
© 2015 Guada et al. This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution – Non Commercial (unported, v3.0)  
License. The full terms of the License are available at http://creativecommons.org/licenses/by-nc/3.0/. Non-commercial uses of the work are permitted without any further 

permission from Dove Medical Press Limited, provided the work is properly attributed. Permissions beyond the scope of the License are administered by Dove Medical Press Limited. Information on 
how to request permission may be found at: http://www.dovepress.com/permissions.php

International Journal of Nanomedicine 2015:10 6541–6553

International Journal of Nanomedicine Dovepress

submit your manuscript | www.dovepress.com

Dovepress 
6541

O r i g in  a l  R e s e a r c h

open access to scientific and medical research

Open Access Full Text Article

http://dx.doi.org/10.2147/IJN.S90849

Lipid nanoparticles for cyclosporine A 
administration: development, characterization, and 
in vitro evaluation of their immunosuppression 
activity

Melissa Guada1,2

Victor Sebastián3,4

Silvia Irusta3,4

Esperanza Feijoó1

María del Carmen 
Dios-Viéitez1

María José Blanco-Prieto1,2

1Department of Pharmacy and 
Pharmaceutical Technology, 
School of Pharmacy, University of 
Navarra, Pamplona, 2Instituto de 
Investigación Sanitaria de Navarra, 
IdiSNA, Pamplona, 3Chemical 
and Environmental Engineering 
Department and Nanoscience 
Institute of Aragon, University of 
Zaragoza, Zaragoza, 4Networking 
Research Center on Bioengineering, 
Biomaterials and Nanomedicine, 
CIBER-BBN, Madrid, Spain

Abstract: Cyclosporine A (CsA) is an immunosuppressant commonly used in transplantation 

for prevention of organ rejection as well as in the treatment of several autoimmune disorders. 

Although commercial formulations are available, they have some stability, bioavailability, and 

toxicity related problems. Some of these issues are associated with the drug or excipients and 

others with the dosage forms. With the aim of overcoming these drawbacks, lipid nanoparticles 

(LN) have been proposed as an alternative, since excipients are biocompatible and also a large 

amount of surfactants and organic solvents can be avoided. CsA was successfully incorporated 

into LN using the method of hot homogenization followed by ultrasonication. Three different 

formulations were optimized for CsA oral administration, using different surfactants: Tween® 

80, phosphatidylcholine, taurocholate and Pluronic® F127 (either alone or mixtures). Freshly 

prepared Precirol nanoparticles showed mean sizes with a narrow size distribution ranging from 

121 to 202 nm, and after freeze-drying were between 163 and 270 nm, depending on the stabi-

lizer used. Surface charge was negative in all LN developed. High CsA entrapment efficiency 

of approximately 100% was achieved. Transmission electron microscopy was used to study 

the morphology of the optimized LN. Also, the crystallinity of the nanoparticles was studied 

by X-ray powder diffraction and differential scanning calorimetry. The presence of the drug 

in LN surfaces was confirmed by X-ray photoelectron spectroscopy. The CsA LN developed 

preserved their physicochemical properties for 3 months when stored at 4°C. Moreover, when 

the stabilizer system was composed of two surfactants, the LN formulations were also stable at 

room temperature. Finally, the new CsA formulations showed in vitro dose-dependent immuno-

suppressive effects caused by the inhibition of IL-2 levels secreted from stimulated Jurkat cells. 

The findings obtained in this paper suggest that new lipid nanosystems are a good alternative 

to produce physicochemically stable CsA formulations for oral administration.

Keywords: cyclosporine A, lipid nanoparticles, oral administration, stability, immunosuppres-

sive activity, Jurkat cells

Introduction
Cyclosporine A (CsA) is a well-known immunosuppressive agent widely used in the 

prevention of allograft organ rejection and several autoimmune disorders, such as 

psoriasis, rheumatoid arthritis, dry eye, and ulcerative colitis. CsA was an important 

discovery in the immunotherapy field since it was the first immunosuppressant with 

selective action on lymphocyte inhibition avoiding myelotoxicity. The molecule was 

isolated from the fungal extract of Tolypocladium inflatum.1 CsA is a neutral cyclic 

peptide consisting of eleven amino acid residues. As a result of this peculiar structure 
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and its high molecular weight (1,203 Da), CsA presents poor 

biopharmaceutical properties, including hydrophobicity, and 

low permeability through biological barriers (ie, gastrointes-

tinal tract, skin, and cornea). These characteristics mean that 

CsA is classified as Class IV according to the Biopharmaceu-

tics Classification System.2 Nonetheless, this molecule has 

also been classified as Class II into the same system.3

CsA was initially marketed as a conventional oil-based 

form for oral administration (Sandimmune®; oral solution 

or soft gelatin capsules). This formulation presented some 

inconveniences associated with low and unpredictable drug 

bioavailability, leading to an erratic relationship between 

oral dose and total exposure. Subsequently, with the aim 

of achieving a more consistent pharmacokinetic profile, a 

reformulated product consisting of a microemulsion was 

developed (Sandimmune Neoral®; oral solution or soft gela-

tin capsules). This product has made it possible to enhance 

oral absorption and reduce variability compared to the first 

mentioned formulation.4 However, Sandimmune Neoral® 

is not capable of sustaining constant levels of the drug in 

blood within the narrow therapeutic window, and therefore 

CsA monitoring is still required.5 In addition, there are some 

other safety issues that remain unsolved: the dose-dependent 

nephrotoxicity attributed to the pronounced initial peak 

blood drug concentration, gastrointestinal disorders caused 

by Cremophor RH40, and the ethanol content, which is 

contraindicated in a certain patient population. Along with 

these, pharmaceutical issues associated with the microemul-

sion dosage forms have also been raised. High concentra-

tions of emulsifying agents and organic solvents lead to 

incompatibility with the shells of soft gelatin capsules as 

well as precipitation of components when stored at certain 

temperatures.6,7

During the last decade, lipid nanoparticles (LN), which 

consist of a solid lipid matrix stabilized by surfactants, 

have gained considerable interest as suitable oral delivery 

systems for drugs that exhibit poor and variable gastrointes-

tinal absorption, not only because of their adequate in vivo 

performance but also as a result of their versatility in manu-

facturing processes. Their numerous advantages combine 

those presented by oil-based formulations and polymeric 

colloidal carriers. Within the benefits offered by LN we may 

mention the physiological and biocompatible excipients in 

their composition, low surfactant quantities required for their 

stabilization, avoidance of organic solvents, enhancement of 

physicochemical stability by lyophilization or spray drying, 

scale-up feasibility, and relatively low cost production. 

