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Introduction: Rodent sleep research uses electroencephalography (EEG) and electromyography 

(EMG) to determine the sleep state of an animal at any given time. EEG and EMG signals, 

typically sampled at .100 Hz, are segmented arbitrarily into epochs of equal duration ( usually 

2–10 seconds), and each epoch is scored as wake, slow-wave sleep (SWS), or rapid-eye- movement 

sleep (REMS), on the basis of visual inspection. Automated state scoring can minimize the 

burden associated with state and thereby facilitate the use of shorter epoch durations.

Methods: We developed a semiautomated state-scoring procedure that uses a combination of 

principal component analysis and naïve Bayes classification, with the EEG and EMG as inputs. 

We validated this algorithm against human-scored sleep-state scoring of data from C57BL/6J 

and BALB/CJ mice. We then applied a general homeostatic model to characterize the state-

dependent dynamics of sleep slow-wave activity and cerebral glycolytic flux, measured as 

lactate concentration.

Results: More than 89% of epochs scored as wake or SWS by the human were scored as the 

same state by the machine, whether scoring in 2-second or 10-second epochs. The majority of 

epochs scored as REMS by the human were also scored as REMS by the machine. However, of 

epochs scored as REMS by the human, more than 10% were scored as SWS by the machine and 

18 (10-second epochs) to 28% (2-second epochs) were scored as wake. These biases were not 

strain-specific, as strain differences in sleep-state timing relative to the light/dark cycle, EEG 

power spectral profiles, and the homeostatic dynamics of both slow waves and lactate were 

detected equally effectively with the automated method or the manual scoring method. Error 

associated with mathematical modeling of temporal dynamics of both EEG slow-wave activity 

and cerebral lactate either did not differ significantly when state scoring was done with auto-

mated versus visual scoring, or was reduced with automated state scoring relative to manual 

classification.

Conclusions: Machine scoring is as effective as human scoring in detecting experimental 

effects in rodent sleep studies. Automated scoring is an efficient alternative to visual inspection 

in studies of strain differences in sleep and the temporal dynamics of sleep-related physiologi-

cal parameters.

Keywords: EEG, automated scoring, principal component analysis, Bayes classification

Introduction
In rodent polysomnographic studies, electroencephalographic (EEG) and electromyo-

graphic (EMG) data are recorded at a high sampling rate, typically 100 Hz or more, and 

then segmented into epochs of arbitrary duration (typically 2–10 seconds in rodents), 
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each of which is classified as wake, slow-wave sleep (SWS), 

or rapid-eye-movement sleep (REMS) on the basis of visual 

inspection. Although this approach is the gold standard for 

state scoring, there are several drawbacks: states determined 

by manual scoring can vary from person to person; when EEG 

and EMG features fluctuate within a given epoch, the user 

must assign a single state; and the process is labor intensive 

and time consuming.

Automated scoring algorithms have been used as an alter-

native to manual state scoring. Among previously proposed 

automated scoring approaches are: computing a quantitative 

state index for each epoch and scoring based on these indices1 

using principal component analysis (PCA) and manual clus-

tering of epochs in PCA space;2 using a naïve Bayes classifier;3 

using linear discriminant analysis;4 using classification trees;4,5 

using a support vector machine;6 using a fully unsupervised 

Bayesian classifier;7 and several methods that use a single 

channel of EEG data to categorize human sleep.8–10 Here we 

present a hybrid approach to automated scoring of rodent 

sleep EEG and EMG data in which human-scored epochs 

are used as a training template for automated state scoring. 

We combine the PCA approach of Gilmour et al2 with a naïve 

Bayes classifier that uses the first three principal-component 

vectors as inputs. Our method is therefore similar to that of 

Rytkönen et al,3 except that we employ the naïve Bayes clas-

sifier on the data after constructing manual scoring-derived, 

state-specific feature vectors and keeping only the first three 

principal component vectors, rather than splitting up the data 

into logarithmic frequency bands.

