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Abstract: The current drug discovery process is dependent on the ability of synthetic chemis-

try to deliver libraries of small molecules with ever increasing levels of structural complexity 

and diversity. Sequencing multicomponent reactions (MCRs) with elaboration or cyclization 

steps represents an effective approach toward generating libraries of complex and diverse small 

molecules. This review highlights the most recent (2010–2015) examples of the application of 

reaction sequences including MCRs to the synthesis of diverse assemblies of small heterocycles. 

Sequences performed in multiple separate steps, or as one-pot operations, and including MCRs 

based on 1) carbonyl condensations; 2) isocyanide-based reactions; 3) cycloadditions; and 

4) transition metal-mediated reactions are discussed.

Keywords: multicomponent reactions, sequential reactions, tandem reactions, divergent reac-

tions, heterocycles, diversity

Introduction
The term multicomponent reactions (MCRs) describes processes that construct bonds 

between three or more substrates in one synthetic operation yielding structurally 

complex organic compounds.1 At the onset of their evolution, the majority of MCRs 

was based on classical condensations between carbonyl derivatives and various 

nucleophiles, the illustrative example being the first known MCR, the Strecker 

synthesis of amino acids from aldehydes, potassium cyanide, and ammonium chloride 

reported in 1850.2 Others, like the Mannich reaction,3 and a host of transformations 

designed for the synthesis of nitrogen-containing heterocycles including Biginelli,4 

Hantzsch,5 or Asinger6 reactions, also rely on the classical condensation processes. 

The introduction of the isocyanide-based Ugi7 and Passerini reaction8 MCRs 

expanded the range of accessible products to compounds rich in biologically relevant  

and reactive amide and ester functionalities. Applications of Ugi-type MCRs dominated 

the field for an extended period of time, as indicated by the numbers of published 

reviews9 and monographs.10 Currently, MCRs exploiting virtually all the mechanistic 

pathways known to modern synthetic organic chemistry have been reported, including 

organocatalytic transformations, cycloadditions, and transition metal-catalyzed or 

radical-mediated protocols.11 The fundamental advantages of MCRs stem from the 

rapid increase of molecular complexity in the products that notably enhances the 

economy of synthesis. The modularity of MCRs permits one to independently vary any 

one of the multiple starting materials to efficiently generate assemblies of compounds 

possessing a common structural core decorated with diverse substituents. MCRs were 

warmly embraced by medicinal chemists seeking to generate large combinatorial 
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Figure 1 Overview of sequential MCR/elaboration, tandem MCR/cyclization, and MCR2 strategies for the generation of diversity.
Notes: A,B,C,D and e are the organic building blocks featuring compatible functional groups (FG1-FG5). Reaction products are labeled 1-5 and are referenced in the text 
correspondingly. a, b, and c are bonds between functional groups formed by different cyclization pathways denoted as a, b and c.
Abbreviations: FG, functional group; MCR, multicomponent reaction; MCR2, combination of multicomponent reactions.

libraries of compounds for biological screening and drug 

discovery.12 More recently, the advent of diversity-oriented 

synthesis (DOS)13 spearheaded further advances in the design 

of modern MCRs. At present, the development and applica-

tion of MCRs reached a fully mature state, as indicated by the 

countless recent reviews focusing on roles played by MCRs 

in specialized areas, including the synthesis of bioactive mol-

ecules,14 in DOS,15 in the synthesis of heterocycles,16 natural 

product-like polycyclic structures,17 and others.

In 2011, Ruijter et al18 highlighted the need to maximize 

scaffold complexity and diversity in libraries of small 

organic products of MCRs, as well as the discovery of stereo-

controlled MCRs as two major challenges for the future of 

the design of novel MCRs. Ruijter et al’s review also outlined 

the design strategies that promise to effectively address these 

challenges.18

Herein, examples from the recent literature (2010–2015) 

that showcase the use of “modular reaction sequences” 

(MRS) and “combination of MCRs” (MCR2)18 as novel 

strategies for maximizing the diversity of the resulting small-

molecule libraries are reviewed.

The general representation of the design concepts dis-

cussed herein is shown in Figure 1. The common premise 

rests on the notion that performing several chemical reac-

tions, including at least one MCR, as an uninterrupted 

one-pot process (tandem reactions), or a sequence that may 

require delayed additions of a component or a catalyst, 

ideally also performed in one reaction vessel (sequential 

reactions), will result in a notable increase in the structural 

complexity and diversity in the final products. Furthermore, 

the presence of properly matched reactive functionalities 

(FGn) in all the components of the initial MCR sets the 
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stage for the subsequent tandem or sequential transforma-

tions (Figure 1).

Specifically, an MCR with properly functionalized 

 components A, B, and C in step one delivers MCR  product 1 

that may undergo an intramolecular cyclization in situ via 

either pathway (a), (b), or (c), depending on the selected 

functional groups FG1–FG3, to deliver product 2 via a tan-

dem (uninterrupted) one-pot two-step process (Figure 1). 

 Alternatively, the functionalized product 1 can be further 

elaborated by the reaction with an additional component D 

to afford product 3 via a sequential (interrupted) one- or two-

pot process. Functional groups in product 3 may be poised 

to initiate a subsequent in situ tandem cyclization via one of 

the multiple possible pathways A–C to yield product(s) 4. All 

these pathways fulfill the definition of a “modular reaction 

sequence”, as described in the review by Ruijter et al.18 

Alternatively, product 1 of the initial MCR could become a 

substrate for a different MCR reaction that can be performed 

in step two following the addition of components D and E to 

deliver product 5 of MCR2. Ideally, the MCR2 protocol would 

be performed as a one-pot sequential reaction.