In addition, LN enable us to enhance drug absorption, protect 

the drug from possible biological fluid degradation, and allow 

controlled drug release and drug targeting.8,9 Considering the 

aforementioned attributes, LN seem an attractive alternative 

to design a suitable CsA oral delivery system.

Therefore, the main purpose of this study was to develop 

and characterize safe and stable LN for CsA oral administra-

tion. The influence of different surfactants in the properties 

of the nanosystems and the physicochemical stability of the 

new CsA formulations developed were also investigated. The 

biological activity of the optimized lipid nanosystems was 

studied in vitro by measuring the inhibition of IL-2 produc-

tion of Jurkat cells after treatment with the nanoparticles and 

Con A stimulation.

Materials and methods
Reagents
CsA and Tween® 80 (Tw) were provided by Roig Farma S.A. 

(Barcelona, Spain). Precirol® ATO 5 was a gift from Gattefossé 

(Lyon, France). L-α-phosphatidylcholine (Lec) from egg yolk, 

taurocholic acid sodium salt hydrate (TC), Pluronic® F127 

(PL), D-(+)-trehalose dihydrate, formic acid 98% for mass 

spectroscopy, chloroform (HPLC grade), dimethyl sulfoxide 

(DMSO), 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 

bromide (MTT) and Con A were obtained from Sigma-Aldrich 

Co. (St Louis, MO, USA). Methanol (HPLC gradient grade) 

was supplied by Merck & Co., Inc. (Whitehouse Station, NJ, 

USA). Ammonium acetate (HPLC grade) was purchased from 

Scharlau (Sentmenat, Spain). Roswell Park Memorial Institute 

1640 cell culture media, heat-inactivated fetal bovine serum, 

and penicillin/streptomycin antibiotics were obtained from 

Thermo Fisher Scientific (Waltham, MA, USA). All other 

chemicals and solvents were analytical grade.

Development and optimization of LN
LN preparation
LN were prepared by the hot homogenization followed by 

ultrasonication method. Firstly, 200 mg of lipid (Precirol® 

ATO 5) and different amounts of drug (CsA) were melted at 

70°C (slightly above the lipid melting point). Then, 10 mL 

of an aqueous solution containing 2% (weight/volume [w/v]) 

of surfactant/co-surfactant preheated at the same temperature 

were added to the lipid phase and immediately homogenized 

by ultrasonication with a Microson™ ultrasonic cell disruptor 

(NY, USA) for 4 minutes at 10–12 W. The emulsion formed 

was cooled in an ice bath to obtain a nanoparticle suspension 

by lipid solidification. Then, the excess of surfactant aqueous 

solution and free drug was removed by diafiltration using 

Amicon® Ultra-15 10,000 molecular weight cut-off filters 
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at 4,500× g for 30 minutes and washed twice with distilled 

water. Finally, LN suspension was kept at -80°C and lyo-

philized to concentrate the LN and obtain a nanoparticulate 

powder. Trehalose was used as cryoprotective agent. Blank 

LN were prepared following the same procedure as described 

earlier without the drug incorporation step.

Effect of surfactant/co-surfactant on particle 
properties
Different types of surfactants (Tw, Lec, TC, PL) were used 

to prepare the LN to assess their influence on the mean 

particle diameter, size distribution, and drug entrapment 

efficiency (EE). Different surfactant combinations were also 

investigated to optimize the formulation quality. For this 

study, the amount of drug was maintained constant at 2.5% 

(weight/weight [w/w]) of the lipid content.

Effect of initial drug loading on particle properties
The effect of the amount of drug incorporated in the selected 

formulation was evaluated at different concentrations: 2.5, 

3.75, 5.0, 6.25, 7.5, and 10% (w/w) of the lipid content. All 

other components were kept at the same concentration. Each 

formulation was prepared in duplicate. Particle size, size 

distribution, and EE were systematically analyzed.

Characterization of CsA LN
Particle size, polydispersity index, and zeta potential
The mean particle diameter and polydispersity index (PDI) 

of the formulations developed were measured at 25°C 

by dynamic light scattering (Zetasizer Nano, Malvern 

Instruments, Malvern, UK) at an angle of 173°. LN 

suspensions were diluted with ultrapure water until an appro-

priate particle concentration was achieved. Each sample was 

measured in triplicate. Values were expressed as a mean ± 

standard deviation.

The surface charge of the nanoparticles was investigated 

by zeta potential measurements using laser Doppler 

velocimetry (Zetasizer Nano) at 25°C. Analysis was carried 

out in triplicate and each measurement was an average over 

at least 12 runs.

Drug EE
EE was determined by quantifying the amount of CsA 

incorporated in the lyophilized LN using an ultra-

high-performance liquid chromatography tandem mass spec-

trometry (UHPLC–MS/MS) method previously validated.10 

Briefly, 500 μL of chloroform were added to 5 mg of LN 

and vortexed for 30 seconds, then 1.5 mL of methanol were 

added to the mixture and vortexed for 1 minute. After cen-

trifuging at 15,000× g for 10 minutes, the supernatant was 

diluted with methanol (1:10) and a 2 μL aliquot was injected 

into the UHPLC system for drug analysis.

