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Abstract: This paper presents the results for the effect of different methods of thermomechanical 

processing on the mechanical properties and electrochemical behavior of metastable β alloy 

Ti-20.6Nb-13.6Zr-0.5V (TNZV). The thermomechanical processing included hot working, 

solution heat treatments at different temperatures, and cooling rates in addition to aging. The 

thermomechanical processing conditions used in the study resulted in attainment of a wide range 

of microstructures with varying spatial distributions and morphologies of elongated/equiaxed 

α, β phases, or martensite, as a result of which several tensile properties were achieved. Aging 

treatment led to an increase in hardness, elastic modulus, and tensile strength and a decrease in 

ductility (elongation). Electrochemical tests indicated that the TNZV alloy undergoes spontane-

ous passivation due to spontaneous formation of an oxide film in the environment of the human 

body. Because the air-cooled samples possessed high hardness and also a fine grain size, they 

showed a lower corrosion rate than the samples treated under other conditions.
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Introduction
Engineering materials used in biomedical applications must have optimal mechanical 

properties and biocompatibility, and should remain chemically stable under severely 

hostile conditions. In comparison with biomedical stainless steels and cobalt-chromium 

alloys, titanium (Ti)-based alloys show properties such as low specific strength and 

excellent resistance to corrosion, as well as a low elastic modulus close to that of bones, 

so they are the materials of choice for structural biomedical applications.1–4

Because of its excellent specific strength, resistance to corrosion, and biocompatible 

characteristics, the α+β-type Ti-6Al-4V alloy (ASTM F1108) has been used as a struc-

tural biomaterial for the manufacturing of orthopedic prostheses and dental implants.5 

However, the alloying elements present in this alloy have their own adverse effects in 

the biomedical environment. The literature reports that the presence of vanadium (V)  

ions in human tissues can alter the kinetics of the enzyme activity associated with 

cells involved in the inflammatory response.6,7 It has been reported that aluminum (Al) 

increases the risk of development of Alzheimer’s disease.8 Further, the low elastic 

modulus of Ti alloys is a major advantage that makes them suitable implant materials 

for artificial joints (eg, hip, knee, shoulder). The stiffness of the implant materials must 

essentially be as close as possible to that of the connected bone to facilitate effective 

transfer of mechanical stress so as to avoid damage to bone cells.9 A large difference 
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between the stiffness of the implant materials and bone may 

result in osteoporosis or poor osseointergration,10 which may 

consequently lead to crack nucleation and eventual failure 

of the implant.11 The modulus of the Ti-6Al-4V alloy is 

approximately 110 GPa,12 which is considerably higher 

than that of human bone (10–40 GPa).13 The high modulus 

of Ti-6Al-4V is due to an increased volume fraction of the 

α phase caused by a high Al content.14

In recent times, near β-type Ti alloys, containing nio-

bium (Nb) and zirconium (Zr), have attracted considerable 

attention for orthopedic implant applications owing to their 

unique combination of good mechanical properties, low 

elastic modulus, and superior resistance to biocorrosion.  

It has been reported that the elastic modulus of these alloys 

can be significantly reduced by adjusting the concentration of 

β-stabilizing elements.15–17 In addition, this type of Ti alloys 

shows evidence of excellent resistance to corrosion in human 

body fluid. The main reason for this behavior is the forma-

tion of a protective hard and tightly adherent oxide film.18 

Therefore, new β-type Ti alloys have been developed using 

nontoxic and nonallergic elements such as Nb, Zr, and other 

such elements.19 It is well known that Nb is a β-stabilizer 

element that forms a homogenous solid solution with Ti in 

all kinds of Ti alloys,20–22 whereas Zr is traditionally deemed 

to be a neutral element in the α-type and α+β-type alloys.  

