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Abstract: Cancer stem cells (CSCs) have been shown to be markedly resistant to conventional 

cancer treatments such as chemotherapy and radiation therapy. Therefore, therapeutic strategies 

that selectively target CSCs will ultimately lead to better cancer treatments. Currently, accessible 

conventional therapeutic agents mainly eliminate the bulk tumor but do not eliminate CSCs. 

Therefore, the discovery and improvement of CSC-targeting therapeutic agents are necessary. 

Nanoparticles effectively inhibit multiple types of CSCs by targeting specific signaling path-

ways (Wnt/β-catenin, Notch, transforming growth factor-β, and hedgehog signaling) and/or 

specific markers (aldehyde dehydrogenases, CD44, CD90, and CD133) critically involved in 

CSC function and maintenance. In this review article, we summarized a number of findings to 

provide current information about their therapeutic potential of nanoparticles in various cancer 

cell types and CSCs.
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Introduction
Current systemic therapies for cancer such as chemotherapy and radiation are partly 

effective in inhibiting bulk tumor cell growth and blocking tumor formation. How-

ever, a minority of cancer patients with metastases and a quarter of those with early 

stage disease are at a high risk of relapse due to cancer stem cells (CSCs). The CSCs 

concept was first suggested to describe a small population of acute myeloid leukemia, 

which contribute to tumor growth, metastasis, and recurrence.1 The identification of 

leukemic CSCs prompted further investigation into other solid tumor types. Recently, 

CSCs have been identified in almost all cancer types, including pancreatic,2 gastric,3 

brain,4 colon,5 prostate,6 and lung cancers.7 CSCs are generally defined by a unique set 

of functional characteristics: 1) CSCs can be purified by specific biomarkers and/or  

signaling pathways,8–11 2) CSCs are capable of generating colonies in suspension 

culture conditions,12 and 3) CSCs are resistant to chemotherapeutic agents13–15 and 

radiation.15,16 These CSC-specific features suggest that the majority of conventional 

treatments, such as chemotherapy and radiation, can kill the bulk tumor cells but may 

ultimately fail to induce durable clinical results because conventional approaches 

are not as effective at eliminating CSCs; thus, the remaining CSCs are able to form 

new colonies and regenerate tumors in patients. Therefore, new therapeutic strategies 

that selectively target CSCs will ultimately improve cancer treatments.17 Currently, 

new treatment modalities in the form of nanoparticles (NPs)-targeting CSC-specific 

markers or signaling pathways are available or under investigation.18,19 Hirsch et al 

first introduced the effects of NPs in breast cancer by using silica–gold nanoshells.20 

Recently, extensive research has identified various types of NP-targeting CSCs, includ-

ing NP-mediated hyperthermia,21 curcumin-based NPs,22 and liposomes-based NPs.23 
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These NP-based therapeutic approaches provide advantages 

over the small molecule pharmaceutical agents-based thera-

peutic strategies. However, there is not enough information 

currently available to make a conclusive statement regard-

ing the therapeutic potential of these NPs. Therefore, in this 

review article, we provide an overview of the characteristics 

of CSC and discuss the various NPs-targeting CSC-specific 

signaling pathways and biomarkers involved in the develop-

ment and maintenance of CSCs.

Cancer stem cells: implications for  
tumorigenesis
Identification and isolation of CSCs in  
various cancers
The majority of cells in bulk tumors have limited self-