Morphological characterization
The morphological examination of LN formulations was 

performed by transmission electron microscopy (TEM). 

TEM images were taken on a FEI Tecnai T20 microscope 

(Hilsboro, ON, USA) at the Institute of Nanocience of 

Aragon, Advanced Microscopy Laboratory (Zaragoza, 

Spain). To prepare the LN samples for TEM observation, 

the LN suspension was first dispersed for 30 seconds in an 

ultrasonic bath. A drop of this suspension was applied to a 

copper grid (200 mesh) coated with carbon (C) film. Then, 

samples were air-dried for 30 minutes at room temperature 

(RT) after removing the excess of sample with filter paper. 

The microscope was operated at 80 kV to preserve the LN 

morphology and diminish radiation damage.

Crystallinity studies
X-ray powder diffraction analysis (XRD) was performed 

to study the crystalline properties of blank and CsA LN. 

Lyophilized LN formulations were analyzed using RIKAGU 

D/Max-2500 (Tokyo, Japan). The XRD analysis range was 

scanned at 2.5°–50° over 2θ with a step angle of 0.03° and 

a count time of 1 second at a constant temperature of 25°C, 

step =0.03°, with 40 kV voltage and current intensity level 

of 80 mA.

Pure lipids and pure CsA were studied and those XRD 

spectra were used as references in evaluating the LN formula-

tions. Bragg spacing was determined by the Bragg equation 

which relates the wavelength of the X-ray beam to both the 

angle of incidence and the interatomic distance.

Thermal analysis
Temperature-dependent structure and crystallinity changes in 

the lipids were analyzed using differential scanning calorim-

etry (DSC). DSC was performed using accurately weighed 

samples of bulk lipids and drug loaded and unloaded LN. These 

accurately weighed samples were sealed in aluminum pans  

(50 μL) and heating curves were recorded with a scan rate of 

10°C/minute in the 25°C–300°C temperature range using Dif-

ferential Scanning Calorimeter 822 (Mettler Toledo, Japan).

Surface elemental analysis
The surface composition of the LN as well as the individual 

components were analyzed by X-ray photoelectron 
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spectroscopy (XPS). The analysis was performed with an 

Axis Ultra DLD (Kratos Tech., Manchester, UK). The spectra 

were excited by the monochromatized AlKα source (1,486.6 

eV) run at 15 kV and 10 mA. For the individual peak regions, 

pass energy of 20 eV was used. Peaks were analyzed with the 

CasaXPS software, using a weighted sum of Lorentzian and 

Gaussian components curves after background subtraction. 

The binding energies were referenced to the internal C 1s 

(285.1 eV) standard.

Physicochemical stability studies of CsA 
LN
After lyophilization, approximately 100 mg of each for-

mulation were stored in closed glass vials at three different 

conditions: 4°C±2°C (refrigeration), 25°C±2°C (RT), and 

40°C±2°C (accelerated conditions). The physical stability 

of the nanosystems was evaluated by periodically measuring 

the mean particle diameter, size distribution, and zeta poten-

tial over a period of 3 months. Just after lyophilization and 

every 30 days, 10 mg of the dried powder were resuspended 

in 1 mL of distilled water and sonicated for 10–15 seconds. 

Then, samples were analyzed in triplicate as described earlier. 

The data are expressed as mean values ± standard devia-

tion. Chemical stability of the formulations was studied by 

quantifying CsA in the dried powder over the same period 

of time using the UHPLC–MS/MS.10

In vitro biological activity of CsA LN
Cell culture
Jurkat cells were obtained from American Type Culture 

Collection (ATCC, Manassas, VA, USA) cultured  in 

suspension at a concentration between 1×105 and 

1×106 viable cells/mL in Roswell Park Memorial Institute 

1640 cell culture medium supplemented with 10% fetal 

bovine serum and 1% penicillin/streptomycin at 37°C in 

a humidified atmosphere containing 5% CO
2
. Cells were 

subcultured every 3–4 days depending on cell density to an 

initial concentration of 2×105 viable cells/mL.

Cell viability study
The cytotoxicity of blank and CsA LN was determined on 

Jurkat cells by a colorimetric method using MTT assay. For 

the experiment, 100 µL of cells were seeded in a 96-well 

plate at a density of 4×105 cells/well in fresh culture media 

and were incubated with the nanosystems at increasing drug 

concentrations up to 1.5 µg/mL in a humidified 5% CO
2 

atmosphere at 37°C. After 20 hours, 20 µL of MTT solu-

tion at 5 mg/mL in complete cellular media were added to 

the wells and incubated for 4 hours in the same conditions. 

After centrifuging at 200× g for 10 minutes, supernatant was 

carefully removed, blue formazan crystals were dissolved 

with DMSO and the absorbance was measured at 540 nm 

with a microplate reader (Labsystems iEMS Reader MF, 

Vantaa, Finland). Culture medium was used as negative 

control (100% cell viability) and a 10% DMSO solution as 

a positive control (0% cell viability).

Inhibition of IL-2 production by Con A stimulated 
Jurkat cells
The biological effect of CsA incorporated in LN was assessed 

on human T-lymphocyte cell line (Jurkat cells) and Sandim-

mune Neoral® was used as reference. For this study, 4×105 

cells/well were seeded in a 96-well plate and cells were 

treated with CsA loaded LN (equivalent to 10 and 25 ng/mL 

of drug) and unloaded LN (equivalent to the highest concen-

tration). Then, Con A solution was added to the wells at a final 

concentration of 20 µg/mL and the plate was incubated in a 

humidified 5% CO
2 
atmosphere at 37°C. Con A-stimulated 

and non-stimulated cells without treatments were used as 

positive and negative controls, respectively. After 24 hours 

of incubation, microplate was centrifuged at 200× g for 

10 minutes and the supernatants were collected and stored 

at -20°C until analysis. Human IL-2 levels were measured 

by enzyme-linked immunosorbent assay (BD OptEIA™, BD 

Biosciences, San Jose, CA, USA) following the manufacturer 

instructions. Absorbance measurements were carried out at 

450 nm on a microplate reader (PowerWave XS, Biotek, 

Winooski, VT, USA).

