solid lipid core, so it remains in the gut, 

which enhances the sustained release of the compound for a 

prolonged period of time. Various methods have been used 

to develop solid lipid nanoparticles, including multiple emul-

sion, high-pressure homogenization, and ultrasonication.82–86 

Lipophilic bioactive compounds are highly dispersed in the 

lipid matrix, whereas the hydrophilic bioactive compounds 

are outside the lipid matrix. Dispersing the bioactive com-

pounds in lipid involves the appropriate solvent or mechani-

cal force. A polyethylene glycol (PEG) coating is used to 

stabilize nanoparticles incorporated in lipid. This coating 

enhances the stability of the bioactive compound in blood 

plasma by minimizing phagocytic uptake.87 Several syn-

thetic drugs are used to prepare solid lipid nanoparticles to 

prevent various conditions in PD.88–91 Bromocriptine-loaded 

solid lipid nanoparticles have been developed and studied 

in patients with PD and are highly effective in reducing 

dyskenesia.88 However, nanophytobioactive compounds 

developed using a solid lipid nanoparticle delivery system 

showed higher bioavailability.92,93 Curcumin-loaded solid 

lipid nanocarriers achieved approximately 155 times higher 

curcumin delivery than that of natural curcumin in cancer 

cells.94 Curcumin-loaded solid lipid nanoparticles are highly 

efficient and delivery to the brain delivery was approximately 

16.5 and 30 times higher than that of natural curcumin treat-

ment in rats via oral and intravenous routes, respectively.95 

The bioavailabilities of quercetin are also increased signifi-

cantly in a formulation using solid lipid nanoparticles.96–98 

Similarly, resveratrol-loaded solid lipid nanoparticles also 

enhance bioavailability eightfold during oral delivery.92,93

Nanostructured lipid carriers
Nanostructured lipid carriers are prepared with a mixture 

of solid and liquid phase lipids in which the bioactive 

compound is incorporated.92,99–104 Approximately 70% of 

the bioactive molecules incorporated into the mixture are 

well encapsulated into the carrier system and effectively 

reach the target site without much drop in bioactivity.99,104,105 

Solid phase lipids generally used to prepare nanostructured 

lipid carriers include acetyl alcohol, glycerol monosterate, 

and stearic acid and the liquid phase lipid includes caprylic 
Figure 2 Nanotechnology delivery methods for producing nanosized phytobioactive 
compounds.
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triglycerides, oleic acid, and cupric triglycerides.106 The type 

of lipid also determines the stability of the bioactive com-

pound in the bioactive compound-loaded nanolipid particles. 

The liquid lipid concentrations determine the size of the 

nanolipid particles.92,104,107 Higher concentrations of the liquid 

lipid particles make a smaller sized nanolipid particle but a 

higher release rate of the bioactive particles.107 Based on the 

structure of the matrix lipids, nanolipid carrier particles are 

subdivided into three types, such as the imperfect type, which 

contains less oil, leading to lower stability of the bioactive 

molecules. The imperfect type of nanostructured lipid car-

rier has significant advantages compared with solid lipid 

nanocarriers. The second type is the multiple nanostructured 

lipid carrier, which contains more oil, and can be loaded 

with more bioactive compound in their nanocompartments 

to enhance drug release.92 The third type is the amorphous 

type of lipid, which lacks the crystalline structure of a solid 

lipid, and expels the bioactive compound during cooling. 