On the other hand, it has been reported that Zr can be treated 

as a kind of β-stabilizer in the Ti-Nb-Zr alloy system because 

it not only inhibits α precipitation23,24 but also considerably 

reduces the martensitic transformation start temperature.25,26 

In order to develop safe Ti-based alloys for biomedical 

applications, Nb and Zr are preferably added as they enhance 

the ability to achieve biological passivity and the ability to 

reduce the elastic modulus.27

In general, thermomechanical processing (TMP) is a 

metallurgical process through which work hardening and 

heat treatment processes are integrated into a single process.28 

TMP plays a crucial role in altering a microstructure, lead-

ing to outstanding maaterial properties.29–31 The mechanical 

properties32 and corrosion behavior33 depend strongly on the 

alloy composition, processing history, and heat treatment 

conditions. Since near-β Ti alloys respond to thermal treat-

ment and TMP, various microstructural constituents, like size, 

shape, and amount of the various phases, can be modified 

by varying the TMP parameters. However, there have been 

very few reports of the influence of thermal treatment and 

TMP on the microstructural features of the as-cast Ti-Nb-Zr 

alloy system, and in turn, of its mechanical and electrochemi-

cal behavior. Geetha et al33 investigated the effect of heat 

treatment on the corrosion behavior of Ti-13Zr-13Nb alloy in 

Ringer’s solution and found that water-quenched α+β alloys 

have superior resistance to corrosion owing to a homogeneous 

distribution of the alloying elements. Studies pertaining to the 

effect of TMP on the microstructure and mechanical proper-

ties of Ti-13Zr-13Nb alloy34 and the corrosion behavior of this 

alloy in simulated body fluid35 report that major results are 

achieved due to the cooling rate after solution treatment.

In view of the potential advantages offered by biocompat-

ible Ti alloys, a lot of dedicated focused work needs to be 

carried out by engineers and materials scientists to develop 

novel Ti alloys with a low elastic modulus and superior 

electrochemical behavior for biomedical applications. With 

this in mind, we investigated the effect of TMP on the micro-

structure, mechanical properties, and corrosion behavior of 

a novel Ti-20.6Nb-13.6Zr-0.5V (TNZV) alloy.

Materials and methods
The alloy used in the present investigation was prepared by 

casting of a mixture of sponge Ti, niobium powder, and Zr 

chips. The TNZV alloy was prepared using the nonconsum-

able vacuum arc melting technique and supplied in the form 

of 600 g pancakes. The pancakes were remelted three times 

to obtain compositional homogeneity. The composition of 

the alloy was analyzed, and the chemical composition in 

wt% is given in Table 1.

The as-cast TNZV alloy was thermally treated at 

1,000°C for 1 hour for homogenization and then water-

cooled. Subsequently, the homogenized samples were 

subjected to a 10% by forging above the β transition tem-

perature (850°C) and directly subjected to a 25% reduction 

by rolling at the same temperature and then air-cooled (AC) 

to room temperature. After complete plastic deformation, 

the alloy was found to be free from any metal working 

defects, indicating that the entire metal working process 

was performed successfully.

The hot deformed TNZV samples were solution-treated at 

850°C (above β transus temperature) for 1 hour in a dynamic 

argon atmosphere and then either water-quenched (WQ), AC, 

or furnace-cooled (FC). Aging treatment for the WQ samples 

was done at 500°C for 5 hours. The TMP route for the TNZV 

alloy is shown schematically in Figure 1.

Table 1 Chemical composition (wt%) of Ti-20.6Nb-13.6Zr-0.5V

Ti  
(wt%)

Nb  
(wt%)

Zr  
(wt%)

V  
(wt%)

Fe  
(wt%)

Balance 20.6 13.6 0.5 0.14
Abbreviations: Nb, niobium; Ti, titanium; Zr, zirconium; V, vanadium; Fe, iron.
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The major and trace elements were determined using an 

X-Strata Isis 1559 X-ray fluorescent spectrometer (Oxford 

Instruments, Abingdon, UK). Analysis of the microstructure 

of the thermally treated samples was carried out using an 

optical microscope and a Nova Nano 450 field emission scan-

ning electron microscope (FEI Company, Eindhoven, The 

Netherlands) at 2 kV. For microstructural analysis, the metal-

lographic samples were prepared using standard techniques 

employed for Ti and its alloys.36 The samples were ground 

with 1,200 grit silicon carbide, followed by polishing to a 

mirror finish using 0.5 µm diamond paste. The samples were 

etched with Kroll’s reagent (10 vol% hydrogen fluoride and  

5 vol% HNO
3
 in water). X-ray diffraction analysis was carried 

out at room temperature using a PW1830 X-ray diffractometer 

(Philips, Eindhoven, The Netherlands) with Cu Kα radiation 

at a wavelength of 1.54056°A at 40 kV and 30 mA. The scan-

ning rate was kept at 3 degrees to 2θ/60 seconds.