Statistical analysis
Mann–Whitney U-test was performed for statistical com-

parison between different groups considering statistically 

significant differences when P0.05. Data analysis was 

conducted using GraphPad Prism version 5.00 (GraphPad 

Software, Inc., La Jolla, CA, USA). 

Results and discussion
LN preparation and characterization
Over the years it has been a challenge to incorporate 

CsA in a suitable oral drug delivery system. Researchers 

have spent major efforts on developing alternatives, such 

as self-nano-emulsifying drug delivery systems,6 lipid- 

based nanoparticles,11,12 polymeric-based nanoparticles,13 

micelles,14,15 liposomes,16,17 pH sensitive nanoparticles,7 etc. 

These novel design CsA carriers offer several advantages 

compared to the formulations commercialized previously. 
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These include enhancement of drug bioavailability, 

avoidance of the blood peak concentration, lower risk of 

nephrotoxicity, and controlled release of the drug, among 

others.

The main objective of this study was to design CsA lipid- 

based nanoparticles for oral administration as an alternative 

to the currently marketed Sandimmune Neoral® in order to 

overcome some concerns about stability, safety, and phar-

macokinetic behavior associated with the drug, excipients, 

or dosage forms.

CsA was successfully incorporated into LN using 

Precirol® ATO 5 as the lipid matrix. Precirol is a “generally 

recognized as safe” fatty ester with long acid chain length 

(palmitic acid) composed of a mixture of mono-, di-, and 

triglycerides. When this type of lipid is used to prepare LN, 

it has the ability to form less perfect crystals with many 

imperfections on the matrix and therefore offers more space 

for drug accommodation.18 The hot homogenization followed 

by ultrasonication method was selected for nanoparticle 

preparation since it is an organic solvent free melting pro-

cess, easy to scale up, in which no complex equipment is 

needed, and which avoids the need for high concentrations 

of surfactants and co-surfactants. As previously mentioned, 

preventing the use of organic solvent and large amounts of 

surfactants in the final product is directly related to the safety 

of the dosage form, which is one of the main drawbacks of 

the marketed formulation.

To obtain suitable LN, the influence of different variables 

such as type of surfactant and their combination, and also 

the amount of CsA incorporated into the system, were 

investigated in terms of particle size, size distribution, 

and EE. In this work, Tw and PL were chosen as nonionic 

surfactants, Lec as amphoteric surfactant, and TC as anionic 

surfactant, all of them usually used as stabilizing agents in 

manufacturing LN.

In this study, two types of stabilizer systems were 

investigated. One set of formulations was prepared with a 

single surfactant (Tw, TC, Lec) and in the other set mix-

tures of Lec, TC and/or PL were employed to optimize LN 

characteristics. 

Table 1 summarizes some of the physicochemical proper-

ties of the formulations developed including mean particle 

diameter, size distribution, and drug EE. Regarding LN 1, 

Tw was capable of stabilizing the lipid system producing 

particles of approximately 121 nm and a monodisperse size 

distribution (PDI 0.163) along with high CsA EE. These 

results are in good agreement with those obtained by Estella-

Hermoso de Mendoza et al19 who developed good quality 

Precirol LN for oral administration containing Edelfosine 

and Tw as surfactant. Given its optimal characteristics, LN 

1 was selected for further analysis, hereafter referred to as 

LN Tw-CsA.

TC also led to a submicron particle diameter (538 nm) with 

a narrow size distribution and good incorporation of the drug, 

as can be seen in the case of LN 2 (Table 1); however, particle 

size was above the limit advisable for oral administration20 

and thus this formulation needed to be optimized.

Where Lec was used as a surfactant (LN 3), the formula-

tion became a gel at the cooling step of the manufacturing 

process. This gelation has been attributed to the limited 

mobility of phospholipid molecules that leads to incomplete 

coverage of the particle interface.21 In order to overcome this 

limitation, the addition of co-surfactants with high mobility 

(eg, bile salts) has been proposed to retard or prevent gel 

formation during nanoparticle preparation when using 

phospholipids such as Lec as stabilizing agents.22 Besides, the 

combination of surfactants could boost the effect of lowering 

the surface tension of the emulsion leading to a reduction 

in particle size and also may enhance long-term stability of 

lipid nanosystems.

Table 1 Effect of surfactant/co-surfactant on cyclosporine A lipid nanoparticles’ characteristics loaded with 2.5% (w/w) of drug 
according to the lipid content

Formulation Surfactant Co-surfactant Ratio Size (nm) PDI EE (%)

LN 1 Tw – – 120.87±8.24 0.163±0.012 96.16±2.51
LN 2 TC – – 537.70±14.86 0.194±0.014 93.91±1.63
LN 3 Lec – – Gelation
LN 4 Lec TC 3:1 201.27±6.96 0.207±0.014 98.60±6.93
LN 5 PL TC 3:1 89.51±1.39 0.158±0.004 66.14±6.56
LN 6 PL TC 1:1 114.68±2.02 0.173±0.014 99.16±4.31
LN 7 PL Lec 3:1 78.52±0.12 0.151±0.002 45.47±8.13
LN 8 PL Lec 1:1 129.00±1.99 0.232±0.006 46.83±6.56

Abbreviations: PDI, polydispersity index; EE, entrapment efficiency; Tw, Tween® 80; Lec, L-α-phosphatidylcholine; TC, taurocholic acid sodium salt hydrate; PL, Pluronic® 
F127; w/w, weight/weight; LN, lipid nanoparticles.