Baicalin-loaded nanostructured lipid carriers show enhanced 

bioavailability and sustained baicalin release.105 Similarly, 

poorly soluble bioactive molecules, such as curcumin and 

genistein, have enhanced bioavailability in nanostructured 

lipid carriers and have a stronger effect inhibiting prostate 

cancer.108,109

Nanoliposomes
Nanoliposomes are phospholipids with a hydrophilic head 

and two hydrophobic tails. They range in size from 30 nm to a 

few microns and are formed by high-energy dispersion.110–113 

When the phospholipid bilayer is exposed to water it forms 

a continuous closed bilayer that encapsulates hydrophilic 

and hydrophobic bioactive compounds. Further aggrega-

tion of the nanoliposomes can be prevented by repulsion of 

the charged lipids in the membrane.114–116 Many bioactive 

compounds encapsulated in nanoliposomes have prolonged 

antioxidant activity with more surface area exposed.113,117,118 

Extended circulation of bioactive compounds encapsulated 

in nanoliposomes in plasma is achieved through a modi-

fied surface. Several nanosynthetic compounds have been 

designed to effectively deliver drugs to the brain.119,120 

Similarly, phtobioactive nanoliposomes, such as Orthosiphon 

stamineus extract nanoliposomes, have higher bioavailability 

and in vitro antioxidant activity.121 Curcumin encapsulated 

nanoliposomes show higher bioavailability after oral treat-

ment in rats with enhanced antioxidant activity.122 In vitro 

studies of multifunctional curcumin nanoliposomes proved 

their ability to cross the blood–brain barrier and were effec-

tive against Alzheimer’s disease.123

Nanoniosomes
Nanoniosomes are liposomes made of nonionic surfactant 

type vesicles at a nanosize ranging from 10 to 1,000 nm. 

These niosomes can bind both hydrophilic and hydrophobic 

bioactive compounds for enhanced delivery.124–127 They have 

advantages over other liposomes due to their higher chemical 

stability, enhanced protection of bioactive compounds, lower 

toxicity due to their nonionic nature, non-immunogenicity, 

and enhanced oral bioavailability.126 Niosomes can leak 

their bioactive compound contents during dispersion and 

aggregation but this quite negligible. Furthermore, coat-

ing niosomes with PEG prevents their detection by Kupfer 

cells in blood plasma; thereby, enhancing delivery to the 

target site. In vitro and in vivo studies have confirmed that 

smaller sized niosomes are better able to retain a bioactive 

compound at the target site, regardless of the administra-

tion route.128,129 Some bioactive compounds encapsulated 

in nanoniosomes have beneficial activities, including 

antioxidant, antimalarial, antifungal, and anti-Alzheimer’s 

disease.126,130 Nanoniosomes are frequently used to deliver 

bioactive compounds to the central nervous system with 

high efficiency and bioactivity. Ellagic acid-loaded nanonio-

somes have been developed for optimal delivery of bioactive 

compounds to human dermal cells.129 Synthetic compounds 

with diameters of 200 nm, such as doxorubicin, have been 

developed using the nanoniosome technique.124 Similarly, 

nanosized ganciclovir niosomes were developed to enhance 

bioavailability of ganciclovir in plasma for at least 8 hours 

after administration.131

Polymeric nanoparticles
Polymeric nanoparticles are widely used as a carrier for 

phytobioactive compounds, such as curcumin and resvera-

trol, which are incorporated into the polymer or adsorbed 

on the surface by nanoprecipitation or emulsion-diffusion 

methods to form polymeric nanoparticles.132 These nanosized 

particles are used to deliver phytobioactive compounds with 

minimal toxicity to the target site.133 Polymeric nanoparticle 

such as polylactic-co-glycolic acid (PLGA) particles can be 

hydrolyzed into lactic and glycolic acids, which are readily 

excreted without much toxicity.133 Quercetin and voglibose 

coated with poly-d,l-lactide-co-glycolide nanoparticles 

with a mean size of 41.3 nm have been developed using a 

solvent evaporation technique and showed good efficiency 

for treating diabetes through controlled trans-delivery 

systems.134 Similarly, quercetin nanoparticles showed 20-fold 

increased efficiency and controlled ethanol-induced gastric 

ulcers in rats.135 Synthetic PLGA-coated nanoparticles, such 
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as loperamide-loaded g7 and Pep TGN, were designed for 