When sleep is scored in epochs, epoch duration is, to an 

extent, arbitrary. The duration of epochs used often depends 

on the duration of the sleep-related phenomena of interest in a 

given study. For instance, in studying brief REMS-related eye 

movements, 2-second epochs have been used.11 In studying 

state-switching instability at sleep onset, 4-second epochs 

have been used when longer epoch durations failed to reveal 

this instability.12 In studying EEG changes across SWS-

to-REMS transition, a process that evolves gradually over 

1–2 minutes, 10-second epochs were used to demonstrate 

that dynamic.13 In studying the gross disruption of sleep/

wake cycles by maternal separation of rodents, 30-second 

epochs were used.14 These examples illustrate that sleep must 

be studied on different time scales and that machine scoring 

needs to be validated for these different time scales.

When choosing epoch duration, one balances countervail-

ing factors. The fidelity of state scoring is increased as epoch 

duration is shortened, as the probability of a state transition 

occurring within each epoch is thereby reduced. However, the 

effort associated with state scoring by visual inspection is 

increased as epoch duration is shortened. Because different 

research groups use different epoch lengths, it can be dif-

ficult to compare sleep data across studies. This issue arises 

when epoched data has been used in mathematical modeling 

of sleep-dependent slow-wave dynamics,15–18 as the time 

constants that describe temporal dynamics may be a function 

of epoch duration.

Here we present a systematic investigation of the effect 

of epoch length on sleep-dependent dynamics of slow-wave 

activity (SWA) and lactate concentration in the cerebral  cortex. 

The latter serves as a marker for glucose utilization and varies 

as a function of sleep state.19–21 To investigate the effect of 

epoch length on these dynamics, we segmented datasets into 

both 10-second and 2-second epochs. We used the hybrid PCA/

Bayes classifier to automatically score the recordings.

The agreement of a novel automated scoring method with 

scoring of data by an investigator is a typical performance 

measure for the novel method. But to the extent that the 

purpose of scoring sleep is to identify experimental effects 

of independent variables on dependent variables, whether 

or not the algorithm detects the same experimental effects 

as the human scorer is an important consideration as well. 

Therefore, the algorithm is applied here in two strains of 

mice and across the entire circadian cycle, in order to deter-

mine whether time-of-day effects and differences between 

the strains in time spent asleep measured by human scoring 

are also detected algorithmically. Likewise, mathematical 

modeling with human-scored sleep-state data as an input 

parameter predicts the dynamics of SWA and lactate concen-

tration over time.22 Whether sleep-state data from automated 

scoring can effectively serve as a predictive parameter for 

modeling physiological processes is yet another consider-

ation in evaluating a novel autoscoring algorithm.

Our goals for the current study were thus: 1) to deter-

mine the agreement between a combined PCA/naïve Bayes 

autoscoring method and human scoring in measuring sleep 

timing and sleep homeostatic dynamics; 2) to determine the 

relative effectiveness of the autoscored and human-scored 

datasets in detecting experimental effects; and 3) to use this 

efficient autoscoring approach to determine the effect of 

2-second versus 10-second epoch length on the time dynam-

ics of EEG SWA and lactate concentration.

Methods
Experimental subjects
All procedures adhered to National Research Council guide-

lines (Institute of Laboratory Animal Resources NRC 1996) 
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and were approved by the institutional animal care and use 

committee of Washington State University. Male mice of 

the C57BL/6J (B6, n=12) and BALB/CJ (BA, n=10) strains 

were used in these experiments. They were purchased at age 

8 weeks from Jackson Laboratories (Bar Harbor, ME, USA; 

strains #664 and #651). Animals were housed in a light/dark 

12:12 cycle with unrestricted access to standard laboratory 

chow and water.

Surgical preparation of subjects
Surgery was performed as described previously,21,23 under 

isoflurane anesthesia. Mice were surgically equipped for 

bilateral referential frontoparietal EEGs and neck EMGs. 

Frontal EEG electrode locations were 1.5 mm lateral to the 

midline and 1 mm anterior to bregma. The parietal EEG elec-

trode location was 1.5 mm left of midline and 2 mm anterior 

from lambda. A guide cannula for placement of a lactate 

biosensor20,21,23 was placed in the left frontal cerebral cortex 

1.1 mm anterior and 1.65 mm lateral from bregma. A dummy 

stylet was placed in the guide cannula until the day of experi-

mentation, 10–14 days after surgery. Experimentation was 

completed within 3 weeks of surgical implantation.