renewal and tumor-initiating capacity; indeed, only a small 

subpopulation of cancer cells retains extensive self-renewal 

and tumorigenic potential. These higher tumorigenic popu-

lations are called CSCs or cancer initiating cells. The CSC 

model of tumor development has been proposed to explain 

the high degree of phenotypic and functional heterogene-

ity among cancer cells.24 In the 1960s, Bruce et al found 

that only 1%–4% of the total number of mouse leukemic 

cells transplanted in vivo formed colonies and initiated 

tumor growth in the recipient spleen.25 The identification of 

leukemic CSCs prompted further investigation into other 

solid tumor types. CSCs were first identified and isolated 

from a solid tumor breast cancer. Breast CSCs are typi-

cally characterized with a CD44+/CD24−/low phenotype and 

test positive for the epithelial cell adhesion molecule, also 

known as the epithelial-specific marker.26,27 As few as 100 

cells with these molecular characteristics grew rapidly and 

extensively in vitro and generated new tumors in vivo.26 

Recently, extensive research has identified CSCs in differ-

ent types of solid tumors, including brain,28 colon,29 head 

and neck,30 liver,31 lung,32,33 and other cancers.34 CSCs are 

typically resistant to various chemotherapeutic drugs13–15 and 

radiation therapies.15,16 These CSC-specific features suggest 

that the majority of conventional cancer treatments, such as 

surgery, chemotherapy, and radiation therapy, can kill the 

bulk tumor cells but may ultimately fail to induce durable 

clinical responses because they are not as effective at killing 

CSCs; thus, the remaining CSCs are able to form colonies 

and initiate new tumors in patients.

CSCs as a selective therapeutic 
target
Despite promising treatment results, current therapeutic strat-

egies against cancers have many limitations that frequently 

lead to metastatic failure and a high risk of recurrence and 

mortality. The most common cause of an unsatisfactory 

clinical response is resistance to conventional therapeutic 

strategies. CSC-mediated therapeutic resistance was dem-

onstrated in different tumors, including brain,35 breast,13 

colorectal,36 leukemia,37 melanoma,38 and pancreatic2 

cancers. Furthermore, CSC-mediated radiation resistance 

was reported in brain28 and breast39 cancers. Therefore, the 

development of novel therapeutics and control strategies 

that selectively target CSCs without unduly affecting normal 

and healthy cells is urgently required.40–42 A significantly 

improved therapeutic outcome could be achieved by the 

selective targeting of subtle differences in surface marker 

expression or signaling pathways when compared with bulk 

tumor cells. Since their identification in various cancer types, 

multiple CSC therapeutic strategies targeting specific stem 

cell surface markers and unique signaling pathways have 

been developed for several solid tumors. These alternative 

therapeutic strategies can successfully eliminate CSCs and 

thereby prevent tumor recurrence and metastasis.

Targeting CSC-specific markers
Aldehyde dehydrogenase activity
Aldehyde dehydrogenases (ALDHs) are a superfamily of 

enzymes that play a key role in the metabolism of various 

aldehyde derivatives. These enzymes were first described 

and identified as conferring resistance to cyclophosphamide 

and other alkylating agents in hematopoietic stem/progenitor 

cells.43 Recent studies have demonstrated that high levels of 

ALDH activity are associated with enhanced tumorigenic-

ity and chemoresistance in CSCs.44–46 Indeed, higher ALDH 

activity has been observed in the highly tumorigenic colon 

CSC subpopulations with an EpCAMhigh/CD44+ phenotype.47 

Moreover, ALDH activity was used to predict a poor clini-

cal outcome in breast cancer patients due to its correlation 

with tumorigenicity and chemoresistance.45 Ma et al have 

found that ALDH was preferentially expressed in the 

CD133-positive subpopulation and could be used to better 

characterize the tumorigenic CD133-positive CSC popula-

tion in liver cancers.46 The hierarchical tumorigenic potential 

was determined as CD133 +ALDH+ . CD133+ALDH− .  