Aiming to highlight the diversity of mechanistic pathways 

employed by modern MCRs, protocols featured herein are 

organized according to the fundamental nature of the MCR 

step. Thus, reaction sequences involving MCRs based on 

1) classical carbonyl condensations; 2) reactions with an 

isocyanide component; 3) cycloadditions; and 4) transition 

metal-catalyzed MCRs will be discussed in succession.

Most frequently, the development of novel MCRs has 

been aimed at the generation of libraries of molecules with 

potential drug-like properties, and thus naturally led to the 

prevalence of methodologies for the synthesis of medium-size 

heterocycles. This trend is reflected in all the transformations 

discussed herein. In Figure 2, examples of bioactive natural 

products, pharmaceutical drugs, and synthetic compounds 

with significant biological activities featuring core structures 

(highlighted in red) identical, or closely related to the struc-

tures of heterocycles prepared by the protocols described in 

Figures 3–7, are summarized. The data in Figure 2 underscore 

the relevance of the novel protocols for the drug discovery 

process.

Classical carbonyl condensations-
based MCRs in sequential protocols
Organocatalysis is a synthetic field rapidly growing in 

popularity. Ramachary et al33 reported an interesting 

application of amine-catalyzed classical condensation 

reactions for the preparation of diverse libraries of 

“push–pulls” olefins, phenols, and 2-methyl-2H-chromenes. 

A three-component coupling reaction of two equivalents of 

ethyl acetoacetate with an aldehyde catalyzed by piperidine 

afforded Hagemann’s esters via a tandem cascade of Kno-

evenagel/Michal/aldol/condensation/decarboxylation events 

(reaction A; Figure 3). A subsequent replacement of ethanol 

solvent with dimethyl sulfoxide and the addition of a distinct 

diamine catalyst ([S]-1-[2-pyrrolidinylmethyl]pyrrolidine) 

and various aromatic aldehydes into the same reaction ves-

sel afforded the highly functionalized phenols in good yields 

(50%–80%) via Claisen–Schmidt/iso-aromatization events 

(Figure 3). It is notable that the choice of the diamine organo-

catalyst was critical for the success of the Claisen–Schmidt/

iso-aromatization, favoring the fully aromatized condensation 

product. Overall, the protocol was used to produce a total 

of 26 of functionalized phenols in 50%–80% yields for the 

second step of the sequential process.33

Another example of the powers of the MCR/elaboration 

strategy was reported by Yu et al,34 who was seeking syn-

thetic approaches to highly diversified H-pyrazolo(5,1-a) 

isoquinolines. For the initial MCR, Yu et al34 devised a 

tandem one-pot process involving inter- and intramo-

lecular condensations and electrophilic cyclization between 

2-alkynyl benzaldehyde, sulfonylhydrazide, bromine, or 

iodine as electrophiles, and ketones or aldehydes to afford 

H-pyrazolo(5,1-a)isoquinolines. The halogen atom was used 

in the second step as a functional handle for diversification 

of the resulting scaffolds via a Pd-catalyzed cross-coupling 

to various boronic acids (reaction B; Figure 3). The process 

is notable for the rapid assembly of the complex and highly 

substituted heterocyclic core in one step under mild condi-

tions, as well as dual function of the halogens as activating 

reagents for the electrophilic cyclization and the handle 

for the subsequent elaboration. This strategy represents an 

insightful application of the reactivity demonstrated in the 

earlier work by Yue and Larock.35 Substituents highlighted 

in red and blue colors in Figure 3, reaction B indicate the 

points of diversification that were exploited to produce seven 

derivatives in 76%–99% yields for the final elaboration step 

(reaction B; Figure 3).

One approach toward producing molecular libraries with 

diverse core structures consists of substituting one of the 

components of the MCR with a structurally or electronically 

differentiated building block, which subsequently causes 

a divergence in the reaction pathways of the MCR. 

Transformations showcased in Figure 4 are examples of such 

methodologies termed the “single reactant replacement”  

by Ruijter et al.18
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Figure 2 Naturally occurring compounds, synthetic drugs, or bioactive compounds with core structures identical or closely related to the products of the MCRs described 
herein.
Abbreviations: ref, reference; MCRs, multicomponent reactions.

In the method shown as reaction A in Figure 4, the 

addition of 1,2-bis-trimethylsilyl enol ether into two moles 

of an N-arylimine served as the key MCR to deliver a 

multifunctional acyclic product A (Figure 4) capable of a 

subsequent in situ cyclization via imminium ion formation 

and its intramolecular trapping by an electron-rich aromatic 

ring to yield highly substituted hexahydropyrrolo(3,2-c)-

quinolines (reaction A; Figure 4).36 The nucleophilic attack on 

the second mole of the imine was slower and required a time-

resolved addition of a Bronsted acid. When instead of using 

two moles of the same arylimine, a different imine was added 

along with the Bronsted acid in a time-resolved manner, a 

large and substantially diverse set of pyrroloquinolines was 

produced (22 derivatives in 54%–88% yields; ratio of diaste-

reomers (dr) 80: 20–95:5) (reaction A; Figure 4). Although 

aliphatic imines failed to participate in the same sequence, 
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Figure 3 Classical carbonyl condensations-based MCRs in sequential protocols (part 1).
Notes: (A) Sequential MCR/elaboration strategy.33 (B) Tandem MCR/cyclization/elaboration strategy.34 Modified with permission from Ramachary DB, Ramakumar K, 
Bharanishashank A, Narayana vv. Sequential one-pot combination of multireactions through multicatalysis: a general approach to rapid assembly of functionalized push-pull 
olefins, phenols, and 2-methyl-2H-chromenes. J Comb Chem. 2010;12(6):855–876. Copyright 2010 American Chemical Society;33 and with permission from Yu X, Pan X,  
Wu J. An efficient route to diverse H-pyrazolo[5,1-a]oisoquinolines via sequential multi-component/cross-coupling reactions. Tetrahedron. 2011;67(6):1145–1149. Copyright 
2011 American Chemical Society.34