Vickers microhardness (HV) measurements were per-

formed on a computer-controlled precision microhardness 

tester (MicroWhizHard, Mitutoyo Corporation, Kanagawa, 

Japan) where an indentation load of 300 gf and a dwell time 

of 5 seconds were used for each of the indents. The HV test 

was carried out on the polished specimens to obtain a clean 

and flat surface. Final polishing was carried out using 0.5 µm  

diamond paste. Ten indentations were taken for each speci-

men and the average was considered.

Conventional tensile testing was carried out using a 

computerized UTE-60 universal testing machine (Fuel 

Instruments & Engineers Pvt Ltd, Kolhapur, India) at a 

constant cross-head speed of 1 mm per minute in air at room 

temperature. Mechanical testing, as per ASTM E8M, was 

performed to determine the ultimate tensile strength (UTS), 

0.2% off-set yield strength (YS), and elongation (e%). The 

elastic modulus was obtained by measuring the slope of the 

linear part of the stress–strain response. Dog bone-shaped 

tensile specimens with dimensions as shown in Figure 2 

were precisely machined using a wire electrical discharge 

machine. After machining, tensile specimens were polished 

using waterproof silicon carbide papers of up to 2,500 grit 

and the gauge length of the specimens was mechanically 

polished using 0.5 µm diamond paste.

The corrosion behavior of the TNZV alloy was studied 

using a potentiostat, comprising a three-electrode cell with 

Ag/AgCl (KCl saturated) as the reference electrode (all the 

potential measurements were made with reference to this) 

and platinum foil as the counter electrode (cathode). Test 

specimens with dimensions of 10 mm ×10 mm ×2 mm were 

used as the working electrode (anode). Anodic polarization 

was carried using a computer-interfaced WPG100e corro-

sion measuring system and Sequencer version 5 software. 

The open circuit potential (OCP) and passive current density 

were used to evaluate the corrosion characteristics of the 

thermomechanically treated samples of Ti alloy.

The surface area exposed to the electrolyte was 0.126 cm2. 

For each experiment, the specimens were prepared by 

sequential grinding with waterproof emery paper with up to 

2,000 grit silicon carbide, followed by polishing with 0.5 µm  

alumina to obtain a high mirror surface finish, and 

AC FC 

AC 

10% forging at 850°C

As cast alloy

25% rolling at 850°C

Solution treatment at 850°C

Aging at 500°C
for 5 hours 

WQ 

Figure 1 Schematic diagram of the thermomechanical processing of Ti-20.6Nb-
13.6Zr-0.5V alloy.
Abbreviations: WQ, water-quenched; aC, air-cooled; FC, furnace-cooled.

Figure 2 Dimensions of tensile specimen (aSTM e-8 standard).
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then cleaning in an ultrasonic bath three times. Freshly 

prepared Ringer’s solution was used as the electrolyte 

to simulate a body fluid environment.37–40 This solution 

when dissolved in 1 L of distilled water had the following 

chemical composition: 9.00 g NaCl, 0.43 g KCl, 0.20 g 

NaHCO
3
, and 0.24 g CaCl

2
. The pH of the solution was 

maintained at 7.4. The solution was naturally aerated and 

kept at 37°C±1°C. The OCP was plotted as a function of 

time until a stable value was reached. Next, the corrosion 

potential (E
corr

) and passive current density (I
corr

) of the 

alloy were determined from the potential versus current 

density polarization curve. The polarization curves were 

obtained using a scan rate of 0.166 mV per second in the 

range of 750–2,500 mV (Ag/AgCl). The polarization tests 

were repeated at least three times for each specimen. The 

E
corr

 and I
corr

 were determined from the registered curves 

by the extrapolation method.

Results and discussion
Microstructure and X-ray diffraction 
analysis
Microstructure and its analysis are important given that sev-

eral vital characteristics of materials, such as their mechanical 

and corrosion properties, are strongly influenced by micro-

structural features. Thermal treatment and TMP are the two 

main techniques used to achieve the desired microstructure. 