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


International Journal of Nanomedicine 2015:10submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

6546

Guada et al

It has been described that CsA is very well solubilized 

by mixtures of lecithin and bile salts and that this solubility 

is enhanced at higher lecithin concentrations due to hydro-

phobic interaction with phospholipid molecules.14

In this regard, LN 4 was prepared with a blend of Lec 

and TC at proportion 3:1. This surfactant combination led to 

stable nanoparticle dispersions with high drug loading capac-

ity, and a particle size and PDI suitable for oral administration 

(Table 1). Therefore, this formulation was used for further 

studies (henceforth referred to as LN Lec:TC-CsA).

In addition, mixtures of PL:Lec and PL:TC at different 

ratios were also evaluated (Table 1). In both cases a high 

influence of PL on the mean particle diameter of the lipid 

nanosystems was observed (LN 5–LN 8). Higher concentra-

tions of PL led to a decrease in particle size. It appears that 

this nonionic surfactant is potent for lowering surface tension. 

Although particle size and size distribution were optimal 

in all the formulations containing PL, drug EEs were low 

when PL:Lec was employed as emulsifier. It is possible 

that the presence of PL in the aqueous phase improves CsA 

solubility in this phase and thus decreases its incorporation 

in the lipid matrix. Indeed, this fact has been previously 

reported for encapsulation of lipophilic drugs in solid lipid 

nanoparticles (SLN).23 Formulations consisting of PL:TC 

showed higher CsA entrapment than the ones containing 

PL:Lec, CsA incorporation being higher when increasing TC 

concentration. This phenomenon could be due to the ability 

of bile salts to disturb the hydrophobic chains of the lipid 

phase, thus improving the solubility of lipophilic drugs in the 

system.16 Accordingly, LN 6 showed optimal characteristics 

for this study and was selected for further analysis. This 

formulation is hereafter referred to as LN PL:TC-CsA.

The influence of the initial amount of drug used to prepare 

the nanosystems was investigated in terms of particle size, 

PDI, and drug EE. For this study LN Lec:TC was selected 

since Lec:TC are known to solubilize CsA to a greater extent. 

Size ranges between 195.55±5.16 and 208.55±3.18 nm with 

PDI below 0.219±0.011 were obtained for all the studied drug 

concentrations. Results showed that increasing concentration 

of CsA from 2.5% to 10% (w/w) added to the lipid matrix 

did not notably change the mean particle diameter and size 

distribution. However, a slight reduction in drug EE was 

observed from 98.60%±6.93% to 71.30%±5.76% as the 

CsA concentration was increased from 2.5% to 10% (w/w), 

respectively. The appearance of macroscopic agglomerates in 

the highest concentration tested was also observed, possibly 

due to the limited ability of the system to incorporate the drug. 

This phenomenon has already been reported.12 Reduction 

of spaces in the matrix owing to rearrangements of the lipid 

causes drug expulsion and thus agglomerate formation.

Another important characteristic of LN is the particle 

surface charge, which is measured by zeta potential. This 

parameter is essential to predict the dispersion stability. 

In general, dispersions with high absolute zeta potential 

values are considered stable systems due to the electric repul-

sion forces generated among charged particles preventing 

aggregation. Nonetheless, it has been reported that in the 

case of nonionic surfactants, the situation is more complex 

and stability is reached by steric repulsion.18 In this study, 

zeta potential values of the optimized LN, measured before 

lyophilization process, were -27.8±1.5 mV (LN Lec:TC-

CsA), -20.6±2.5 mV (LN PL:TC-CsA), and -14.6±1.9 mV 

(LN Tw-CsA). Variation in zeta potential values among the 

developed LN may be explained by structural changes in the 

surface caused by differences in the emulsifier utilized to 

produce them. In all cases particles were negatively charged 

due to the fatty acid in the lipid matrix,24 those containing 

ionic surfactants (Lec and TC) being more negative.

Blank LN were prepared and characterized to compare 

the physical properties of the nanosystems (CsA loaded and 

unloaded LN) and to evaluate possible changes in particle 

size and zeta potential value caused by the drug incorpora-

tion. As can be observed in Table 2, unloaded formulations 

showed similar characteristics to those obtained by loaded 

LN regarding particle size, PDI, and surface charge. To that 

effect, it appears that CsA, as a lipophilic and neutral 

molecule, was completely solubilized in the lipid phase 

without producing any change in these particle properties.

Morphological characterization of the LN
TEM characterization was performed in order to explore 

the particle morphology and size distribution. The TEM 

images (Figure 1) revealed that the optimized LN are dis-

persed as individual particles with a well-defined spherical 

shape. Figure 1A and B depicts LN Lec:TC-Blank, whereas 

Figure 1D and E shows LN Lec:TC loaded with CsA. We 

can infer from TEM micrographs that the morphology is 

not altered by the presence of the drug. Particle size dis-

tribution histograms estimated from TEM images clearly 

prove that the particle size distribution of both formulations 

is governed by a Gaussian distribution (Figure 1C and F). 

The sizes obtained ranged from 258±20 to 261±21 nm in 

LN Lec:TC unloaded and loaded with CsA, respectively. 

Consequently, TEM analysis indicates that the presence of 

CsA has no effect either on the morphology or the size of 

nanoparticles. This statement is consistent with the results 
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Table 2 Physical characteristics of the optimized cyclosporine A (CsA) loaded and unloaded lipid nanoparticles

Formulation Size (nm) PDI Zeta potential (mV)

LN Lec:TC-CsA 201.27±6.96 0.207±0.014 -27.8±1.5
LN Lec:TC-Blank 202.43±8.65 0.210±0.012 -30.0±1.4
LN PL:TC-CsA 114.68±2.02 0.173±0.014 -20.6±2.5
LN PL:TC-Blank 111.11±2.20 0.165±0.007 -22.7±2.7
LN Tw-CsA 120.87±8.24 0.163±0.012 -14.6±1.9
LN Tw-Blank 117.96±6.39 0.164±0.022 -16.2±2.9

Abbreviations: PDI, polydispersity index; LN, lipid nanoparticles; PL, Pluronic® F127; Tw, Tween® 80; Lec, L-α-phosphatidylcholine; TC, taurocholic acid sodium salt 
hydrate.