Abbreviations: h, hours; MCR, multicomponent reaction; rt, room temperature.

the transformation showed an interesting stereodivergency.  

When an electron-def icient imine was used in the 

delayed addition step (CNC
6
H

4
C[=NPMP]H instead of 

MeOC
6
H

4
C[=NPMP]H), the reaction conditions could be 

optimized to favor a distinct diastereomer by a range of 75:25–

87:13 in diastereomeric ratios for eleven reported examples 

(80%–93% yields) (reaction A; Figure 4). In one example, the 

imine building blocks were replaced with the corresponding 

aldehydes (benzaldehyde and p-anisylaldehyde) and the 

amine (PMP-NH
2
), and the process was optimized to allow 

the entire sequence to be performed as a one-pot sequential 

five-component process on a nearly 800 mg scale of the 

produced pyrroloisoquinoline,  demonstrating the practicality 

of the synthetic protocol.

The fundamentally analogous design of an MCR/cycl-

ization sequence was employed in a recent report on the 

synthesis of indenopyridines and hydroisoquinolines.37 

The structural divergence between these two core struc-

tures was controlled by the choice of either an aliphatic 

bisaldehyde or an aromatic 1,2-bisaldehyde delivering 

the hydroisoquinolines and indenopyridines, respectively. 

The bisaldehydes were reacted with 1,3-ketoamides and 

1,3-biscyanides or 1,3-cyanoesters under basic conditions 

in a one-pot reaction (reaction B; Figure 4). Knoevenagel-

type condensation followed by Michael addition gener-

ates a possible acyclic condensation product (structure B; 

Figure 4) that undergoes a rapid in situ cyclization due to 

the high density of compatible functional groups to yield the 

heterocyclic products. The methodology is attractive due to 

its operational simplicity and the demonstrated potential to 

obtain structurally diverse cores. The presence of orthogonal 

functionalities (CN, COOEt, and NH
2
) in the products of the 

MCR/cyclization sequences sets the stage for potential future 

diversification of the heterocyclic scaffolds.

Isocyanide-based MCRs in 
sequential protocols
Sequencing MCRs with other transformations may 

involve the preparation of one of the building blocks via 

a prior MCR yielding the so-called “MCR2” sequence.18 
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Figure 4 Classical carbonyl condensations-based MCRs in sequential protocols (part 2).
Notes: (A) Sequential MCR/cyclization strategy (via intermediate A).36 (B) Tandem MCR/cyclization strategy (via intermediate B).37 Modified with permission from 
Boomhoff M, Yadav AK, Appun J, Schneider C. Modular, flexible, and stereoselective synthesis of pyrroloquinolines: rapid assembly of complex heterocyclic scaffolds. Org 
Lett. 2014;16(23):6236–6239. Copyright 2014 American Chemical Society;36 and with permission from Feng X, wang JJ, Xun Z, Huang ZB, Shi DQ. Multicomponent strategy 
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Society.37

Abbreviations: min, minutes; MCR, multicomponent reaction; dr, ratio of diastereomers; Mw, microwave irradiation.

Alternatively, one of the building blocks for the MCR may 

contain a reactive functionality that is stable under the 

coupling conditions, but initiates a cyclization following 

the completion of the original MCR. Martens combined 

both these approaches in his preparation of thiazolidin-

4-yl-1, 3,4-oxadiazoles (reaction A; Figure 5).38 First, five 

3-thiazolines were prepared by the modified Asinger reaction.6  

Subsequently, 3-thiazolines acting as the imine components 

of an Ugi-type process were reacted with carboxylic acids 

and isocyanides bearing an additional orthogonal func-

tionality ([isocyanoimino]triphenylphosphorane). The 

three-component coupling (step 2) generated the presumed 

product A (Figure 5) which, instead of the traditional acyl-

transfer step terminating the Ugi reaction, underwent an 

intramolecular aza-Wittig event yielding the substituted 

1,3,4-oxadiazoles (reaction A; Figure 5). Finally, the 
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possibility to further diversify the products via the reaction 

of the secondary amine group in the thiazolidine ring with a 

series of isocyanates giving urea derivatives was established 

(reaction A; Figure 5). Thus, this study exemplifies the powers 

of the sequential MCR2 strategy, combined with tandem 

cyclization and sequential elaboration for creating complexity 

and diversity in the targets.

Sequencing the Ugi-type MCRs with an intramolecular 

olefin formation via Staudinger/aza-Wittig39 or Wittig reaction40 

was shown to be a popular synthetic tool. Two selected appli-

cations for the preparation of libraries of biologically relevant 

heterocycles are shown in reactions B and C in Figure 5.