Microstructure observations of the as-cast sample (Figure 3Aa 

and Ba) indicated a fine needle-like (acicular) α in the β matrix 

with segregation of the α phase on grain boundaries. The 

X-ray diffraction profiles of the as-cast TNZV alloy is shown 

in Figure 4A, which indicates that only peaks corresponding 

to the α and β phase are present in the alloy.

The microstructure of the TNZV alloy depends essen-

tially on the plastic deformation process and heat treatment 

sequences used. Hence, hot working, ie, 10% hot forging plus 

25% hot rolling at 850°C (above β transus temperature), is 

an effective method for generating dynamic recrystallization 

with an equiaxed structure. It has been observed that treating 

solution above β transus temperature dissolves the entire  

α phase developed during hot plastic deformation, leading to 

complete transformation to β phase in the TNZV alloy. It can 

be seen from the micrographs in Figure 3Ab, Bb, Ac, and Bc) 

 that hot working and solution treatment at 850°C (above the 

β transus temperature) led to transformation of a part of β 

phase to α phase for both FC and AC samples.

In line with the findings of others,34,41 the microstructure 

of FC or AC samples consisted of Widmanstätten α-laths 

(in a basket-weave arrangement) that were composed of 

different variations of α plates within pre-existing β-grains. 

The volume fraction of the α phase in the FC samples was 

high due to the lower cooling rate. The thickness of the 

α plates in FC samples was higher than that of the AC 

samples, because the size depended mainly on the cooling 

rate. Thus, the microstructure of the AC samples shows 

the presence of fine α-β structures within pre-existing 

β-grains.

A nonequilibrium metastable martensite phase and a 

retained β phase were found in the samples which were 

WQ from solution treatment at 850°C (Figure 3Ad and Bd). 

A large number of papers have reported the presence of 

a martensite structure in Ti materials if the solution is 

treated at a high temperature (above β phase field) with a 

sufficiently high cooling rate.20,34,41–46 Thus, rapid cooling 

from the above temperature resulted in a martensite phase 

in the microstructure of the WQ samples. Two types of 

metastable martensites, α′ and α″, which are hexagonal and 

orthorhombic structures, respectively, are found in Ti alloys 

quenched from the β phase based on the concentration of 

the beta alloying elements.20 In a Ti-Nb binary system, 

the hexagonal α′ is observed when the Ti alloys contain  

Nb 13 wt%, whereas the orthorhombic α″ is seen at a 

higher Nb content.23,47,48 In the present research, the Nb 

content in the TNZV was 20.6 wt%, which specifies the 

formation of orthorhombic α″ martensite after WQ from 

850°C. It is reported that the orthorhombic structure of the 

α″ phase is obtained because of the whole correspondence 

between the atoms of Ti and Nb associated with the phase 

change during WQ could result in formation of the orthor-

hombic α″ phase.49

Aging of WQ samples at 500°C for 5 hours is a 

diffusion-controlled process. During aging, the marten-

site phase decomposes into the α+β phase structure and 

generates a fine distribution of small globular α along 

the pre-existing martensite plates (Figure 3Ae and Be). It 

is reported that the orthorhombic martensite α″ phase is 

metastable and transforms to an α+β phase structure if the 

martensitic transformation start temperature is more than 

room temperature.50

To obtain an indepth understanding, the above phase con-

stituents in the microstructures of the thermally treated TNZV 

samples were identified using X-ray diffraction spectra as 

seen in Figure 4B, which shows the presence of peaks of  

α and β phases in FC, AC, and aged TNZV samples, whereas 

only martensite is found in WQ samples.
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Mechanical properties
Microhardness
The effect of thermal treatment on the microhardness of 

the TNZV samples is presented in Figure 5A, which shows 

that the AC samples have a higher HV than the FC and WQ 

samples because of the formation of fine phases. In contrast, 

the WQ sample showed a significant decrease in hardness 

(HV 220±3), as reported by others.44 Consequently, it is 

expected that the presence of martensite with an insufficient 

amount of α in the microstructure would decrease the HV 

after WQ from 850°C. However, aging treatment of the WQ 

samples increased the HV significantly, and this thermal 

treatment provided the most hardness (HV 292±5). Many 

authors8,34,51,52 have mentioned that substantial enhancement 

in hardness can be achieved after aging treatment. This heat 

treatment process has the ability to precipitate a fine α phase 

in the matrix by decomposition of martensite and retained β 

phases. These fine precipitates of α in the matrix increases the 

HV of the TNZV alloy. Thus, the HV of the aged samples was 

higher when fine α-grains were crystallized in the β-matrix.