Figure 1 Transmission electron microscopy micrographs and particle size distribution of LN Lec:TC formulations. 
Note: Blank (A–C) and cyclosporine A lipid nanoparticles (D–F).
Abbreviations: LN, lipid nanoparticles; Lec, L-α-phosphatidylcholine; TC, taurocholic acid sodium salt hydrate.
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obtained from the particle size measurement by dynamic 

light scattering (Table 2).

Crystallinity and thermal analysis of the 
LN
XRD analysis enables us to identify the crystalline or amor-

phous state of LN, as well as revealing the spacings in the 

solid lipid lattice.18 This is particularly important since lipids 

are very often polymorphic substances. XRD patterns of pure 

lipid and CsA were used as references for the evaluation of LN 

spectra (Figure 2A). Reference spectra indicated that Precirol 

and CsA existed in a crystalline state before being processed to 

give rise to the LN Lec-TC formulation. LN prepared with and 

without CsA and further lyophilized exhibited the same peaks 

with the starting lipid material, despite the hot homogeniza-

tion conditions. On the other hand, the intensity peaks that 

belong to CsA could not be identified in the diffractograms 

of CsA loaded LN, suggesting the presence of an amorphous 

CsA payload. The Bragg-spacing values calculated for the 

reflections show the presence of two types of spacings: long 

spacings (depending on the fatty acid chain length and the 

angle tilt) and short spacings (non-dependent on fatty acid 

chain length). Short spacings correspond to reflections at high 

angles, originating from the packing of lipids, and are related 

with the presence of polymorphs. The most stable form, the β 

polymorph, has a triclinic subcell with a characteristic spacing 

at 4.6 Å. The β′ form has an orthorhombic subcell structure 

with characteristic spacings at 3.8 Å and 4.2 Å. Finally, the 

α polymorph has a hexagonal subcell with a characteristic 

spacing at 4.15 Å.25 Figure 2A shows the existence of 4.61, 

4.22, and 3.86 Bragg-spacings, which implies that both the 

bulk lipid and the nanoscale counterpart are a mixture of β 

and β′ polymorphs. The polymorphs differ in stability, melt-

ing point, density, and melting enthalpy. The β polymorph is 

the most stable and has the highest melting point and melting 

enthalpy. XRD results can be corroborated by DSC analysis. 

The DSC thermogram of pure Precirol exhibited a melting 

endothermic peak at 58°C, while pure CsA, Lec, and TC 

peaked at 140°C, 225°C, and 140°C, respectively (Figure 2B). 

The observed melting peak of LN, with and without CsA 

payload, was found to be 53°C. This depression cannot be 

attributed to any polymorph transition, since XRD did not 

reveal any Bragg-spacing modification. On the other hand, 

it is stated that the presence of surfactants in the melted lipid 

phase during the production process could distort crystals 

resulting in a lower melting energy.26 This fact can also be 

explained by the Kelvin effect, where a reduced particle size 

and increased surface area led to a decrease in the melting 

enthalpy compared to the bulk lipid.26 The CsA melting 

endothermic peak of loaded LN disappeared, indicating the 

existence of amorphous CsA or that it has been molecularly 

dispersed within the Precirol matrix, confirming the results 

obtained by XRD.

Surface analysis of the LN
The presence of CsA in the LN surfaces was studied by XPS. 

Surfaces of loaded and unloaded nanoparticles as well as some 

of the components were characterized. Beside C and oxygen 

(O), phosphorus (P) was detected in formulations contain-

ing Lec. Nitrogen (N) is a component of CsA, Lec, and TC 

and was detected in samples containing them, except for the 

unloaded LN PL:TC-Blank, probably because N concentration 

was below the detection limit of the technique. The absences 

of sulfur (S) signals also present in the TC would support the 

°

Figure 2 Crystallinity and thermal characterization of the lipid nanoparticles.
Notes: (A) X-ray diffractograms of: (a) cyclosporine A (CsA), (b) Precirol, (c) LN Lec:TC-Blank, (d) LN Lec:TC-CsA. Gray shadow corresponds to Bragg-spacing. 
(B) Differential scanning calorimetry thermograms of: (a) Precirol, (b) cyclosporine A, (c) L-α-phosphatidylcholine, (d) taurocholic acid sodium salt hydrate, (e) LN Lec:TC-
Blank, (f) LN Lec:TC-CsA. 
Abbreviations: LN, lipid nanoparticles; Lec, L-α-phosphatidylcholine; TC, taurocholic acid sodium salt hydrate.
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low concentration of TC on this sample surface. The N/C 

atomic ratio obtained from C 1s and N 1s peaks is shown in 

Table 3. For samples loaded with CsA there is an important 

increase in N content compared to the unloaded ones due 

to the presence of the drug. The most important increase in  

N signal was observed in the LN Lec:TC-CsA (Table 3). For 

this sample two different N 1s signals were identified, with 

binding energies of 402.8 and 400.0 eV (Figure 3A). The peak 

at higher binding energy would be associated with quater-

nary ammonium cations,27,28 while the peak at lower binding 

energy could be assigned to hydrogen-bonded amines.29 The 

intensity ratio between the low- and the high-binding-energy 

peaks increases from 0.38 in the unloaded LN to 0.95 for the 

loaded LN, due to the presence of CsA.