Data collection and analysis
Sleep data were scored by trained experts, as in previous 

work.21,24,25 Epochs in which EMG amplitude was relatively 

high and EEG amplitude was relatively low were scored as 

wake. Epochs in which EMG amplitude was relatively low 

and EEG amplitude relatively high were scored as SWS. 

Epochs in which both EMG amplitude and EEG amplitude 

were low and in which theta (5–9 Hz) activity predominated 

in the EEG were scored as REMS. Scoring of REMS was 

additionally context-dependent, in that epochs meeting these 

criteria that occurred within wake episodes were scored as 

wake, not REMS.

Lactate was measured using a lactate oxidase based bio-

sensor implanted in the frontal cerebral cortex, as described 

elsewhere.20,21,23 This technique was first published in 199726 

and has since been refined and commercialized by Pinnacle 

Technology, Inc. (Lawrence, KS, USA; part #7004-Lactate). 

The sensing mechanism consists of a platinum–iridium 

electrode surrounded by a layer of lactate oxidase molecules. 

Metabolism of lactate by lactate oxidase produces hydro-

gen peroxide, which produces a current in the platinum–

iridium electrode. The current at the sensing electrode is 

proportionate to the concentration of the substrate for the 

lactate oxidase enzyme (lactate, the product of glycolysis). 

 Current is monitored at a sampling rate of 1 Hz, providing 

a moment-by-moment estimate of lactate concentration in 

the cerebral cortex. Current was averaged across all values 

within each epoch of data analyzed (n=10 for 10-second 

epochs; n=2 for 2-second epochs). In order to eliminate noise 

in the signal from the sensor, each epoch’s average value was 

compared with the mean of the previous ten epoch values. If 

it deviated from that mean by more than ten standard devia-

tions of that mean, the value for that epoch was replaced by 

the mean value.

On the day of experimentation, the lactate sensor was 

precalibrated, as described elsewhere.21,23 Approximately 

8 hours into the light portion of the light/dark 12:12 cycle, 

the dummy stylet was removed from the guide cannula and 

the lactate sensor was inserted into the guide cannula. The 

uninsulated, enzymatically active portion of the sensor was 

embedded at a depth of 1 mm in the cerebral cortex. This 

depth targets the deeper layers of cerebral cortex, although 

placement was not verified histologically. The animal was 

placed into a cylindrical cage, where it remained throughout 

the duration of the recording session. EEG, EMG, and lactate 

biosensor current were monitored continuously at 400 Hz for 

40–48 hours thereafter. Data that occurred after insertion of the 

lactate sensor and before the second SWS episode of 1 minute 

or longer was not included due to exponential decay of current 

from the lactate sensor in this equilibrating phase.

For comparison of the effectiveness of human scoring 

and machine scoring in detecting strain differences in sleep 

timing across 10-second epochs, 8,640 epochs, represent-

ing a complete circadian cycle, were subjected to analysis. 

Comparing machine scoring of 10-second epochs to manual 

scoring in this time range allowed us to determine whether 

there was a circadian phase-specific bias in the performance 

of the algorithm. To assess machine-scoring performance 

relative to human performance in scoring 2-second epochs, 

we sought to perform analysis on a similar number of epochs 

as in the 10-second epoch dataset. Each of the epochs used 

for validation of the algorithm had to be scored by a human, 

and we anticipated that scoring the numbers of 2-second 

epochs in one circadian cycle (43,200 epochs) would pro-

duce significant fatigue in the human scoring the file. This 

fatigue would decrease the accuracy of the human scoring 

and thereby confound any measurement of the machine 

scoring accuracy for 2-second epochs relative to 10-second 

epochs. Instead, we reasoned that 8,640 2-second epochs 

represent 4.8 hours, so we added an additional 360 epochs 

to make the dataset an even 5 hours. Data from the 5-hour 

interval between 10 am and 3 pm were used in this analysis 

because at that time of day rodents transition across all three 
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states most reliably, allowing for a thorough assessment of 

the accuracy of scoring across all three states.