elastic modulus
The elastic modulus is strongly influenced by the bonding force 

among atoms, the phase/crystal structure,11 and the chemical 

composition of a Ti material.20,53 Therefore, in any multiphase 

Ti alloy, the specific modulus of the phases and their volume 

fractions are key parameters for developing the modulus. It 

is well known that all these parameters depend mainly on the 

Figure 4 X-ray diffraction profiles of (A) as-cast TNZV alloy and (B) TNZV alloy samples deformed at 850°C and solution treated for 1 hour at the same temperature 
followed by WQ, aC, FC, and aging of water-quenched samples at 500°C for 5 hours. 
Abbreviations: TNZV, Ti-20.6Nb-13.6Zr-0.5V; aC, air-cooling; FC, furnace-cooling; WQ, water-quenching.
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history of thermal and TMP.54 The literature reports that the 

elastic modulus of the phases in Ti alloys increases in the 

sequence Eβ  Eα″  Eα  Eω.11,20,44,55 It is inferred that 

the microstructure of Ti materials has a significant effect in 

reducing the modulus, because a mixture of β and α″ phases 

lowers the modulus whereas the α phase increases it.20,56 The 

modulus of TNZV subjected to the different thermal treat-

ment conditions is shown in Figure 5A, which indicates that 

the modulus of the thermal-treated TNZV samples varies 

from 59 to 82 GPa. It can be seen that the modulus decreases 

significantly with increasing cooling rate. After solutionizing 

at 850°C, the WQ samples developed a microstructure consist-

ing of martensite and retained β phase (Figure 3Ad and Bd). 

Given that both these phases afford a lower elastic modulus 

as compared with α phase, the WQ samples had the lowest 

modulus value (59±1.9 GPa) when compared with the FC 

and AC samples. On the other hand, compared with the AC 

samples, the FC samples had a higher amount of α because 

of the slower cooling rate. Therefore, the high modulus value 

of the FC samples is associated with the maximum volume 

fraction of α phase in the microstructure. It was observed that 

aging treatment resulted in decomposition of the low modulus 

martensite and retained β phase into high modulus α. The 

modulus of the aged samples increased to 70±2.3 GPa.

Tensile properties
Tensile test results were obtained for the TNZV samples 

deformed at 850°C and solution treated at the same temperature 

followed by WQ, AC, and FC. The YS, UTS, and fracture 

plasticity (e%) of the samples is shown in Figure 5B, which 

demonstrate that the UTS, YS, and e% varied from 670 to 

696 MPa, 516 to 570 MPa, and 13% to 21%, respectively.  

It can be seen that the strength of the AC samples is higher 

than that of the FC or WQ samples. The superior strength of 

the AC samples is a result of the fine microstructure produced 

by relatively rapid cooling. In addition, the YS of the FC and 

AC samples were analogous and higher than that of the WQ 

samples. On the other hand, the WQ samples showed remark-

able ductility (21%) compared with FC or AC samples. The 

solid solution-hardening effect after WQ is the main factor of 

the reasonable strength. However, formation of soft β and α″ 

martensite phases in the microstructure of WQ samples played 

an important role in producing a lower YS and better e%.  

Hao et al44 pointed out that the martensite structure has lower 

strength and HV but better e%, which is in good agreement 

with the present tensile strength result of WQ samples.

The UTS, YS, and e% of the WQ samples after aging treat-

ment were found to be 880 MPa, 769 MPa, and 9%, respec-

tively. These values suggest that the strength (UTS and YS) of 

the aged samples was significantly higher than the strength of 

other the heat-treated samples but the ductility was substantially 

lower. Thus, the extensive increase in strength after aging can 

be related to the precipitation of fine α phase in the matrix as a 

result of decomposition of martensite and retained β phases. On 

the other hand, the lowered e% of the aged samples is related 

to the precipitation of fine α particles along the pre-existing 

martensite plates, which act as effective sites for nucleation of 

the cracks, and in turn, decrease the e% of the alloy.

electrochemical properties
Open circuit potential
Figure 6 shows the variation in OCP of TNZV alloy in dif-

ferent conditions as a function of immersion time in naturally 

aerated Ringer’s solution at 37°C, until its variation with 

Figure 5 (A) hardness and elastic modulus and (B) tensile results of TNZV alloy deformed at 850°C and solution treated at 850°C for 1 hour followed by WQ, aC, FC, 
and aging of water-quenched samples at 500°C for 5 hours. 
Abbreviations: TNZV, Ti-20.6Nb-13.6Zr-0.5V; aC, air-cooling; FC, furnace-cooling; WQ, water-quenching; UTS, ultimate tensile strength; YS, off-set yield strength.