controlled delivery to the brain.136,137 Curcumin nanoparticles 

of 80 nm stabilized using poly ethylene glycol were highly 

stable in an in vitro blood brain mice model of Alzheimer’s 

disease.29 Similarly, curcumin-conjugated magnetic nano-

particles were used to detect Alzheimer’s disease in mice.138 

Curcumin-loaded PLGA nanoparticles of 163 nm were highly 

bioavailable in liver, heart, spleen, kidney, and brain. In 

addition, these curcumin-loaded PLGA nanoparticles were 

effectively retained in brain.13,139

Nanoemulsions
Nanoemulsions are a mixture of two immiscible liquids to 

form a clear stable emulsion of particles 100 nm with higher 

optical clarity and greater bioavailability of the encapsulated 

functional compounds.140 These emulsions are prepared by 

high-energy and low-energy methods. The high-energy 

method uses physical force, such as a homogenizer, to 

obtain the emulsion, and the low-energy method involves 

spontaneous formation of the nanoemulsion with a suitable 

surfactant, water, and oil under specified conditions.141–143  

A nanoemulsion is effective for encapsulating various bioac-

tive compounds that are unstable under in vivo conditions for 

effective delivery to the brain.144 Oral administration of nano-

emulsified curcumin enhances bioavailability of curcumin 

in mice with reduced inflammation.144 Similarly, a vitamin 

E-loaded resveratrol nanoemulsion with 102 nm particles 

was produced using the spontaneous emulsification technique 

and reduced brain-induced oxidative stress to treat PD.145  

A pomegranate seed oil nanoemulsion with 135 nm particles 

was produced using the sonication technique and reduced 

lipid peroxidation and neuronal loss with strong protective 

effects.146 Several other plant bioactive compounds have 

been studied using nanoemulsion delivery methods, such as 

a betlunic acid nanoemulsion with 200 nm particles produced 

by sonication and enhanced bioavailability.147 A resveratrol 

nanoemulsion with 128 nm particles produced by high-speed 

homogenization enhanced bioavailability.148

Nanophytobioactive compounds and 
their role in PD
Plant bioactive compounds are a large group that readily 

undergoes degradation during oral intake, leading to lower 

bioavailability to the brain.9,11,60,66,149–151 Nanosizing of 

phytobioactive compounds along with suitable protective 

agents enhances the bioavailability of the compound to the 

brain.24,72,95,145,152 A few of the bioactive nanosize compounds 

with enhanced bioactivity and less toxicity are discussed in 

this section. Some of these nanobioactive compounds are 

listed in Table 1.

Nanocurcumin
Curcumin is a highly hydrophobic water insoluble compound 

widely used in medicines and the pharmaceutical and food 

industries.30,122,153,154 Curcumin has multiple health benefits, 

including antioxidant, antimicrobial, anti-inflammatory, 

anti-aging, anti-Alzheimer, anti-Parkinson, and anticancer 

activities.30,32,94,144,153–155 A lower retention time in circulation 

leads to the lower therapeutic potential of this compound.139,144 

Reducing the size of the curcumin compound to the nanolevel 

and formulating it with polyesters leads to higher bioavail-

ability in systemic circulation.122,123,144,155 Many studies have 

confirmed that nanosizing curcumin enhances bioavailabil-

ity and therapeutic efficiency for many diseases including  

PD.6,13,29,31,67,94,108,122,138,139 Nanocurcumin greatly reduces the 

oxidative stress and apoptosis in the brain of PD flies.156 

Similarly, an alginate curcumin nanocomposite has a neuro-

protective effect in a transgenic Drosophila PD model with 

reduced oxidative stress and brain cell death.156 Choice of the 

delivery systems is more important to enhance the bioavail-

ability of nanocurcumin in the circulatory system and for 

crossing the blood–brain barrier.157 For example, curcumin-

loaded PLGA nanoparticles show enhanced bioavailability 

compared with other nanodelivery systems.158 The enhanced 

bioavailability of nanocurcumin in circulation systems has 

been studied but studies related to the distribution of those 

compounds in organs are limited. A few studies have con-

firmed that nanocurcumin is bioavailable in blood plasma and 

can readily cross the blood–brain barrier into the brain.13,139 

The bioavailability of solid lipid nanocurcumin is greatly 

enhanced in the mouse brain with significant pharmacological 

activity.159,160 Similarly, the bioavailability of nanocurcumin 

is higher in mouse brain and has a protective effect against 

the oxidative stress in mice brain.161 The bioavailability of 

nanosize curcumin is higher in various PD models, which 

will lead to the development of more nanodelivery techniques 

for curcumin treatments.