PCA and machine learning
To autoscore sleep data consisting of EEG and EMG data 

binned into 2-second or 10-second intervals, we used a com-

bination of PCA and machine learning. The PCA began by 

constructing seven “feature” vectors from the EEG and EMG 

data traces, following Gilmour et al.2 The seven features are: 

1) EEG power in the 1–4 Hz (delta) range; 2) EEG power 

in the 5–9 Hz (theta) range; 3) EEG power in the 10–20 Hz  

(low beta) range; 4) EEG power in the 30–40 Hz (high beta) 

range; 5) EMG power; 6) theta-to-delta ratio; and 7) beta-

to-delta ratio. Each vector contained one element for each 

epoch in the recording, so each epoch can be thought of as 

a point in a seven-dimension space. PCA transforms these 

seven vectors into a set of seven linearly uncorrelated vectors 

called principal components. The first principal component 

points in the direction (in seven-dimension space) of great-

est variance in the data, and each succeeding component 

points in the direction of greatest variance with the restric-

tion that it is orthogonal to each of the preceding principal 

components.

This idea can be visualized in the following manner: 

because each epoch of data is given a value in seven different 

categories, it can be visualized as a point in seven-dimension 

space. If every epoch in a recording is plotted in this seven 

dimension space, they may form a random cloud of data 

with no discernible pattern. However, more commonly, when 

plotted this way the data tend to line up along one or two 

directions that are not parallel to any of the coordinate axes. 

The directions along which they line up are the principal 

components. It is important to note that the principal com-

ponents are different for each recording, as each one requires 

a different combination of the seven features to best explain 

the variation in the data.

Once the principal component vectors were found for 

the data, we computed the percentage of the total variance 

in the feature vectors that was explained by each principal 

component. For every dataset included in this study, the first 

three principal component vectors accounted for more than 

99% of the variance in the feature vectors, so we reduced the 

seven-dimension feature space down to three by keeping only 

the first three principal components. Once this transformation 

was made, the data were plotted with respect to the first three 

principal components, and clustering of epochs into wake, 

non-REM sleep (NREMS), and REMS was clearly visible for 

each dataset. Moreover, plotting the data using only the first 

two principal component directions yielded distinct clusters 

(Figure 1A), indicating that PCA was effectively separating 

out the sleep states.

We combined this principal component approach with a 

naïve Bayes classifier to automatically score files. A naïve 

Bayes classifier requires that a subset of the epochs be scored 

by a human in order to train the classifier to score the rest of 

the epochs. The naïve Bayes classifier uses the training data to 

divide the three-dimensional principal component space into 

three distinct zones, one for each sleep state. Each unscored 

epoch is then scored on the basis of which zone it falls into. 

Finally, as REMS is consistently preceded by non-REMS 

rather than by wake in wild-type rodents, epochs scored as 

REMS that were preceded by at least 30-seconds of wake 

were rescored as wake. See the Discussion for more details. 

We implemented both the PCA and the naïve Bayes scor-

ing in MATLAB. Scripts are available to interested parties 

on request. We first applied the PCA/naïve Bayes hybrid 

approach to fully-scored 24-hour 10-second epoch data 

files using the data from 10 am to 2 pm (Zeitgeber time 4–8; 

a time when all three states alternate on a regular basis) as 

training for the Bayes scoring algorithm. We used a variety 

of agreement statistics to compare the scores determined by 

the algorithm to those made by a human (see Agreement 

statistics, below). Plotting the machine-scored data along 

the first two principal component directions yielded images 

similar to the human-scored data (Figure 1B).

Agreement statistics
To quantify the agreement of the machine scoring and the 

human scoring, we calculated five statistical measures. Global 

agreement is the percentage of total epochs that are scored 

the same by the human and the algorithm. We also calculated 

the percentage agreement for wake by counting the number 

of epochs scored as wake by both human and machine, and 

divided by the number of epochs scored as wake by the human 

score. We repeated this calculation for SWS and REMS. 

Finally, we computed Cohen’s unweighted kappa,27 a way 

to quantify agreement while accounting for agreement that 

would happen due to chance alone.