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


International Journal of Nanomedicine 2015:10 (Suppl 1: Challenges in biomaterials research)submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

230

Mohammed et al

time became negligible. The steady-state OCP of TNZV 

alloy varies with heat treatment conditions. By comparing 

the results depicted in Figure 6, it can be observed that the 

AC samples have more positive corrosion potential values 

(nobler behavior) than the FC, WQ, and aged samples. In this 

research, of all the thermally treated samples, the FC samples 

showed a greatest decrease in OCP. In addition, the OCP 

curve for the WQ and aged samples shows fluctuations in the 

initial stages and then becomes stable, whereas the AC and 

FC samples showed a tendency for spontaneous formation 

of surface oxides and a continuous shift in a noble (positive) 

direction when they were in contact with Ringer’s solution. 

The time profiles for OCP are characteristic of passive film 

formation, especially in the stabilized region, on the alloy 

surfaces immersed in aerated solutions under different heat 

treatment conditions.57 AC samples, however, showed the 

greatest tendency for spontaneous formation of oxide film 

in Ringer’s solution. The OCP values for all heat treatment 

conditions show an overall increase with the time duration  

of 1 hour, indicating that their resistance to corrosion 

increases with time and reaches a relatively stable value.  

In other words, the OCP shifts in the positive direction, 

indicating passive formation of a protective oxide film on 

the surface of the TNZV alloy.

The protective film forms rapidly and acts as a barrier to 

metal dissolution, leading to a decrease in the corrosion rate. 

The thickness of the spontaneously formed protective oxide 

film on the surfaces of Ti and its alloys has been reported to 

be 1–4 nm under open circuit conditions.58 It is well known 

that the superior corrosion behavior of Ti and its alloys is 

attributable to spontaneous creation of a tightly adherent 

protective oxide film on their surface, even in solutions with 

a low oxygen content.59 Oliveira et al60 reported creation 

of an oxide film on Ti-13Zr-13Nb and Ti-50Zr alloys in 

aerated solution. It has been reported in the literature that 

X-ray photoelectron spectroscopy reveals that the amorphous 

oxide film formed comprises three types of oxides, ie, TiO, 

Ti
2
O

3
, and TiO

2
.18,61,62 It has also been found that oxides of 

Ti, TiO, and Ti
2
O

3
, transform to more stable TiO

2
 and come 

out on the electrode/electrolyte interface after direct contact 

between Ti material and the electrolyte.26 TiO
2 
is an n-type 

semiconductor,63 and the corrosion of Ti is controlled kineti-

cally by migration of oxygen vacancies through this film.64 

Hence, the corrosion behavior reached a relatively stable 

state as the resistance to corrosion of the electrode improved. 

The decrease in anodic dissolution current of the Ti alloy 

and shifting the OCP gradually in the positive direction are 

normal results of an increase in corrosion resistance.

Figure 6 Open-circuit potential versus time curves of the TNZV alloy in ringer’s solution at 37°C deformed at 850°C and solution treated at the same temperature for 
1 hour followed by WQ, aC, FC, and aging of water-quenched samples at 500°C for 5 hours. 
Abbreviations: TNZV, Ti-20.6Nb-13.6Zr-0.5V; aC, air-cooling; FC, furnace-cooling; WQ, water-quenching.
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It is important to mention that many researchers57,65–67 