CD133−ALDH−.46 Therefore, it is reasonable that ALDH can 

act as a potential prognostic marker and therapeutic target 

for the treatment of various cancer types. NPs loaded with 

low-dose decitabine, a DNA hypermethylation inhibitor, 

that significantly reduced clonogenic growth and ALDH-

positive stem-like population in malignant breast cancer by 

inhibiting cancer cell growth and stem cell phenotypes.48 

Chenna et al have also developed polymeric NP from 
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poly(lactic-co-glycolic acid) conjugated with polyethylene 

glycol encapsulating hedgehog signaling inhibitor (HPI).49 

This HPI-incorporated polymeric NP showed a remarkably 

increased apoptotic effects in secondary mutational pancre-

atic cells by suppressing the growth of ALDH-positive CSCs 

in the orthotopic Pa03C xenograft.49

CD44
CD44 is a transmembrane receptor for hyaluronic acid and 

has recently been identified in CSCs from numerous solid 

tumors, including breast,26 bladder,50 cervical,51 colon,52 

gastric,53 lung,54 ovarian,55 pancreatic,56 and prostate cancers.57 

Enhanced CD44 expression in CSCs suggests that CD44 is 

an attractive new target for the treatment of multiple cancer 

types. Yang et al demonstrated that CD44+ subpopulations 

were more tumorigenic than their CD44− counterparts in nude 

mice.58 Therefore, there is an urgent need for the development 

of effective CD44-targeted therapeutic strategies. Polymeric 

micelles have amphiphilic block copolymers with a spherical 

inner core and outer shell. Hydrophobic inner core serves as 

a container for hydrophobic drug, while hydrophilic outer 

core provides structural stability and extends the circulation 

time.59 Shah et al have reported that paclitaxel-incorporated 

micelles showed a remarkably increased therapeutic efficacy 

and specificity in CD44-positive metastatic ovarian cancer 

cells isolated from patients.60 In addition, liposomal NP can 

potentially enhance the delivery of suicide gene or chemo-

therapeutic drugs to the breast and colon cancers.61,62 Wang 

et al have reported that anti-CD44 antibody-incorporated 

liposomal NP delivery system loaded with suicide gene or 

doxorubicin could specifically target the CD44-positive hepa-

tocellular carcinoma cells and effectively induce apoptotic 

cell death.23 A more recent report suggests that a hyaluronic 

acid-coated chitosan NPs loaded with 5-fluorouracil (5-FU)/

oxaliplatin showed a significantly enhanced cytotoxicity 

compared with either 5-FU or oxaliplatin alone in human col-

orectal cancer cells, which overexpress CD44.63,64 Although 

several NPs for targeting CD44-positive cells are recently 

developed, their therapeutic effects in vivo have not yet been 

demonstrated convincingly.