To determine how many human-scored epochs were 

needed to successfully train the algorithm to score an entire 

dataset, we ran the autoscoring procedure using various 

percentages of the human-scored data as training templates 

(Figure 1C and D). For each percentage, we randomly 

selected the appropriate number of human-scored epochs, 

while ensuring that in each case at least one epoch of each 

sleep state was present. For both strains, with data binned in 
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10-second epochs the kappa statistic and the global agreement 

approached 90%, using only about 1% of the human-scored 

dataset for training. For each run of the autoscoring algo-

rithm, we used 4 hours of human-scored data as training. This 

corresponds to 9% of a 43-hour recording (as in Figure 1A 

and B), 16% of a 24-hour recording using 10-second epochs, 

and 80% of 8,640 2-second epochs.

Mathematical models of delta  
activity and lactate dynamics
We employed a general homeostatic model to quantify the 

temporal dynamics of both EEG and lactate concentration.22,28 

To model SWA (the EEG power in the 1–4 Hz range, called 

Process S) we assumed that S increases exponentially toward 

a constant upper asymptote (UA) during wake and REMS, 

and decreases exponentially toward a constant lower asymp-

tote (LA) during SWS. The time course of S can be found 

by solving the following differential equation:

 

dS

dt
S LA S UA=

−





− + −
−





−σ
τ

σ
τ

1
1

1

d i

( ) ( ) ( ) (1)

where τ
i
 and τ

d
 are the time constants of the increasing and 

decreasing exponential functions, respectively, and where 
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Figure 1 Comparison of human scoring to machine scoring.
Notes: Principal component plots of a 43-hour recording scored in 10-second epochs by a human (A) and using the machine learning algorithm (B). Each dot represents one 
10-second epoch, and its color represents sleep state (SWS = blue, wake = red, reMS = orange). The computer-scored plot used data from 10 am to 2 pm (Zeitgeber time 
4–8 in the first complete light/dark cycle of the recording) as training data to score every epoch in the entire 43-hour recording. Both for BALB/CJ mice (C) and C57BL/6J 
mice (D), the agreement between machine-scored and human-scored increased as more of the training data were used. For each genetic strain, 8,640 2-second epochs and 
8,640 10-second epochs were scored by a human and by the autoscoring procedure, with 0.05%, 0.1%, 0.5%, 1%, 10%, 50%, 80%, and 100% of those 8,640 epochs used as 
training data. These correspond to 4 epochs, 9 epochs, 43 epochs, 86 epochs, 864 epochs, 4,320 epochs, 6,912 epochs, and 8,640 epochs, respectively. In each case it was 
ensured that at least one epoch of each state was present. Two measures of agreement between the human scoring and the machine scoring were computed: Cohen’s kappa 
and global agreement. The x-axis shows the percentage of the 8,640 epochs used as training data, indicating that the learning algorithm requires only about 1% of the training 
data to reach optimal performance.
Abbreviations: REMS, rapid-eye-movement sleep; SWS, slow-wave sleep.
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σ=1 during an epoch scored as SWS and σ=0 otherwise. 

The model for the wake–sleep temporal dynamics of lactate 

(which we term Process L) is identical to that of Process S, 

except that UA and LA, respectively, are functions of time 

rather than constants. The equation is as follows:

 

dL

dt
L LA t L UA t=

−





− + −
−





−σ
τ

σ
τ

1
1

1

d i

( ( )) ( ) ( ( )) (2)

LA and UA were made functions of time to account for the 

changes in the lactate signal due to the gradual decay in the 

output of the lactate sensor over the course of the recording.22 

To compute UA(t) and LA(t), we constructed a histogram 

of the lactate signal in a 2-hour moving window throughout 

the entire recording. The 90% level of these histograms was 

chosen as UA and the 10% level was chosen as LA. For both 

the Process S and Process L models the time constants for 

the rates of increase (τ
i
) and decrease (τ

d
) were optimized, 

via the Nelder–Mead/simplex method, to minimize the error 

of the model relative to the raw data.29

Results
Sleep state scoring: human  
versus machine
Visual inspection of the machine scoring compared with 

the human scoring (based on EEG and EMG signals) 

showed a high degree of agreement (Figure 2). To quantify 

agreement between the two scoring methods, we computed 

Cohen’s kappa, as well as global agreement and agreement 

of each of the states (Figure 3). Global agreement and 

kappa were high for both strains and both epoch lengths. 