Nanoginsenosides
Ginsenosides are active compounds predominantly 

found in ginseng. The type of ginsenoside varies with 

ginseng variety.162–164 Ginsenosides are broadly classi-

fied into 20(S) glycosides called protopanaxadiol and 

protopanaxatriol.165,166 These compounds reduce oxidative 
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Table 1 Bioavailability of plant-based nanobioactive compounds and their production methods

Bioactive  
compounds

Production  
methods

Particle  
size (nm)

Experiment  
models

Bioavailability References

Nanocurcumin Alginate–curcumin 
nanocomposite

11.3 Drosophila model Increase bioavailability 
and decrease oxidative 
stress and apoptosis in 
Parkinson’s disease

Siddique et al (2013)236

Solid lipid nanoparticle 190 Balb/c mice Increase concentrations 
in lungs

Wang et al (2012)237

PLGA nanoparticles 100–200 HeLa cells Increase anticancer 
efficiency

Nair et al (2012)238

PLGA nanoparticles 80–120 Human neuroblastoma 
SK-N-SH cells

Decrease neurons against 
oxidative damage in 
Alzheimer’s disease

Doggui et al (2012)239

PLGA nanoparticles 158 Sprague Dawley rats Increase intravenous 
bioavailability

Tsai et al (2011)13

PLGA nanoparticles NA Sprague Dawley rats Increase neuroprotective 
effect

Chang et al (2015)240

Nanoginsenosides Nanoliposome 150 L929 cells Enhance the survival rate 
of H2O2-damaged cells

Tsai et al (2012)172

Ginsenoside compound  
K-bearing glycol chitosan  
conjugate nanoparticles

255 and 296 Cancer cell lines Exhibited higher 
cytotoxicity to HT29, 
HepG2, and HT22 cancer 
cells

Mathiyalagan et al 
(2014)241

Nanoresveratrol Nanocapsule 241 Male Wistar rats Enhanced bioavailability  
in Alzheimer’s disease

Frozza et al (2010)242

PCL–PEG polymeric micelles 100 PC12 cells Enhanced bioavailability  
in Alzheimer’s disease

Lu et al (2009)243

Eudragit E100 73.8 Male Wistar rats Decrease oxidative stress 
and prevent chronic liver 
disease

Lee et al (2012)244

PEG–PLA–resveratrol 
conjugates

150 Rat C6 and Human  
U87 glioma cells

Increase antitumor 
activity

Guo et al (2013)245

Resveratrol-loaded  
PEG–PLA polymeric NPs

120–233 Cultured CT26 colon 
cancer cells in vitro and 
in CT26 tumor-bearing 
mice in vivo

Higher antitumor activity Jung et al (2015)246

Nanocatechin Nanoencapsulation 432–440 Swiss outbred mice Increase bioavailability Dube et al (2010)188

Tea polyphenol-loaded  
chitosan nanoparticles

400–452 HepG2 cells Increase antitumor Liang et al (2014)247

Nanoliposome 71.7 In vitro Increase bioavailability Zou et al (2014)187

Epigallocatechin-3-gallate  
gold nanoparticle

64.7 B16F10 murine 
melanoma cells

Improved anticancer 
efficacy

Chen et al (2014)248

Epigallocatechin-3-gallate- 
loaded nanoparticles  
prepared from chitosan  
and polyaspartic acid

102 Oral administration  
to rabbits

Decrease atherosclerosis Hong et al (2014)249

Nanoquercetin Solid lipid nanoparticles 200 Male Wistar rats Increase brain antioxidant 
capacity

Dhawan et al (2011)197

Solid lipid nanoparticles 155.3 Male Wistar rats Increase sustained 
release

Li et al (2009)98

Nanosuspension 430 In vitro Higher antioxidant 
activity

Karadag et al (2014)250

Nanoliposomes 62.3–191.5 C6 glioma cells Anticancer activity Wang et al (2012)251

Nanolycopene Nanostructured lipid carrier 150–160 In vitro Higher antioxidant 
activity