The versatility of the Ugi reaction has been signifi-

cantly expanded by the development of its variants.41 The 

Ugi-azide modification41 followed by a few “post MCR” 

functional group manipulations and terminated by a 

radical cyclization was applied to the synthesis of complex 

3-tetrazolylmethyl-azepino(4,5-b)indol-4-ones relevant to 

drug discovery (reaction A; Figure 6).42 The MCR and two 

subsequent functional group manipulations yielding xan-

thates were performed in one pot without purifications. In 

the final operation, the treatment of xanthates with dilauroyl 

peroxide under heating or microwave irradiation afforded 

the azepine derivatives. Thus, although several steps are 

needed, the overall protocol is operationally simple and 

delivered nine examples of azepinoindolones diversified at 

two positions in synthetically practical yields (reaction A; 

Figure 6).

Recent advances in transition metal-mediated reactions of 

substrates possessing multiple heteroatoms set the stage for 

applying such transformation to the elaboration or cyclization 

of the Ugi-type products (reactions B and C; Figure 6).

Thus, the use of an amine component possessing an 

orthogonal aryl iodide functionality in a modified Ugi 

condensation afforded acyclic highly functionalized amino 

imides that were shown to effectively undergo double 

intramolecular Pd-catalyzed Heck/Hartwig–Buchwald 

cyclizations to afford dihydropyridopyrazines via a one-pot 

two-step sequential protocol (reaction B; Figure 6).43 Not 

surprisingly, the choice of the ligand (Me-phos) and solvent 

(acetonitrile) proved critical for the success of the double 

Pd-catalyzed cyclization, as well as the use of Pd
2
dba

3
 as 
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9 examples, yields: 53%–72%  
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Figure 6 isocyanide-based MCRs in sequential protocols (part 2).
Notes: (A) Sequential MCR/elaboration/radical-mediated cyclization strategy.42 (B) Sequential MCR/Pd-catalyzed cyclization strategy.43 (C) Sequential MCR/Pd-catalyzed 
elaboration with cyclization strategy.45 (D) Tandem MCR/rearrangements/cyclization strategy.46 Modified from Gordillo-Cruz RE, Rentería-Gómez A, Islas-Jácome A, et al.  
Synthesis of 3-tetrazolylmethyl-azepino[4,5-b]indol-4-ones in two reaction steps: (Ugi-azide/N-acylation/SN2)/free radical cyclization and docking studies to a 5-Ht(6) 
model. Org Biomol Chem. 2013;11(38):6470–6476. with permission of The Royal Society of Chemistry;42 Modified with permission from Che C, Yang B, Jiang X, et al.  
Syntheses of fused tetracyclic quinolines via Ugi-variant MCR and Pd-catalyzed bis-annulation. J Org Chem. 2014;79(1):436–440. Copyright 2014 American Chemical 
Society;43 with permission from Ghabraie e, Balalaie S. Sequential Ugi four-component reaction (4-CR)/C-H activation using (diacetoxyiodo)benzene for the synthesis of 
3-(diphenylmethylidene)-2,3-dihydro-1H-indol-2-ones. Helvetica Chimica Acta. 2014;97(11):1555–1563. Copyright 2014 American Chemical Society;45 and with permission 
from Jia S, Su S, Li C, Jia X, Li J. Multicomponent cascade cycloaddition involving tropone, allenoate, and isocyanide: a rapid access to a 7,6,5-fused tricyclic skeleton. Org Lett. 
2014;16(21):5604–5607. Copyright 2014 American Chemical Society.46

Abbreviations: min, minutes; MCR, multicomponent reaction; PTSA, p-toluenesulfonic acid; p, para.

the palladium source. The one-pot process was realized via 

the removal of methanol solvent after the first reaction step, 

followed by the addition of acetonitrile and the components 

of the Pd-catalytic system (Pd
2
dba

3
, Me-phos, Cs

2
CO

3
) into 

the crude reaction mixture to afford the target heterocycles 

in good yields.

Pd-catalyzed C–C bond-forming reactions under oxidative 

conditions have received much attention44 due to their 

practical significance and remaining intriguing mechanistic 

questions. Seeking modular methodology for a selective 

construction of diverse 3-(diphenylmethylidene)-2,3- 

dihydro-1H-indol-2-ones free of (3-phenylmethylidene)-2, 

3-dihydro-1H-indol-2-one byproducts, a protocol consist-

ing of a sequential Ugi four-component coupling and inter-/

intramolecular coupling/cyclization induced by PhI(OAc)
2
 

under Pd(OAc)
2
 catalysis has been developed (reaction C; 

Figure 6).45 The reaction sequence was performed without the 

full isolation and purification of the Ugi  coupling products. 
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25%–100°C  
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(from pyridines and triazoles)
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Figure 7 Cycloaddition-based MCRs in sequential protocols.
Notes: (A) Tandem MCR/“click” cycloaddition strategy.48 (B) Tandem MCR/(5 + 2) cycloaddition.49 Modified with permission from Nguyen HH, Palazzo TA, Kurth MJ. 
Facile one-pot assembly of imidazotriazolobenzodiazepines via indium(iii)-catalyzed multicomponent reactions. Org Lett. 2013;15(17):4492–4495. Copyright 2013 American 
Chemical Society;48 and with permission from Lee DJ, Han HS, Shin J, Yoo EJ. Multicomponent [5 + 2] cycloaddition reaction for the synthesis of 1,4-diazepines: isolation and 
reactivity of azomethine ylides. J Am Chem Soc. 2014;136(33):11606–11609. Copyright 2014 American Chemical Society.49

Abbreviations: cat, catalyst; MCR, multicomponent reaction.