We also pooled the 10-second epoch data and the 2-second 

epoch data from both strains, and we constructed confusion 

matrices for each (Table 1) indicating agreement between 

human scoring and the machine algorithm for each state. 

The percentage of  correct classifications for each state 

appears in the entries along the diagonal of the matrix, 

and misclassifications appear in the off-diagonal entries. 

For example, the first data row of Table 1 indicates that of 

all epochs scored as wake by the human scorer, 89.54% of 

those were also scored as wake by the algorithm, 9.71% 

of those epochs were scored as SWS, and 0.75% were 

scored as REMS.

When data were processed in 10-second epochs, the scor-

ing algorithm scored more epochs as SWS than did human 

scoring (Table 2; F
1,20

=37.6; P,0.001; main effect of scoring 

method), at the expense of both REMS (F
1,20

=54.0; P,0.001; 

main effect of scoring method) and wake (F
1,20

=40.0; 

P,0.001; main effect of scoring method). The absence of 

a significant time × scoring method interaction (F
23,920

=1, 

P.0.05) for any of the three states indicates that there was 

not a time-of-day–specific bias in the disagreement between 

scoring methods. Of epochs scored as wake by a human, 10% 

in BA and 10% in B6 were not scored as wake by machine. 

The human versus machine scoring discrepancy resulted in a 

5% (B6 mice) to 7% (BA mice) reduction in total wake time 

over 24 hours with machine scoring relative to human scoring 

(Figure 4A and B; main effect of scoring method, F
1,20

=40.0; 

P,0.001). Of epochs scored as REMS by a human, 33% in 

BA and 25% in B6 were not scored as REMS by machine. 

Consequently, the number of epochs scored as REMS over 

24 hours was reduced by 13% (BA mice) to 14% (B6 mice; 

Figure 4E and F; main effect of scoring method, F
1,20

=37.6; 

P,0.001). Epochs scored as either of the two desynchronized 

states by human scoring were more likely to be scored as SWS 

by machine. Thus, the number of epochs scored as SWS by 

machine exceeded that of human scoring by 10% in BA and 

13% in B6 (Figure 4C and D; main effect of scoring method, 

F
1,20

=54.0; P,0.001). Bias in the machine scoring was not 

strain-specific, as strain × scoring method interaction was not 

significant for any of the three states (F
1,20

=1.6; P.0.2).
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Figure 2 EEG and EMG data for comparison of human scoring and machine scoring.
Notes: The top two traces show human and autoscored sleep states for each 10-second epoch of the EEG and EMG shown in the lower panels. The sleep states are labeled 
with color (gray for wake, white for SWS, and black for REMS).
Abbreviations: EEG, electroencephalography; EMG, electromyography; REMS, rapid-eye-movement sleep; SWS, slow-wave sleep.
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Table 1 Confusion matrix, human versus machine scoring; per-
centage of correct classifications

Wake  
(machine)

SWS  
(machine)

REMS  
(machine)

Ten-second epochs
 Wake (human) 89.54 9.71 0.75
 SWS (human) 3.31 95.58 1.11
 REMS (human) 18.66 10.89 70.45
Two-second epochs
 Wake (human) 92.03 7.29 0.68
 SWS (human) 6.98 91.48 1.54
 REMS (human) 28.12 14.95 56.93

Abbreviations: REMS, rapid-eye-movement sleep; SWS, slow-wave sleep.