have found that the film formed on the surface of Ti and its 

alloys in various physiological solutions shows a two-layered 

structure comprising a dense inner layer and a porous outer 

layer. The excellent corrosion behavior of the Ti-Nb-Zr alloy 

system is essentially because of the barrier provided by the 

inner layer, which offers high resistance.57,65

Many authors61,68–71 have reported that the passive film in 

the Ti-Nb-Zr alloy system consists principally of TiO
2
 with 

trace quantities of Nb
2
O

5
 and ZrO

2
. The presence of Nb

2
O

5
 

or ZrO
2 
with the main passive TiO

2
 layer develops the struc-

tural integrity of the oxide film and increases its resistance 

to dissolution.61,72 For example, the presence of Nb cations 

enhances the passivation properties of the surface film by 

decreasing the concentration of anion vacancies present on 

a Ti oxide film. These anion vacancies are generated by the 

presence of lower Ti oxidation states.40,61,73

Potentiodynamic polarization
Figure 7 shows the potentiodynamic anodic polarization 

curves for different heat-treated TNZV samples as measured 

with respect to a saturated calomel electrode in naturally aer-

ated Ringer’s solution at 37°C. The continuity, stability, and 

intensity of the passive Ti oxide film are analyzed by this tech-

nique. As can be seen from Figure 7, the polarization curves 

obtained for the investigated TNZV alloy samples in all heat 

treatment conditions show a typical active-passive character-

ization, a rising anodic current with increasing potential, and 

then transforming directly into the passive area from the Tafel 

curves. The average E
corr

 values can be estimated from these 

curves as -181.18, -191.81, -125.81, -209.23 mV (versus the 

saturated calomel electrode) for the FC, AC, WQ, and aged 

samples, respectively. The corrosion potentials determined 

from the polarization curves are significantly lower than those 

obtained from the open circuit potential measurements. This 

is expected, as the polarization tests were started at a cathodic 

potential relative to the corrosion potential, so the surface 

passive oxide film was at least partially removed owing to 

the highly reducing initial potentials.

The mean I
corr

 and corrosion rates were obtained for the 

TNZV alloy by the Tafel extrapolation analysis method 

using both anodic and cathodic branches of the polarization 

curves (Figure 8). The corresponding corrosion data, which 

include the mean corrosion current densities (I
corr

), corrosion 

potentials (E
corr

), and corrosion rates of TNZV alloy under dif-

ferent thermal treatment conditions, are given in Table 2.

From the corrosion test results presented in Table 2, it 

can be observed that in most of the heat treatment condi-

tions, the E
corr

 varies roughly within a narrow range. It can 

be seen that the FC samples and AC samples show almost 

comparable E
corr

 values. On the other hand, aging of the WQ 

samples results in a further decrease in the E
corr

 value, which 

Figure 7 Cyclic polarization of the TNZV alloy in a ringer’s solution at 37°C deformed at 850°C and solution treated at same temperature for 1 hour followed by WQ, 
aC, FC, and aging of WQ samples at 500°C for 5 hours. 
Abbreviations: TNZV, Ti-20.6Nb-13.6Zr-0.5V; aC, air-cooling; FC, furnace-cooling; WQ, water-quenching.
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Table 2 results of electrochemical tests via anodic polarization 
curves for the heat-treated Ti-20.6Nb-13.6Zr-0.5V alloy samples 
in ringer’s solution at 37°C

Cooling  
conditions

Ecorr (mV) Icorr (µA/cm2) Corrosion rate  
(mils/year)

WQ -125.81 2.2246 1.81
aC -191.81 1.0324 0.84
FC -181.18 4.508 3.67
aging -209.23 5.7645 4.51

Abbreviations: ecorr, corrosion potential; Icorr, passive current density; WQ, water-
quenched; aC, air-cooled; FC, furnace-cooled.

Figure 8 Tafel plots obtained for furnace-cooled sample in ringer’s solution at 37°C.

is lower than that of the FC, AC, or WQ samples. Comparing 

the four anodic curves, however, it can be noticed that the FC 

samples and aged samples exhibit similar anodic polarization 

behaviors, including almost comparable current densities of 

4.508 and 5.7645 µA/cm2, respectively, at approximately 

2,500 mV (Ag/AgCl). As mentioned in the OCP analysis, as 

soon as the TNZV samples are rinsed in Ringer’s solution,  

a protective surface oxide film is formed on the surface of the 

samples and they become passivated, which is reproduced 

in the anodic polarization curves (Figure 7).