CD90
Various CD cell surface proteins were used as a marker to 

identify CSCs in human liver cancer cell lines and clinical 

samples. CD90 is a glycosyl phosphatidylinositol-anchored 

membrane glycoprotein of the immunoglobulin superfamily 

expressed mainly on the surface of leukocytes.65 This 

marker is involved in cell–cell and cell–adhesive matrix 

interactions. Yang et al found that the CD90-positive 

subpopulation showed a distinct higher tumorigenicity 

and metastatic potential in a mouse xenograft model when 

compared with CD90-negative counterparts.58,66 All clinical 

tumor specimens and ∼90% of blood samples from liver 

cancer patients contained a CD45−/CD90+ subpopulation 

capable of initiating and maintaining tumor formation 

in an immunodeficient mouse model.58,66 Based on the 

aforementioned findings, CD90 can be used to identify 

potential hepatic CSCs from tumor specimens and blood 

samples of liver cancer patients. Thus, CD90 may be an 

important prognostic marker and effective therapeutic tar-

get for the treatment of various hepatic cancer types. Wang  

et al have reported that anti-CD90 antibody-mediated water-

soluble CdSe core nanocrystals loaded with photosensitizers 

such as trifluoperazine could specifically target the CD90-

positive leukemia CSCs and sensitize leukemia CSCs to UV 

irradiation and promote apoptotic cell death.67

CD133
The stem cell marker CD133, also known as prominin-1, is 

a transmembrane glycoprotein.68 CD133 is highly expressed 

in immature hematopoietic stem cells and endothelial pro-

genitor cells.69 In glioblastoma, CD133-positive subpopu-

lations were shown to be considerably more tumorigenic 

than CD133-negative compartments, which form the bulk 

tumor. Moreover, a poor clinical outcome is associated with 

increased CD133 expression in glioblastoma patients.70 In 

addition, the protein is overexpressed in various cancer types, 

including metastatic colorectal cancer,71 ovarian cancer,72 

glioblastoma,73 and gastric carcinoma.74 Recent evidence 

suggests that a subpopulation of CD133-positive cancer 

cells have a significant key molecule that confers resistance 

to conventional chemotherapeutic agents.75 Moreover, 

radiation-exposed CD133-positive liver cancer cells induce 

enhanced radioresistance via MAPK/ERK signaling activa-

tion and tumor development in a xenograft model compared 

with CD133-negative cells, suggesting that the CD133-

positive populations confer radioresistance in hepatocellular 

carcinoma.76 Therefore, the surface marker CD133 should be 

a potential target to improve the efficiency of treating CSCs. 

NanoCurc™, a recently developed polymeric NP encapsu-

lating curcumin, significantly reduced clonogenic growth 

and CD133-positive stem-like population in malignant 

brain tumors.22 In addition, NPs conjugated with PEGylated 

poly(lactic-co-glycolic acid) receive extensive attention 

and are used widely because of their safety in the clinical 

trials.77 Interestingly, salinomycin-loaded NPs conjugated 

with CD133 aptamers selectively inhibit CD133-positive 

osteosarcoma both in vitro and in vivo.78
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Targeting CSC-specific signaling 
pathways
Wnt/β-catenin signaling pathway
The Wnt/β-catenin signaling pathway is an evolutionarily 