Okonogi et al (2015)215

Nanoemulsions 100–200 In vitro Higher bioavailability Ha et al (2015)213

Abbreviations: NA, not available; NP, nanoparticle; PCL, poly-caprolactone; PEG, polyethylene glycol; PLGA, polylactic-co-glycolic acid.
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stress in the liver, brain, and other organs by scavenging 

hydrogen peroxide radicals. In addition, ginsenosides 

also play a critical role in reducing the oxidative stress of 

PD. Ginsenoside Rg1 protects cells against H
2
O

2 
induced 

oxidative stress and increases cell survival of a PD model 

in vitro.167 Similarly, ginsenoside Rg1 protects neurons 

against 6-hydroxydopamine-induced death and iron-induced 

neuronal toxicity.168,169 Although these compounds play 

a critical role in reducing oxidative stress, their activities 

are lower than those of some other compounds in several  

in vivo studies.170,171 To increase the activity and bioavail-

ability of these compounds or crude extracts, nanosizing 

the formulation is an alternative for an enhanced protective 

effect against PD. The nanoginsenosides Rg1 and Rb1 

with 19.9 nm particles synthesized using a nanoemul-

sion technique have enhanced bioavailability in the brain. 

Intranasal delivery of these compounds results in better 

bioavailability in the brain with an enhanced protective 

effect compared with those of the intragastric adminis-

tration.165 In addition to the individual compounds, crude 

nanoextracts also have a beneficial effect against oxidative 

stress-related disease. Nanoliposomes of approximately 

150 nm containing a ginseng crude extract rich in ginse-

nosides have been studied for their effect against hydrogen 

peroxide-induced oxidative stress in L929 cells. That study 

confirmed that liposomal nanovesicles effectively suppress 

hydrogen peroxide-induced oxidative stress.172 Similarly, 

fabricated nanoginseng extracted powder with 300 nm  

particles has been synthesized using a ball mill technique 

and has enhanced bioavailability and antioxidant activity.173 

Similarly, nanoliposomal vesicles loaded with panax notog-

insenoside have a protective effect against cerebral ischemia 

and myocardial ischemia in rats.174

Nanoresveratrol
Resveratrol (3,5,4′-trihydroxystilbene) is a polyphenolic 

compound found widely in grapes, peanut, peanut sprouts, 

blueberry, cranberry, and mulberry.34,152,162 Resveratrol has 

multiple health benefits, including antiaging, anticancer, 

cardioprotective, and PD protective effects.66,68,145 Resvera-

trol exists in cis and trans forms, in which trans-resveratrol 

is more stable than cis-resveratrol which is pharmacologi-

cally less active.66 Trans-resveratrol is readily converted 

to cis-resveratrol when exposed to sunlight for 1 hour; 

therefore, protecting these compounds is biologically more 

important for a sustained effect. Nanoencapsulation protects 

trans-resveratrol from this rapid conversion and enhances 

its bioavailability in systematic circulation for prolonged 

activity.68,175 PLGA-coated resveratrol nanoparticles enhance 

the bioavailability of resveratrol for up to 4 days in a rat 

model.176 Their research group also studied sustained release 

of trans-resveratrol in vitro and found higher solubility 

and dissolubility of trans-resveratrol.68,175,176 In addition, a 

combination of one or two nanosized bioactive compounds 

has multiple health beneficial effects for certain diseases, 

which further reduces the multiple drug load. Curcumin and 

resveratrol encapsulated nanoliposomes have an antitumor 

effect against prostate cancer. The role of nanoresveratrol 

in preventing PD and enhancing neuronal survival against 

oxidative stress has been shown certain study.145 A vitamin 

E-loaded nanoresveratrol emulsion prepared with by self-

emulsification followed by high-pressure homogenization 

with particles of 102 nm makes resveratrol available to the 

brain, thereby reducing the oxidative stress of PD.145 Several 

other delivery techniques, such as solid lipid nanoparticles and 

nanostructured lipid carriers, have been studied for controlled 

delivery of resveratrol in the gastrointestinal tract. The same 

research group found that nanoresveratrol with 150–200 nm  

particles is biologically active with controlled delivery 

through the gastrointestinal tract in vitro.92 Similar to PD, 

Alzheimer’s disease can be controlled effectively by treat-

ment with resveratrol-loaded lipid-core nanocapsules.33,152 

Nano resveratrol developed using a suitable delivery 

technique produces a sustainable protective effect against 

PD and will lead to the development of more nanodelivery 

techniques for controlled delivery to the brain and enhanced 

neuroprotective activity.