Table 2 Sleep states in 10-second epochs, human versus machine 
scoring (minutes/24 hours)

State Strain Human Machine ANOVA (scoring 
method)

Wake BA 857±23 800±20 F1,20=40.0; P,0.001
B6 819±15 780±18

SWS BA 515±21 582±20 F1,20=37.6; P,0.001
B6 529±14 583±16

reMS BA 67±3 58±4 F1,20=54.0; P,0.001
B6 91±3 78±4

Abbreviations: ANOVA, analysis of variance; BA, BALB/CJ mice; B6, C57BL/6J 
mice; REMS, rapid-eye-movement sleep; SWS, slow-wave sleep.
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Figure 3 Agreement statistics between human scoring and machine scoring.
Notes: For the data scored in 10-second epochs, the agreement statistics compare the human and machine scoring for the entire 40–48-hour recording. For the data in 
2-second epochs, the comparison is between 8,640 epochs that were scored by hand and the same 8,640 epochs scored by the automated scoring algorithm. Lines inside boxes 
represent median values. The lower end of each box indicates the first quartile of the data (Q1), and the upper end represents the third quartile (Q3). To draw the whiskers, 
we calculated the interquartile range (IQR), which is the distance between Q1 and Q3. The lower whisker indicates the lowest data point within 1.5 IQR of Q1. The upper 
whisker indicates the largest data point within 1.5 IQR of Q3. Outliers more than 1.5 IQR but less than 3 IQR above Q3 or below Q1 are represented with open circles.
Abbreviations: B6, C57BL/6J mice; BA, BALB/CJ mice; REMS, rapid-eye-movement sleep; SWS, slow-wave sleep.

When data were scored in 2-second epochs, SWS as 

a percentage of time was no longer significantly affected 

by scoring method (F
1,20

=3.3; P=0.086; Figure 5C and D). 

However, machine scoring systematically overrepresented 

wake (F
1,20

=262.4; P,0.001; Figure 5A and B) and under-

represented REMS (F
1,40

=198.2; P,0.001; Figure 5E and F) 

relative to human scoring.

EEG power spectra: human  
versus machine
EEG power spectra exhibited the typical state dependence 

irrespective of state-scoring method and epoch duration 

(Figure 6). In both strains, slow (,6 Hz) activity pre-

dominated in SWS; theta (6–8 Hz) activity predominated 

in REMS; EEG amplitude remained relatively low at these 

frequencies in wake. Although the EEG spectral power 

curve for machine-scored states largely obscured that of 

human-scored states in both strains, there were significant 

scoring method × frequency interactions for wake (10-second 

F
19,380

=10.1, P,0.001; 2-second F
19,380

=4.0, P,0.001) and 

REMS (10-second F
19,380

=3.7, P,0.001; 2-second F
19,380

=2.2, 

P=0.003), but not SWS. Additionally, 1–4 Hz SWA was 

reduced modestly (2%) but significantly in machine-scored 

10-second epochs of SWS relative to human-scored SWS 

within the B6 strain specifically (Figure 6E, inset).

Measuring sleep state-dependent 
dynamics of SWa and lactate:  
human versus machine
To further investigate the utility of the machine scoring, we 

employed a homeostatic model to predict the state-dependent 

dynamics of SWA and cerebral lactate concentration.22 We 

applied this model to both the human-scored and machine-

scored data using 10-second epochs and 2-second epochs 

(Figure 7). The temporal dynamics of the optimized model 

were unchanged with respect to scoring method using both 
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Figure 4 Sleep-state percentages in human-scored versus machine-scored 
10-second epoch data.
Notes: Data from the BA strain (left column) and the B6 strain (right column), 
were binned into 60-minute intervals. Graphs represent the percentage of each 
interval spent in wake (A and B), SWS (C and D), and REMS (E and F). Open circles 
represent machine-scored data and filled circles represent human-scored data. Dark 
and light phases are indicated by black and white bands at the top of each panel.
Abbreviations: B6, C57BL/6J mice; BA, BALB/CJ mice; REMS, rapid-eye-movement 
sleep; SWS, slow-wave sleep.
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Figure 5 Sleep-state percentages in human-scored versus machine-scored 2-second 
epoch data.
Notes: Data from the BA strain (left column) and the B6 strain (right column) were 
binned into 12-minute intervals. Graphs represent the percentage of each interval 
spent in wake (A and B), SWS (C and D), and REMS (E and F). Open circles 
represent machine-scored data and filled circles represent human-scored data. Data 
are from Zeitgeber time 4–9.
Abbreviations: B6, C57BL/6J mice; BA, BALB/CJ mice; REMS, rapid-eye-movement 
sleep; SWS, slow-wave sleep.