The corrosion current density of the WQ samples lies 

between the values for the AC and FC samples. Moreover, 

the anodic current densities are lower for the AC samples than 

for the FC, WQ, and aged samples. This indicates that, of all 

the samples, the minimum I
corr

 is for the AC samples due to 

the more compact and protective nature of the surface film 

formed on the AC samples. This implies that the anodic cur-

rent density of TNZV under all thermal treatment conditions 

increases with an increase in the potential, but this increase is 

always larger for the FC samples and aged samples. The rise 

in I
corr

 with the potential is likely to be because of the unsatis-

factory increase in oxide film thickness, to recompensate the 

increase in potential. It is reported that this increase in current 

could be associated with the oxidation of TiO and Ti
2
O

3
 to 

TiO
2
.61 Thus, it appears that the surface oxide films become 

thick to compensate for the increase in potential where the 

current does not change with potential.

In the current research, it is expected that the fine (α+β) 

structure in the matrix of the AC samples increases the α/β 

interface area and then accelerates the galvanic corrosion 

of the alloy. Regardless of this, the AC samples exhibited 

a lower I
corr

 and a lower corrosion rate than the FC or aged 

samples. It has been found that the corrosion behavior of 

cp-Ti (single α phase) is lower than that of Ti-6Al-7Nb alloy 

(α+β).74 Therefore, the most likely reason for the better cor-

rosion behavior of the AC samples is the presence of a small 

amount of less noble α phase in their microstructures. During 

the diffusionless martensitic β→α″ phase transformation in 

the WQ samples, the solute partitioning does not occur and, 

consequently, the WQ samples have improved corrosion sta-

bility (lower I
corr

) as a result of the formation of a more stable 

passive film than the FC or aged samples. This result agrees 

well with the result reported in the literature66 and confirms 

that the β ST WQ Ti-13Nb-13Zr alloy remains passive in 

Ringer’s solution at positive potentials as 2.5 V (saturated 

calomel electrode). On the other hand, formation of marten-

site occurred in the WQ samples via a shear mechanism of 

phase transformation, that involves an invariant plane strain 

shape deformation with a large shear component. This entails 

a high amount of strain energy because the shape change must 

be accommodated in the parent phase.31,75 Therefore, in spite 

of the absence of any α/β interface in the WQ samples, their 

corrosion behavior was found to be less stable than that of 

the AC samples (Figures 6 and 7) due to the presence of a 

strained and highly faulted substructure.

Aging of the WQ samples created higher amounts of 

fine precipitates of less noble α phase in the microstructure, 

as shown in Figure 3Ae and Be. Thus, in the same way, the 

α/β interface increased with the increase in α phase volume 

friction, which in turn led to a decrease in E
corr

 (-209.23 mV) 

and an increase in I
corr 

(5.7645 µA/cm2) despite relieving the 

strain energy associated with martensite.

Conclusion
The effect of TMP on the microstructure, mechanical 

properties, and electrochemical behavior of metastable  

β Ti-20.6Zr-13.6Nb-0.5 V alloy for biomedical applica-

tions has been investigated. Based on the results of the 

present study, the following conclusions are drawn. A 

wide range of microstructures with varying distributions 
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and morphologies of elongated/equiaxed α, β phases, or 

martensite is attained depending upon the TMP conditions. 

AC samples show greater hardness (HV) and strength (UTS, 

YS) as compared with FC or WQ samples. WQ samples offer 

reasonable strength and higher plasticity (21%) compared 

with other heat-treated samples. WQ samples introduce a 

lower Young’s modulus (59±1.9 GPa) compared with other 

heat-treated samples due to the martensitic transformations. 

Aging treatment of WQ samples causes an increase in the 

HV, strength, and elastic modulus, and also a decrease in 

the e%, owing to decomposition of martensite and retained 

β in α phase. Corrosion tests indicated that the TNZV alloy 

undergoes spontaneous passivation owing to spontaneously 

formed oxide film in the environment of the human body. 

The AC samples had a lower corrosion rate owing to their 

fine grain size and higher HV than the samples treated under 

other conditions. The AC samples, which had optimum 

results for strength and resistance to corrosion as well as 

reasonable results for e% and modulus, can be considered as 

a potential candidate for biomedical application after further 

investigations on in vitro and in vivo behavior. The TNZV 

alloy developed in the present study has superior mechanical 

properties and corrosion behavior, but further studies on 

the tribological and biocompatibility behavior of the alloy 

are needed to assess its overall potential for biomedical 

application.
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