well-conserved pathway that regulates various physiologic 

processes, including development, growth, regeneration, and 

self-renewal.79 The Wnt/β-catenin pathway is activated when 

a Wnt ligand binds to the transmembrane complex comprising 

the Frizzled receptor, leading to binding of the low-density 

lipoprotein-related receptor. This leads to the suppression of 

glycogen synthase kinase-3β-binding protein, thereby improv-

ing the stability of β-catenin, which then accumulates and is 

translocated to the nucleus. Consequently, β-catenin forms a 

complex with the transcription factor/lymphocyte enhancer 

factor and activates the expression of Wnt target gene such 

as c-myc and cyclin D1.80–82 Altered activation of Wnt/ 

β-catenin signaling is a key feature of various cancer types 

and is considered to be critical for epithelial–mesenchymal 

transitions that favor tumor metastasis.83 Aberrant activation 

of the Wnt/β-catenin signaling has recently been implicated 

in several types of cancers, including ovarian,84 colon,85 

and breast cancer.86 Interestingly, this signaling pathway 

was initially reported as a key CSC signaling pathway in 

acute myeloid leukemia87 and was reported to be involved 

in the maintenance and function of CSCs from breast,88 

colon,89 liver,90 and lung91 cancers. Therefore, selective 

targeting of Wnt/β-catenin signaling may be considered as 

an effective therapeutic strategy for the treatment of various 

types of cancer. Yallapu et al have developed curcumin-

loaded poly(lactic acid-co-glycolic acid) (PLGA) NP to 

provide increased bioavailability of curcumin in the blood 

circulation.92 These curcumin-incorporated PLGA NPs 

showed a remarkably increased apoptotic effects in cisplatin-

resistant ovarian cancer cells by suppressing Wnt/β-catenin 

signaling component β-catenin.92 Similarly, Tang et al loaded 

5-FU to NPs, and demonstrated that these 5-FU NPs can 

effectively inhibit the peritoneal dissemination of colorectal 

cancer cells,93 which overexpress Wnt/β-catenin signaling 

components.94,95

Notch signaling pathway
The Notch signaling pathway is an evolutionarily con-

served developmental pathway governing a broad spectrum 

of events, such as cell differentiation decisions and the 

formation of precise tissue patterns.96 Notch signaling also 

plays an important role in regulating stem cell maintenance 

and differentiation.24,97–99 This signaling pathway is activated 

through four Notch receptors (Notch 1–4) that can interact 

with five Jagged family ligands.100,101 It has been suggested 

that Notch 1 and 2 share the highest degree of sequence 

and structural similarities and are ubiquitously distributed 

in a wide variety of tissues. In contrast, Notch 2 and 4 are 

expressed in a limited range of cell types (eg, vascular 

endothelial and smooth muscle cells). While the oncogenic 

effects of Notch signaling in several types of tumors are 

well-documented, its potential role in CSCs has only recently 

emerged. A recent study suggested that inhibition of Notch 

signaling sharply decreased self-renewal, clonogenic, and 

the tumorigenic potential of glioblastoma CSCs.102 In addi-

tion, inhibition of Notch signaling led to a decrease of the 

CSC-like subpopulation and increased the susceptibility of 

CSCs to radiation-induced apoptosis in glioblastomas.103 

Aberrant activation of Notch signaling has been observed 

in CD133+ liver CSC subpopulations when compared with 

CD133− subpopulations.104 Consequentially, targeting Notch 

signaling pathway may provide an effective therapeutic 

approach in the treatment of various cancers. Despite the 

inhibition of Notch signaling can be achieved by γ-secretase 

inhibitors, inhibitory peptides,105 and antibodies.106 Clinical 

application of these inhibitory agents are currently restricted 

by their considerable side effects.107,108 Rosenholm et al have 

developed mesoporous silica NPs (MSNPs) as drug-delivery 

systems with high selectivity and demonstrated that these 

drug-conjugated NPs are suitable for targeted delivery of 

hydrophobic drugs in vitro.109,110 They demonstrate that these 

drug-conjugated MSNPs have significantly enhanced cyto-

toxicity by selective targeting the Notch signaling in various 

cancer cell types, such as cervical and breast cancer cells.111 

In addition, Steg et al have developed Jagged1 (Notch ligand) 

siRNAs-loaded chitosan NPs, which selectively inhibit ovar-

ian cancer both in vitro and in vivo by selectively targeting 

Notch ligand Jagged1.112 Despite the number of in vitro stud-

ies’ evidences for the therapeutic efficiency and selectivity 

of drug-conjugated NPs targeting Notch signaling, valid in 

vivo models are still largely lacking.

Transforming growth factor-β signaling 
pathway
Transforming growth factor-β (TGF-β) signaling provides 

important regulatory signals during the initial phase of normal 

development and regeneration113,114 and exerts promoting 

effects in the initiation and progression of multiple cancer 

types including breast,115 colon,116 liver,117 lung,118 and 

ovary.119 TGF-β ligands bind to a type II receptor, which 

constitutively recruits and phosphorylates a type I receptor. 

Next, the type I receptor triggers the phosphorylation of 

receptor-regulated SMADs and results in ligand-induced 

transcription.120,121 In addition, cancer patients with enhanced 
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TGF-β levels in urine and serum samples had shorter survival 