Another interesting feature is the change in the O 1s 

peak for loaded samples (Table 3). The O 1s peak was 

decomposed into two peaks for samples containing PL:TC 

(Figure 3B) and Tw. The component at low binding energy, 

532.4–532.7 eV, is attributed to O single bonded to C in 

C-O-H and/or in C-O-C groups while the peak at 533.6–533.8 

eV would be related to O in carboxyl function.30 The third 

peak that appears in Lec:TC formulations would be related to 

the presence of PO
3
2- groups present in the Lec.31 The atomic 

concentration decrease of O in carboxyl functions (peaks at 

533.6–533.8 eV) in samples containing the drug compared to 

the unloaded ones suggests that the CsA would be interacting 

with these functional groups of the lipid.

Physicochemical stability studies of CsA 
LN
The physicochemical stability of the optimized CsA LN was 

studied after the lyophilization of the formulations in order to 

preserve their characteristics for an extended period of time. 

Lyophilization prolongs the physicochemical stability of lipid 

nanosystems by transforming the liquid nanodispersion into 

a dry product. Besides, a solid form allows the incorporation 

of the LN into capsules, tablets or pellets bearing a feasible 

dosage form for oral administration.8 For the lyophilization, 

cryoprotectant was added to the nanodispersions to reduce 

the LN aggregation and to obtain better particle redispersions 

after the freeze-drying process. Trehalose was used as the 

cryoprotective agent since it has been reported as being most 

effective in preventing particle growth in SLN.20,32

First, the effect of the freeze-drying process on the 

resuspension properties of the nanoparticles was studied 

(Figure 4). With regard to LN Lec:TC-CsA, particle 

characteristics remained practically unchanged after lyo-

philization. On the other hand, LN PL:TC-CsA and LN 

Table 3 X-ray photoelectron spectroscopy surface charac
terization of cyclosporine A (CsA) loaded and unloaded lipid 
nanoparticles: N/C atomic ratio obtained from N 1s and C 1s levels  
and O 1s peak components

Formulation N/C atomic  
ratio

O 1s binding energy (eV) 
(atomic %)

PO4
- O-C/O-H O=C

LN Lec:TC-Blank 0.006 531.0 (6) 532.7 (53) 533.7 (41)
LN Lec:TC-CsA 0.010 531.1 (8) 532.5 (60) 533.8 (32)
LN PL:TC-Blank 0.000 – 532.4 (48) 533.8 (52)
LN PL:TC-CsA 0.004 – 532.4 (71) 533.7 (29)
LN Tw-Blank 0.000 – 532.5 (47) 533.6 (53)
LN Tw-CsA 0.002 – 532.5 (61) 533.8 (39)

Abbreviations: LN, lipid nanoparticles; PL, Pluronic® F127; Tw, Tween® 80;  
N, nitrogen; C, carbon; O, oxygen; Lec, L-α-phosphatidylcholine; TC, taurocholic 
acid sodium salt hydrate.

Figure 3 Surface characterization of the lipid nanoparticles.
Notes: (A) N 1s core level spectra of LN Lec:TC formulations: (a) cyclosporine A lipid nanoparticles, (b) blank lipid nanoparticles, (c) cyclosporine A. (B) O 1s core level 
spectra of LN PL:TC formulations: (a) blank and (b) cyclosporine A lipid nanoparticles.
Abbreviations: LN, lipid nanoparticles; PL, Pluronic® F127; N, nitrogen; O, oxygen; Lec, L-α-phosphatidylcholine; TC, taurocholic acid sodium salt hydrate.
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Tw-CsA redispersed in ultra-pure water showed a 2.35 

and 1.43 fold increase in particle size, respectively. This 

particle growth has also been observed by other authors 

in SLN production.32,33 This observed variation in particle 

size was attributed to the different stabilizing ability of the 

surfactants employed in each case. In some cases, it is pos-

sible that the freeze-drying process causes a modification 

in the surfactant layer properties by increasing the particle 

concentration after water removal, leading therefore to 

agglomeration.8 Despite this size increase, lyophilized LN 

diameter was appropriate for oral delivery. Particle size 

distribution was also considered acceptable in the three 

developed LN with PDI values of approximately 0.3. In 

addition, slight changes in the measured zeta potential of 

the lyophilized formulations compared to those freshly pre-

pared were observed. The presence of trehalose solubilized 

in the dispersion medium (ultra-pure water) may produce 

modification of its conductivity characteristics.34

Once the redispersion properties of the LN were evalu-

ated, the storage stability of the three developed nanosystems 

(LN Lec:TC-CsA, LN PL:TC-CsA, and LN Tw-CsA) was 

studied at various conditions (4°C, RT, and 40°C) over 

a period of 3 months in terms of physical and chemical 

properties. The formulations presented a fine, loose powder 

appearance in the different storage conditions, except in the 

case of LN Lec:TC-CsA, that after 1 month at 40°C started to 

lose this characteristic. This event can be promoted by larger 

amounts of lipid in its composition (Precirol and Lec) that 

are likely to melt when exposed to high temperatures.

Figure 4 summarizes the physical characteristics (size, 

PDI, and zeta potential values) of the lyophilized LN after 

their storage at different temperature conditions and resus-

pension in distilled water. As can be seen in the figure, in 

the case of LN Lec:TC-CsA particle size was practically 

unaltered at 4°C and RT at the end of the 3 months. How-

ever, samples at 40°C showed a marked size increase after 

the first month of storage (up to 1.8 fold). With respect to 

LN PL:TC-CsA, a negligible progressive increase in particle 

size over the time (below 1.3 fold) was observed, which was 

slightly higher at RT and 40°C. Nonetheless, these particle 

size changes seem to be less influenced by temperature. 

In contrast, a different particle growth behavior was observed 

with LN Tw-CsA. In this case, particle size increase was 

obvious from the first month at both RT and 40°C (up to 

1.8 and 3.2 fold, respectively), although at 4°C storage no 

evident change was observed in particle size after 3 months. 