The removal of the methanol solvent was followed by the 

addition of toluene along with the reagents for the Pd-

catalyzed coupling/cyclization delivering the final indolone 

products in good yields (16 examples; 60%–88% yields). 

Mechanistically, a pathway alternative to the one pro-

posed by the authors can be envisioned, involving the C–H 

aromatic palladation via the palladium in oxidation state 

Pd(II), and termination by the coupling of the heterocyclic 

organopalladium(II) intermediate with PhI(OAc)
2
 reagent 

through a Pd(II)/Pd(IV) cycle.

The methodologies utilizing sequences of Ugi-type 

MCRs with cutting edge Pd-catalyzed transformations 

described herein (reactions B and C; Figure 6) highlight the 

synthetic potential arising from combination of the strengths 

of two very distinct transformations.

Besides the “traditional” condensations, new types of 

reactivities of isocyanides have been exploited for the design 

of MCRs. A synthetic process based on an initial condensa-

tion of isocyanides with 1,2-disubstituted allenoates and 

tropolone was recently described (reaction D; Figure 6).46 

The product A (Figure 6) of the three-component coupling 

engaged in a series of cyclization/H-shifts/cyclization/H-

shift cascade events in situ, yielding the terminal tricyclic 

heterocycles. The substitution patterns of the heterocycles 

could be diversified at three distinct positions. The protocol 

demonstrates the utility of a one-pot tandem (uninterrupted) 

MCR/rearrangement/cyclization strategy made possible by 

the presence of properly positioned reactive functionalities in 

the building blocks of the initial MCR process (reaction D; 

Figure 6).

Cycloaddition-based MCRs  
in sequential protocols
The popular “click chemistry” involving a Cu-catalyzed 

cycloaddition of azides to alkynes provided the basis for 

the design of novel synthetic protocols and their impressive 

applications in bioorganic chemistry.47

The reactive functionalities requisite for the “click 

reaction” were incorporated into building blocks for the 

classical carbonyl condensation MCRs.48 An in situ intra-

molecular cycloaddition between the matched functional-

ities (azide and alkyne) was expected to deliver complex 

heterocycles featuring a diazepine fused to imidazole and 

triazole rings (reaction A; Figure 7). Thus, aldehydes pos-

sessing the azide group were condensed with 1,3-dicar-

bonyls, NH
4
OAc and propargyl amines under Lewis acid 

catalysis in a protocol anticipated to construct 1,3-imida-

zoles. However, in the presence of the “matched” azide and 

alkyne groups, the “click” (3 + 2) cycloaddition-forming 

triazole ring can occur in situ at any point in time when 
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the two functionalities are brought into close proximity. 

Thus, either the intermediate A or B shown in Figure 7 

was deemed possible, depending on the occurrence of the 

cycloaddition either prior to the completion of the tradi-

tional four-component coupling (A), or subsequent to the 

full assembly of the imidazole (B) (reaction A; Figure 7). 

The overall transformation was performed as a tandem 

one-pot protocol delivering 12 examples of heterocycles 

with three points of diversification.

 Building on the powers of the “click reaction”, Lee 

et al49 reported an intriguing sequence that took advantage 

of the unique reactivity of 1-sulfonyl-1,2,3-triazoles. The 

process incorporates two distinct cycloadditions. A Rh-

catalyzed reaction of the initial (3 + 2) cycloadducts with 

pyridines gave rise to isolable azomethine ylide dipoles that 

underwent an uncatalyzed (5 + 2) cycloaddition to afford 

highly substituted 1,4-diazepines (reaction B; Figure 7). 

A large number of diazepines (23 examples in 75%–80% 

yields) were prepared via a one-step Rh-catalyzed three-

component coupling between triazoles synthesized separately 

via the Cu-catalyzed click process, pyridines, and alkynes. 

Ultimately, a tandem four-component multicatalytic (Cu/

Rh) protocol was designed, in which the Cu-catalyzed click 

reaction is followed by the Rh-catalyzed in situ formation 

of the yilide and is terminated by the (5 + 2) process. This 

methodology was applied to a somewhat limited number of 

cases (three examples; 43%–50% yields) with encouraging 

results (reaction B; Figure 7). The transformation represents 

the first example of a metal-catalyzed multicomponent 

(5 + 2) cycloaddition. The novel protocol furthermore  delivers 

1,4-diazepine scaffolds fused to the pyridine ring that are 

closely related to medicinal psychoactive drugs.27

Transition metal-catalyzed MCRs  
in sequential protocols
The introduction of transition metal-catalyzed reactions to 

organic synthesis opened up the possibility to functionalize 

traditionally unreactive C–H bonds, as well as to realize 

other unprecedented transformations. Furthermore, fine dis-

tinctions between closely related transition metals, or other 

components of the catalytic systems (ligands, additives), 

were shown to give rise to divergent reaction pathways. 

The unique features of transition metal-catalyzed reactions 

contributed to the rising popularity of transition metal-

catalyzed MCRs.50 Transition metal-catalyzed MCRs have 

been incorporated into various reaction sequences achieving 

impressive diversity in the resulting molecular ensembles. 