periods when compared with patients with normal TGF-β 

levels.122–124 Constitutively elevated levels of TGF-β are 

closely correlated with an advanced disease state and poorer 

prognosis in cancer patients.125,126 These studies indicate that 

TGF-β signaling is an important prognostic marker in vari-

ous types of cancer. While the oncogenic effects of TGF-β 

in several types of tumors are well-documented, its potential 

role in CSCs has only recently emerged. Interestingly, this 

signaling pathway has been reported to be involved in the 

maintenance and function of CSCs from breast,127 colon,128 

liver,129 and lung130 cancers. Thus, selective targeting TGF-β 

signaling may be considered as an effective therapeutic 

strategy for the treatment of various types of cancer. In order 

to improve the drug delivery for breast cancer treatment, a 

polyethyleneimine/polyethylene glycol-conjugated MSNPs 

were developed by Meng et al to load a small molecule TGF-β 

inhibitor, LY364947.131 This approach provided significantly 

improved therapeutic efficiency in tumor xenograft models 

compared to the treatment with free LY364947 alone.131 

In addition, gold NPs (AuNPs) are widely used as carriers 

for therapeutic and diagnostic agents because of their great 

biocompatibility and unique physiochemical properties.132  

In this context, Tsai et al found that AuNPs could selectively 

capture TGF-β1 through S–Au binding between cysteine 

and disulfides residues resulting in deactivation of TGF-β 

signaling pathway.133 Interestingly, they also found that the 

immunosuppressive function of TGF-β was significantly 

attenuated by AuNPs and resulted in an increased number 

and frequency of tumor-infiltrating T lymphocytes.133 These 

results demonstrate that AuNPs may be a promising immune 

modulator by inhibiting immunosuppressive function of 

TGF-β1 signaling pathway.

Hedgehog signaling pathway
The Hedgehog (Hh) signaling pathway was first identified 

as a critical regulator of pattern formation during early 

development and regeneration, and it also regulates dif-

ferentiation, growth, and migration in a temporal-, spatial-, 

and concentration-dependent manner.134–137 The functional 

significance of this signaling pathway is illustrated by an 

increase in birth defects and malignancies associated with 

aberrant activation of this normally quiescent pathway in 

adults.138,139 Three Hh homologs with different spatial and 

temporal distribution patterns have been identified in humans: 

Desert hedgehog (Dhh), Indian hedgehog (Ihh), and Sonic 

hedgehog (Shh).140 The Hh signaling cascade is initiated by 

Hh binding to the 12-transmembrane receptor Patched 1,  

which relieves its inhibition on Smoothened (Smo), 

culminating in the nuclear localization of DNA-binding Gli 

transcription factors in target cells.141 Several research groups 

reported that Hh signaling is aberrantly activated in vari-

ous cancer types, including colon,142 brain,143 and breast,144 

liver,145 lung,146 and ovarian147 cancer. Therefore, targeting 

Hh signaling pathway may provide an effective therapeutic 

approach in the treatment of various cancers. Almost cur-

rently available Hh small-molecule inhibitors approved for 

clinical trials for cancer therapy are Smo antagonists.148 How-

ever, clinical applications of these inhibitors are currently 

restricted by their limited binding ability to Smo and poor 

systemic bioavailability. Therefore, Xu et al developed and 

characterized Gli antagonist (HPI-1)-conjugated polymeric 

nanoparticle (NanoHHI).49 NanoHHI significantly inhibited 

the growth and invasion of CD133-positive cells, which are 

implicated as CSCs in liver cancers.149 In addition, Verma 

et al found that Anthothecol (a limonoid derived from plant 

Khayaanthotheca)-conjugated PLGA NPs effectively inhib-

ited cell proliferation and colony formation and induced 

apoptosis in pancreatic CSCs by modulating Hh signaling 

pathway.150 These studies suggest that Hh signaling targeting 

NPs might be effective therapeutic approaches in patients 

with recurrence following curative surgical resection.

Conclusion
The CSC was first discovered in acute myeloid leuke-

mia .40 years ago. The identification of leukemic CSCs 

prompted further investigation into other types of solid 

tumors. Interestingly, CSCs are markedly resistant to con-

ventional cancer treatments, such as chemotherapy and 

radiation. Therefore, identifying and selectively targeting 

markers and signaling pathways of CSCs are feasible thera-

peutic strategies for treating various cancer types, regardless 

of the underlying cause. Currently, new treatment modalities 

in the form of NPs-targeting CSC-specific markers or signal-

ing pathways are available or under investigation. Various 

NPs-targeting CSC-specific surface markers or signaling 

pathways are listed in Table 1. Despite the number of in vitro 

and in vivo studies evidences for the therapeutic efficiency 

and selectivity of chemodrugs- or antibodies-conjugated 

NPs-targeting CSC-specific markers or signaling pathways, 

there is not enough information currently available to make 

a conclusive statement regarding the clinical therapeutic 

effects of NPs. Therefore, more detailed information about 

the effects of NPs-targeting CSCs on various cancer types 

will undoubtedly lead to more effective clinical therapy in 

the future. Moreover, the majority of the currently available 

information on CSCs is markedly influenced by the biological 

characteristics of normal stem/progenitor cells, in terms of 
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their specific surface markers and distinct signaling path-