The particle size enlargement may be attributed to damage 

of the surfactant layer causing incomplete coverage of the 

particle surface leading to aggregates in the system. In fact, 

the presence of few agglomerates in the lipid nanosystems 

developed could be confirmed by the size distribution with 

PDI mean values ranging from 0.2 to 0.4.

So far, physical stability observations sustain the hypoth-

esis that a mixture of surfactants has a synergistic effect in 

° ° ° ° ° °

Figure 4 Particle size (top bars), polydispersity index (rhombus symbols), and zeta potential (bottom bars) characterization of the lyophilized cyclosporine A (CsA) lipid 
nanoparticles measured at different time points during 3 months of stability evaluation. 
Note: Results are represented by mean value ± standard deviation (n=3).
Abbreviations: RT, room temperature; PDI, polydispersity index; LN, lipid nanoparticles; Tw, Tween® 80; PL, Pluronic® F127; m, month(s); Lec, L-α-phosphatidylcholine; 
TC, taurocholic acid sodium salt hydrate.
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extending the long-term stability of LN. These results also 

suggest the good performance of Lec:TC and PL:TC in sta-

bilizing CsA lipid nanosystems, probably by the formation 

of a stable layer on the particle surface with an excellent 

repulsion effect.

Moreover, in general terms, the zeta potential of all 

nanosystems remained unaffected for 3 months when stored 

at 4°C and RT. However, a slight increment of the absolute 

zeta potential value was observed in samples kept at 40°C 

(Figure 4). This increment may be explained by a possible 

degradation of the lipid which occurs when the product is 

stored under stress conditions. This storage may cause rup-

ture of the ester bonds, resulting in negative charge of the 

free fatty acid in the system along with lipid rearrangement 

which probably modifies the surface charge of the particles, 

resulting in a more negative zeta potential.

Finally, in order to assess the chemical stability of the 

CsA LN developed, the drug content of the formulations 

was quantified. During the period of the study under differ-

ent conditions the three formulations conserved the amount 

of entrapped CsA above 92% when compared to the initial 

drug content (data not shown), except LN Tw-CsA kept at 

40°C, which showed reduction of drug content up to 20% 

after the second month. This destabilization of the system 

can be explained by rearrangement of the lipid crystal lattice 

caused by interaction with the emulsifier, leading to drug 

expulsion.8

Summing up, the optimized LN presented good physical 

and chemical stability and it can be stated that the best storage 

condition to preserve the physicochemical properties of the 

developed CsA lipid nanosystems was under refrigeration at 

4°C±2°C. However the nanosystems could be stable at RT 

for a certain period of time.

In vitro biological activity of CsA LN
The immunosuppressive activity of CsA is attributed to selec-

tive T-lymphocyte inhibition. The drug, which belongs to the 

calcineurin inhibitor group, forms a complex on the surface 

of lymphocytes with the cytosolic protein CypA impeding the 

T-cell activation, and consequently blocking the expression 

of IL-2.2,4 The biological activity of the lipid nanosystems 

developed was evaluated by measuring the IL-2 production of 

Jurkat cells, a cell line derived from human T-cell leukemia, 

after their stimulation with the T-cell activator Con A.

In order to ensure that the inhibition of IL-2 production 

was due to the effect of the drug rather than to the toxicity 

of the treatments, it was necessary to determine the influ-

ence of the formulations on cell viability. The MTT assay 

revealed negligible cytotoxicity in the range of concentrations 

studied (data not shown) since after 24 hours of incubation, 

cells exposed to the different treatments showed viabilities 

of over 90% compared to the negative control.

The ability of the CsA loaded LN to inhibit cytokine 

production was studied at concentrations equivalent to 10 and 

25 ng/mL CsA. These concentrations were chosen based on 

previous work.35 As shown in Figure 5, IL-2 secretion was 

significantly suppressed by CsA LN in a dose-dependent 

manner compared to the positive control. The same effect was 

observed with Sandimmune Neoral®. Indeed, no significant 

differences were observed when comparing the CsA LN 

formulations with the reference formulation, indicating that 

our CsA nanosystems might be as effective as the marketed 

formulation. Similar inhibitory activity was observed among 

the different CsA loaded nanosystems, ruling out possible 

influence of the surfactants on the biological activity of the 

formulations. Moreover, since blank LN did not exhibit 

any significant difference in IL-2 levels compared to the 

stimulated control, the immunosuppressive effect of the for-

mulations could be attributed to the incorporated CsA alone. 

These results are in accordance with those obtained for CsA 

polymeric nanoparticles using similar in vitro models35,36 and 

confirm that the immunosuppressive effect of the drug was 

conserved after its production process.

Conclusion
Two crucial approaches were obtained with this study. First, 

the CsA formulations were prepared with low surfactant 

Figure 5 Inhibitory effect of the cyclosporine A (CsA) loaded and unloaded lipid 
nanoparticles on IL-2 secretion from Jurkat cells stimulated with 20 μg/mL Con A. 
Notes: Results are represented by mean value ± standard deviation (n=3). Statistical 
differences are represented by ***P0.001 compared to positive control.
Abbreviations: LN, lipid nanoparticles; Tw, Tween® 80; PL, Pluronic® F127; 
Lec, L-α-phosphatidylcholine; TC, taurocholic acid sodium salt hydrate.
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concentration and avoiding organic solvents, so they 

are likely to have low toxicity compared to commercial 

formulations. And second, the CsA delivery systems were 

dried to obtain a powder formulation which could be easily 

incorporated in a conventional dosage form and also enhance 

the long-term stability of the final product. Interestingly, the 

developed formulations showed immunosuppressive effects 

in a stimulated human T-lymphocyte cell line. In vivo studies 

are in progress in order to investigate the pharmacokinetic 

behavior of CsA incorporated into the lipid nanosystems 

developed.
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