Nanocatechins
Catechins are a group of polyphenols in many plant foods, 

including tea, fruits, and beverages and show multiple health 

beneficial aspects, such as anti-aging, anticancer, antimi-

crobial, antiviral, anti-PD, and antioxidative effects.177–180 

The antioxidant activities of catechins are highly protective 

against oxidative stress-induced PD, as shown by various cell 

and animal models.181–183 Although catechins have various 

health benefits, their bioavailability is low following oral 

consumption, resulting in reduced circulating levels.184 

Several nanotechnological approaches have been used to 

enhance their bioavailability with an enhanced protective 

effect against various disease models by reducing the size 

to the nanolevel or encapsulating the catechin in a suitable 

nanoencapsulating system.185,186 Nanoliposome encapsula-

tion of (−)-epigallocatechin gallate produced at a mean 

particle size of 71.7 nm enhances antioxidant activity and 

controls bioavailability.187 Similarly, tea catechin-loaded 
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nanoparticles with sizes of 134–354 nm prepared from 

chitosan show enhanced transport to the intestine with 

higher antioxidant activity.188,189 Some studies suggest that 

epigallocatehin-3-gallate reduced to approximately 50 nm 

by co-solubilization methods greatly enhances its bio-

availability in a rat brain model of Alzheimer’s disease.190 

These studies confirm that catechins can be efficiently 

encapsulated at a nanosize using a suitable nanotechnology 

involving nanoliposome, nanoemulsion, or nanoencapsula-

tion techniques, thereby protecting the catechin from the 

gastrointestinal tract.

Nanoquercetin
Quercetin is found at high levels in plant foods, such as 

fruits, vegetables, and juices. This bioflavonoid has multiple 

neurobeneficial activities, such as free radical scavenging, 

antianxiety, neuroprotection, and cognitive enhancing 

effects.191–193 Quercetin is chemo labile and thermo labile, 

which leads to lower bioavailability at the target site.194 

In addition, quercetin has poor solubility and distribution, 

resulting in less bioavailability to the brain.194 Nanosizing 

quercetin greatly increases bioavailability and increases the 

protective effect at the target site without much loss in the 

gastrointestinal tract during oral administration.98,135,195–197 

Oral delivery of nanoencapsulated quercetin with a size 

of 270 nm protects rat brain and liver cells from toxicity 

induced by arsenic. These studies have confirmed that 

quercetin is highly protected in the gastrointestinal tract and 

can be safely delivered to the target site in the brain.198 The 

same research group also studied quercetin encapsulated 

using an emulsion-diffusion-evaporation method to produce 

nanoquercetin with a size range of 20–50 nm, which showed 

higher bioavailability in various parts of the brain, such as 

hypothalamus, cerebellum, and hippocampus, in young and 

aged rats.196 Similarly, nanoquercetin developed using a 

solid lipid nanoparticle delivery technique with a size of 200 

nm showed enhanced permeability and a high brain protec-

tive effect from Alzheimer’s disease.197 Nanosized quercetin 

developed using a nanoliposome delivery technique with a 

size of 200 nm shows enhanced anti-inflammatory activity 

in MCF-10A cells and enhances cognitive function in a rat 

model.199,200 Furthermore, quercetin encapsulated with poly-

d,l-lactide nanoparticles with a size of approximately 130 

nm produced using a solvent evaporation method enhances 

retention time to 96 hours.55,201 These studies confirmed 

that nanosizing quercetin using various delivery techniques 

enhances its protective role against various neurological 

disorder animal models through its antioxidative effects.