ways. Therefore, targeting these markers and/or aberrantly 

activated signaling pathways to selectively eliminate CSCs 

may reduce normal stem/progenitor cells and prevent the 

normal tissue regeneration processes, thus causing tissue or 

organ damages. Consequently, it remains unclear whether 

CSCs in various cancers can be selectively eliminated without 

significantly inhibiting all other normal stem/progenitor cells 

in the organs or tissues. Therefore, further characteristics 

related to CSC-specific signaling pathways and surface mark-

ers need to be elucidated. These conclusions warrant future 

studies aimed at providing adequate and unique diagnostic 

and therapeutic strategies for cancer patients with fewer side 

effects. Schematic diagram summarizes the potential roles of 

NPs-targeting CSC-specific markers and signaling pathways 

in cancer treatments (Figure 1).

Table 1 The list of nanoparticles targeting CSC-specific markers or signaling pathways for cancer therapy

Target Anticancer  
agent

Type of nanoparticle Type of cancer References

CSC-specific  
markers

ALDH Decitabine Copolymer of poly(ethylene glycol) with 
poly(d,l-lactide)

Breast cancer 48

Hedgehog  
inhibitor

Poly(lactic-co-glycolic acid) conjugated with 
polyethylene glycol

Pancreatic cancer 49

CD44 Paclitaxel Polymeric micelles Ovarian cancer 60
Suicide gene or  
doxorubicin

Anti-CD44 antibody-incorporated liposomal Hepatocellular  
carcinoma

23

5-FU/oxaliplatin Hyaluronic acid-coated chitosan Colorectal cancer 63, 64
CD90 Trifluoperazine Anti-CD90 antibody-mediated water-soluble  

CdSe core nanocrystals
Leukemia 67

CD133 Curcumin Polymeric nanoparticle Brain cancer 22
Salinomycin PEGylated poly(lactic-co-glycolic acid) Osteosarcoma 78

CSC-specific  
signaling  
pathways

Wnt/ 
β-catenin

Curcumin Poly(lactic acid-co-glycolic acid) Ovarian cancer 92
5-FU Poly(lactic-co-glycolic acid)-polyesters and  

poly(ethylene glycol)
Colorectal cancer 93

Notch γ-secretase  
inhibitors

Mesoporous silica nanoparticle Cervical and breast  
cancer

111

Jagged1  
siRNA

Chitosan nanoparticles Ovarian cancer 112

TGF-β LY364947 Polyethyleneimine/polyethylene glycol-conjugated  
mesoporous silica nanoparticles

Brain cancer 131

TGF-β1 Gold nanoparticles Bladder cancer 133
Hedgehog HPI-1 Polymeric nanoparticle Hepatocellular  

carcinoma
149

Anthothecol Poly(lactic acid-co-glycolic acid) Pancreatic cancer 150

Abbreviations: CSCs, cancer stem cells; ALDH, aldehyde dehydrogenases; 5-FU, 5-fluorouracil; TGF-β, transforming growth factor-β; HPI-1, hedgehog pathway inhibitor-1.

β

β

Figure 1 Schematic diagram summarizing the potential roles of nanoparticles targeting CSC-specific signaling pathways or surface markers.
Notes: Nanoparticles effectively inhibit multiple types of CSCs by targeting specific signaling pathways (Wnt/β-catenin, Notch, TGF-β, and hedgehog signaling) and/or specific 
markers (ALDH, CD44, CD90, and CD133) critically involved in CSC function and maintenance.
Abbreviations: CSCs, cancer stem cells; TGF-β, transforming growth factor-β; ALDH, aldehyde dehydrogenases.
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