The effort to perform the sequential reactions as one-pot 

procedures brought attention to an emerging challenge of 

identifying reaction conditions that would avoid undesired 

interactions between the components of the multicatalytic 

systems. Such interactions may involve reactions between the 

two different transition metal complexes, and/or the additives 

that comprise the distinct catalytic systems, and may lead to a 

significant loss of activity (poisoning) of either one, or both, 

the catalysts present.51

A recent report on the preparation of pyrrolo(1,2-a)

quinolines via a sequential iron(III)-catalyzed three-

component coupling followed by a gold(III)-catalyzed 

intramolecular hydroarylation reaction illustrates a number 

of these features (reaction A; Figure 8).52 Mechanisti-

cally, the process is notable based on the importance of a 

proper choice of the two distinct transition metal catalysts. 

In the initial MCR, the FeCl
3
 catalyst selectively  mediated 

the construction of the pyrrole ring in the presence of 

the alkyne functionality, instead of a possible undesired 

 formation of indoles via a premature engagement of the 

alkyne.  Presumably, the preferential coordination of the 

FeCl
3
 to the carbonyl group in the 1,3-dicarbonyls, as well 

as the nitro group, triggered the enamine formation with 

the aniline component, followed by the Michael addition 

of the enamine to the unsaturated nitro derivative yielding 

a substrate for an intramolecular cyclization via a Neff-

like step53 to deliver the pyrrole. Lewis acids with stronger 

affinities for the alkyne group (for example, indium or 

gold salts) would not be suitable for this step. In contrast, 

in the “post-MCR” intramolecular hydroarylation,54 the 

selectivity of the Au(III)Cl
3
 for activating the alkyne for  

the nucleophilic attack by the pyrrole ring is critical. Thus, the 

resulting formal 6-endo addition of a C–H bond from  

the pyrrole across the alkyne group completes the  cyclization 

delivering the targeted heterocyclic products (reaction A; 

Figure 8). The sequence of the two transformations was 

performed in two separate steps with isolation of the pyrrole 

derivatives. A large variety of pyrrolo(1,2-a)quinolones 

with four points of diversity was obtained in synthetically 

practical yields (19 examples; 50%–90% yields).

A one-pot tandem sequence of two MCR reactions 

(for example, the MCR2 strategy shown in reaction B; 

Figure 8) exemplifies the powers of multiple sequential 

metal-mediated C–H activations. The method55 exploits 

Rh(III)-catalyzed oxidative coupling between aromatic 

or heteroatomatic substrates, bearing a directing group 

and multiple molecules of diphenyl acetylene to afford 

polycyclic products with complex structures. The method 

was reported by Liu et al,55 and builds on the prior work 

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Reports in Organic Chemistry 2015:5 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

85

Multicomponent reactions for small-molecule libraries

19 examples, yields: 50%–90%  
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Figure 8 Transition metal-catalyzed MCRs in sequential protocols (part 1).
Notes: (A) Sequential MCR/cyclization strategy.52 (B) Tandem MCR1/MCR2 strategy.55 (C) Sequential MCR/divergent cyclizations strategy.58 Modified from Sarkar S, 
Bera K, Jalal S, Jana U. Synthesis of structurally diverse polyfunctional pyrrolo[1,2-a]quinolines by sequential iron-catalyzed three-component coupling and gold-catalyzed 
hydroarylation reactions. European J Org Chem. 2013;27:6055–6061;52 Liu B, Hu F, Shi BF. Synthesis of sterically congested polycyclic aromatic hydrocarbons: rhodium(iii)-
catalyzed cascade oxidative annulations of aryl ketoximes with diphenylacetylene by sequential cleavage of multiple C-H bonds. Adv Synth Catal. 2014;356(11–12):2688–2696.
with permission from John wiley & Sons inc;55 and modified with permission from Gupta S, Koley D, Ravikumar K, Kundu B. Counter ion effect in Au/Ag-catalyzed 
chemoselective 6-endo-dig N- and O-cyclizations of enyne-urea system: diversity-oriented synthesis of annulated indoles. J Org Chem. 2013;78(17):8624–8633. Copyright 
2013 American Chemical Society.58

Abbreviations: cat, catalyst; DCe, 1,2-dichloroethane; h, hours; min, minutes; MCR, multicomponent reaction; MCR1, first multicomponent reaction; MCR2, second 
multicomponent reaction.

by Too et al56 and Song et al.57 At the onset of the process, 

heteroatom-directed (N-methyl ketoximes) Rh(III)-catalyzed 

oxidative aromatic C–H activation generates a metalacycle 

intermediate that undergoes the insertion of the first diphe-

nyl acetylene molecule to ultimately generate an isoqui-

noline ring. In a repeat of the same mechanistic sequence, 

the isoquinoline undergoes in situ sequential annulations 

with two additional moles of diphenyl acetylene, taking 

advantage of the directing abilities of the nitrogen in the 

isoquinoline ring. The contribution of this study consists 

in the successful optimization of the reaction conditions 

to favor the completion of the entire sequence of selective 

annulations with three molecules of diphenyl acetylene. 

Although electron-deficient aromatic ketoximes were the 

most favorable substrates for the rate determining C–H 

activation step, a broad range of substituted aromatic, as 

well as electron-rich (pyrrole, thiophene) heterocyclic 

ketoximes, reacted successfully in this multicomponent annu-

lation  process. A sample reaction was successfully realized 

on a gram scale. Overall, a number of diverse annulated 

heterocycles were obtained in good yields (15 examples; 

70%–96%) (reaction B; Figure 8).