Nanolycopene
Lycopene is a naturally occurring carotenoid compound widely 

found in tomato, watermelon, and pink guava.54,56,57,202–204  

Lycopene has a protective effect against neurological dis-

orders including Alzheimer’s and PD by reducing oxidative 

stress.205–211 Lycopene supplementation of a rotenone-induced 

rat model of PD enhances the protective effect against oxi-

dative stress and reduces neurobehavioral abnormalities.208 

However, bioavailability in the gastrointestinal tract was 

limited after oral administration.212 Nanosizing lycopene 

using a self-emulsifying nanodelivery system or nanoemul-

sion greatly enhances bioavailability of the lycopene.212–214 

Nanosized lycopene prepared using a nanoemulsion delivery 

technique with a size of 100 nm enhances in vitro antioxidant 

activity213 with increased bioaccessibility. Nanolycopene 

developed using a nanostructured lipid carrier delivery 

technique with a size of 150–160 nm shows less degradation 

and enhanced in vitro antioxidant activity.215 These studies 

confirm that lycopene can be stabilized using various delivery 

techniques and is potentially bioavailable for an extended 

duration to protect against oxidative stress leading to PD. 

Nanolycopene developed using various delivery techniques 

will be used in future studies for its role in various diseases 

including PD.

Nanokaempferol
Kaempferol is a flavonoid found in many plant foods, 

including tea, broccoli, tomato, drumstick leaves, and beans. 

Kaempferol has a variety of beneficial effects, including 

antioxidant, anti-inflammatory, neuroprotective, and anti-

cancer activities.162,216–222 Kaempferol enhances autophagy in 

a rotenone-induced acute toxicity model of PD by enhanc-

ing mitochondrial antioxidant activity.223 Kaempferol has a 

neuroprotective effect against 1-methyl-4-phenyl-1,2,3,6-

tetrahydropyridine-induced neurotoxicity in a mouse PD 

model.224 However, bioavailability is limited to approxi-

mately 2% after oral administration.225 Nanosized kaemp-

ferol enhances the antioxidant activity of kaempferol.226 

Nanokaempferol developed using a layer-bi-layer technique 

with a size range of 149–161 nm enhances the bioavailability 

of kaempferol in bone marrow.227 Oral bioavailability of 

kaempferol is enhanced using self-nanoemulsifying drug 

delivery system and nanoniosome delivery techniques with 

a size range of 34–141 nm in dog and rat models.228

Nanosilibinin
Silibinin is a flavonoid found mostly in milk thistle that has 

a variety of bioactivities, including anticancer, antioxidant, 
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neuroprotective, and antidiabetic effects.43,229–232 Silibinin 

protects against neuronal loss in the 1-methyl-4-phenyl-

1,2,3,6-tetrahydropyridine-induced mouse model of PD 

by stabilizing mitochondria potential, antioxidative, and 

anti-neuroinflammatory reactions.230 Similarly, silibinin 

attenuates mitochondrial dysfunction, oxidative stress, and 

neuronal loss following injection of MPP+ in a rat model of 

PD.229 Higher doses of silibinin enhance the protective effect 

in a 1-methyl-4-phenylpyridinium ion-treated animal model 

of PD in vivo.43 However, the bioavailability of silibinin 

to various organs is limited but can be greatly enhanced 

by nanosizing the compound.233,234 The bioavailability of 

silibinin-loaded nanotubes with a size range of 20–30 nm 

is greatly enhanced in cancer cell lines, even at very low 

concentrations.234 PEG-loaded nanoliposomes with a size 

range of 164–194 nm have also been designed for controlled 

delivery of silibinin to the liver.235 These studies confirm that 

silibinin, which has low bioavailability after oral intake, can 

be enhanced using a nanotechnological delivery method. 

Further herbal-derived nanoparticles are a budding approach 

to treat PD their toxicity was very minimal. It will be a future 

promising approach to treat PD.

Conclusion
The role of oxidative stress in PD is well understood but 

treatments using current phytotherapies are limited. Phyto-

bioactive compounds are more vulnerable to various condi-

tions during treatment, leading to lower bioavailability and 

lower anti-PD effects. Nanotechnology may solve these 

disadvantages and effectively deliver phytobioactive com-

pounds with sustained activity. Development of nanodelivery 

techniques is more important for delivery to target organs 

and cross the blood–brain barrier. Delivery techniques can 

vary based on the bioactive compound. Several nanodelivery 

techniques and nanophytobioactive compounds discussed in 

this review increase the delivery efficiency of compounds to 

target sites. Further, research should focus on co-delivery of 

phytobioactive compounds to prevent oxidative stress that 

leads to various disorders including PD.
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