The potential to perform two distinct palladium-catalyzed 

reactions concomitantly using a properly optimized common 

catalytic system has been already showcased herein by the 

post-MCR elaboration of the functionalized Ugi product in 

reaction B, Figure 6.43 An analogous concept provided the 

basis for Pd-mediated MCR between 2-(2,2-dibromovinyl)

anilines, isocyanates, and terminal alkynes (reaction C; 

Figure 8).58 The initial pretreatment of the anilines with the 

isocyanates followed by the addition of the Pd/Cu catalytic 

system along with diverse terminal alkynes led to two distinct 
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cross-coupling reactions that formed Csp2–Csp and Csp2–N 

bonds of the indole core in a manner consistent with the prior 

work of Fayol et al.59 In the second step of the sequence, two 

divergent reaction pathways were uncovered and could be 

controlled by the choice of the reagent, an approach exem-

plifying the “conditions-based divergence (CBD) concept”, 

as defined by Ruijter et al.18 The Au/Ag-mediated cyclization 

proceeded selectively via the 6-endo rather than the 5-exo 

mode in both the pathways. However, depending on the 

specific choice of the counterions in the Ag(I)X component 

(AgOTf versus AgNO
3
), either the N- or O-atom of the 

amide group became involved in the cyclization (reaction C; 

Figure 8). Control experiments suggested that the presence of 

both the Ag(I) cation, as well as the corresponding counteri-

ons (eg, anions NO
3
– or OTf– along with the AuClPPPh

3
 cata-

lyst) were required to cleanly realize the two regiochemically 

divergent pathways. The authors proposed that coordination 

of the oxygen in the amide group to the Ag(I) ion is critical 

for directing the attack of the O heteroatom on the harder 

electrophilic center arising from the activation of the alkyne 

via the in situ-formed (AuPPh
3
)NO

3
. In contrast, activation 

of the alkyne via the softer (AuPPh
3
)OTf complex favors 

the attack by the softer N-heteroatom from the amide group 

(reaction C; Figure 8). This work showcases how divergent 

post-MCR cyclizations could be used to deliver libraries of 

heterocycles with distinct structural cores.

The availability of transition metal-catalyzed additions of 

C–H bonds in relatively unreactive organic nucleophiles to in 

situ-generated imines and imminium ions expanded the range 

of components that can be employed in the corresponding 

MCRs.60 Furthermore, in contrast to the traditional carbonyl 

condensation MCRs, the transition metal-catalyzed analogs 

proceed under neutral conditions, and therefore permit a 

broad range of functionalities to be present in the building 

blocks. Consequently, a variety of cyclization pathways 

become available to the MCR products. Thus, the variation 

of specific structural features in just one of the building 

blocks has the potential to open up divergent cyclization 

pathways, giving rise to organic products with diverse core 

structures. The most recent examples of synthetic method-

ologies designed according to these principles are discussed 

in Figure 9.

Exploring Cu-catalyzed three-component coupling of 

terminal alkynes, aldehydes, and amines, Fan and Ma61 

observed the formation of an unexpected cyclized pyrone 

derivative as a minor product in reactions utilizing ethyl 

glyoxylate, along with a secondary amine and a terminal 

unprotected propargyl alcohol. An optimized protocol 

involving a CuBr-catalyzed coupling of terminal propargyl 

alcohols, ethyl glyoxylate, and secondary amines in 1,4-

dioxane followed by the treatment of the crude product with 

silica in toluene afforded an extensive series of 3-amino-2- 

pyrone derivatives. The products were diversified at the 

C-6 positions by the variation of the substituent (R1) on the 

propargyl alcohol, and featured diverse substituents (R2) on 

the nitrogen, reflecting the choice of the secondary amine 

component (reaction A; Figure 9).61 A mechanistic study 

indicated that a 2,5-dihydrofurane derivative B could be 

isolated prior to treatment with silica. Presumably, the amino 

propargyl amine/alcohol A (Figure 9) that results from the 

initial MCR, undergoes an alkyne-to-allene isomerization 

prior to the cyclization to yield the pyrones. Based on these 

mechanistic considerations, the authors established that the 

replacement of the ethyl glyoxylate with diverse electron-

deficient aldehydes (R3C[=O]H), and the elimination of the 

treatment with silica, provided a general protocol for the 

synthesis of 2-amino-2,5-dihydrofuranes with three points 

of diversity (reaction A; Figure 9). Both of these protocols 

were performed as sequential one-pot operations.

The author’s laboratory has been developing novel 

reaction sequences of Cu-catalyzed MCR originally reported 

by Black and Arndtsen,62 followed by other transition 

metal-catalyzed cyclizations with the aim of synthesizing 

structurally diverse N-heterocycles. In an earlier study,63 

a sequence of the Cu-catalyzed MCR followed by an 

intramolecular two-step Pd-catalyzed annulation afforded a 

combinatorial library of dihydroindeno(1,2-c)isoquinolines 

featuring three points of diversity. The more recent work high-

lights the possibility to uncover divergent reaction pathways 

via structural variations in one of the substrates (reaction B; 

Figure 9).64 Thus, the CuCl-catalyzed coupling of N-allyl or 

N-homoallyl imines derived from 2-bromoarylcarbaldehydes 

or pyridine-2-bromo-3- carbaldehyde with terminal  aromatic 

alkynes and benzoyl chloride afforded a total of 15 highly 

functionalized acyclic enynes, generally in practical 49%–

53% yields. The products of the first step were isolated 

and characterized. In the second step of the sequence, the 

Ru-catalyzed enyne ring-closing metathesis was performed, 

giving rise to dienes C (Figure 9). The presence of the aryl or 

heteroaryl bromide group along with the diene set the stage 

for a subsequent Pd-catalyzed intramolecular  cyclization. 

We observed that both the N-allyl and N-homoallyl  imines 

of pyridine-2-bromo-3-carbaldehyde afforded either pyr-

roloquinolines (number [n]=1; N-allyl) or tetrahydrophenan-

throlines (n=2; N-homoallyl) via Pd-catalyzed 6-endo 

cyclization/isomerization. In contrast, the outcomes of the 
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Pd-catalyzed cyclizations of the N-allyl and N-homoallyl 

imines derived from 2-bromoaryl carbaldehydes proceeded 

via divergent pathways. The N-allyl imines underwent 

Pd-catalyzed cyclization in the 6-endo mode yielding 

benzoindolines, whereas the N-homoallyl imines afforded 

polycyclic indenopyridine derivatives via an apparent 

5-exo cyclization followed by the 3-exo carbopalladation 

to form the three-membered ring (reaction B; Figure 9).  

Thus, heterocycles with a quite distinct three-dimensional 

shape, either the flat benzoindolines or the bowl-shaped 

indenopyridines, could be obtained via the same reaction 

sequence simply by utilizing homologous N-substituents 

in the imine components. The divergence between the 

5-exo and 6-endo pathways of the Pd-catalyzed cyclization 

was proposed to originate from differences in the stability 

and reactivity of the different (n=1 or n=2) kinetic 5-exo 

18 examples, yields: 43%–78%
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Figure 9 Transition metal-catalyzed MCRs in sequential protocols (part 2).
Notes: (A) Tandem MCR/cyclization strategy.61 (B) Sequential MCR/cyclizations strategy.64 Modified from Fan W, Ma S. Copper(I)-catalyzed three-component reaction of 
terminal propargyl alcohols, aldehydes, and amines: synthesis of 3-amino-2-pyrones and 2,5-dihydrofurans. Angew Chem Int Ed Engl. 2014;53(52):14542–14545;61 and modified 
with permission from Raikar SN, Malinakova HC. Divergent reaction pathways of homologous and isosteric propargyl amides in sequential Ru/Pdcatalyzed annulations for 
the synthesis of heterocycles. J Org Chem. 2013;78(8):3832–3846. Copyright 2013 American Chemical Society.64

Abbreviations: n, number; MCR, multicomponent reaction; RCM, ring-closing metathesis.
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cyclization products of the reversible carbopalladation. The 

kinetic product can either react further (n=2) or revert back 

(n=1) to the substrates, which then proceed to undergo the 

6-endo carbopalladation.

As part of the study, conditions for performing the 

Ru-catalyzed enyne ring-closing metathesis and the Pd-

catalyzed intramolecular Heck cyclization as an interrupted 

one-pot sequential operation without isolation of the diene 

intermediates were developed. The yields of the final products 

(calculated from the enynes) obtained from the one-pot pro-

tocols improved by 3%–22% in comparison to the combined 

yields of the two individual steps from the two-step two-pot 

protocols.

Conclusion
MCRs have the potential to generate libraries of small 

molecules with high levels of complexity and diversity. 

Recently, a powerful strategy for maximizing these features 

has been introduced. In the MCR reaction, building blocks 

possessing orthogonal functionalities are employed, and the 

MCR is sequenced with additional elaboration or cyclization 

processes that greatly increase the molecular complexity 

and diversity of the products. The most powerful synthetic 

methodologies arise when the practical aspects are properly 

optimized and the entire sequence can be performed as a 

one-pot operation. Furthermore, the most diverse products 

are produced when divergent reaction pathways could be 

opened up by variations in the structures of the substrates 

for the MCR, or by the choice of the reagents or reaction 

conditions.

Herein, recent studies aimed at designing such  protocols 

and their applications to the synthesis of diverse assemblies 

of medicinally relevant heterocycles have been reviewed. 

 Strategies exploiting a broad range of mechanistic types 

of MCRs, including those based on  traditional carbonyl 

condensations, isocyanide-based MCRs,  cycloadditions-based 

MCRs, and transition metal-catalyzed MCRs were described. 

Examples of protocols realized as one-pot sequential (inter-

rupted) transformations have been provided (eg, by reactions 

B and C in Figure 6, and reaction A in Figure 9). The most 

accomplished protocols for one-pot tandem sequences could 

be found in reactions B in Figure 4, reaction D in Figure 6, 

reactions A and B in Figure 7, and reaction B in Figure 8.

Future outlook
The studies described herein serve as inspiration for the future 

development of novel MCRs to satisfy the growing demand 

for more diverse libraries of small molecules as probes for 

use in drug discovery. One of the challenges that need to be 

addressed consists of identifying more selective catalysts 

and optimum reaction conditions that would increase the 

functional group tolerance, and therefore diversity, in the 

products of the initial MCRs. In order to produce libraries 

with high structural diversity, further advances are needed 

in the development of divergent sequential processes, where 

divergent reaction pathways could arise either due to the 

variation in the reaction conditions, catalysts used, or a small 

structural variation in the building blocks. Finally, in order to 

make the production of the diverse libraries environmentally 

sustainable and economically viable, much effort needs to be 

invested into the design of sequential protocols that can be 

performed as one-pot operations. The current state-of-the-

art indicates that all these challenges can be addressed, and 

one-pot sequential processes involving an MCR followed 

by subsequent elaborations are likely to become a critically 

important tool for drug discovery.
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