10-second epochs (Figure 7A, B, E, and F) or 2-second 

epochs (Figure 7C, D, G, and H). Because only 8,640 of the 

2-second epochs were scored by a human, only those data 

are shown in panels 7A–7D. This corresponds to 4.8 hours of 

data starting at 10 am. The dynamics of the lactate signal were 

minimally affected by the choice of 2-second or 10-second 

epoch length. In panels 7E–7H, the homeostatic model was 

fit to delta power (1–4 Hz) in 5-minute episodes made up of 

at least 90% SWS. Although the model of delta power also 

used 8,640 epochs as training for the machine scoring, all 

of the data are shown since the temporal dynamics of SWA 

are slower than those of lactate.

In modeling sleep-state SWA dynamics there was a sig-

nificant effect of scoring method on both τ
i
 (the optimized 

time constant for the rise of SWA as a function of prior time 

spent in desynchronized states; Figure 8A and C) and τ
d
 

values (the optimized time constant for the decline of SWA 

as a function of prior time spent in SWS; Figure 8B and D) 

in modeling sleep-state SWA dynamics. Both time constants 

optimized at higher values in the machine-scored datasets 

relative to the human-scored datasets, irrespective of strain 

(strain × scoring method interaction, F
1,20

,0.2, P.0.60; see 

strain differences discussed below). In modeling SWA in 

10-second epochs, the mean optimized τ
i
 values (3.2 hours) 

and τ
d
 (3.8 hours) across all animals from machine-scored 

data were greater than those generated from human-scored 

data (2.6 hours, 3.5 hours) by 10% and 21%, respectively. 

In modeling SWA in 2-second epochs, the mean optimized 

τ
i
 values (4.8 hours) and τ

d
 (3.8 hours) across all animals 

from machine-scored data were greater than those gener-

ated from human-scored data (4.2 hours, 3.1 hours) by 

12% and 25%, respectively. Scoring method significantly 

affected τ
d
 (Figure 8F) but not τ

i
 values (Figure 8E) for the 

temporal dynamics of lactate concentration in 10-second 

epochs. In modeling lactate in 10-second epochs, the mean 

optimized τ
d
 values (0.23 hours) across all animals from 

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Nature and Science of Sleep 2015:7 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

93

Automated quantification of sleep-dependent parameters

Residuals (Figure 9), a measure of the deviation of 

optimized mathematical modeling values from the data 

being modeled, provide an indication of the performance of 

the model. Lower residuals indicate a better fit to the data 

being modeled. Two-way analysis of variance with strain 

as a between-subjects variable and scoring method (auto-

mated versus manual) as a within-subjects variable indicated 

significant effects of scoring method on residual values for 

modeling lactate dynamics in 10-second epochs (Figure 9C; 

F
1,20

=5.3, P=0.032) and SWA dynamics in 2-second epochs 

(Figure 9B; F
1,20

=5.3, P=0.032). Scoring method did not 

significantly affect residuals for lactate dynamics in 2-second 

epochs (Figure 9D) or SWA dynamics in 10-second epochs 

(Figure 9A). Residuals did not vary as a function of strain in 

any of the four analyses, nor were scoring method × strain 

interactions significant. Where residuals were affected by 

scoring method (Figure 9B and C), the residuals were lower 

(albeit modestly) for automated scoring than for manual 

scoring. Thus, the performance of automated scoring is as 

effective as, if not modestly more effective than, manual 

scoring, for use in modeling sleep state-dependent dynamics 

of physiological variables.

Machine scoring detects strain  
differences in sleep timing, EEG 
power spectra, and sleep-dependent 
physiological parameter dynamics
Strain × scoring method interaction was not significant 

for any of the three states as a percentage of time, which 

indicates that there was not a strain-specific bias in the 

disagreement between scoring methods. The BA and B6 

strains, by virtue of genomic differences, exhibit differences 

in sleep-state timing. Both human and machine scoring 

detected a significant main effect of strain on REMS as a 

percentage of time across the entire 24-hour light/dark 12:12 

cycle (Table 3). Neither wake as a percentage of 24 hours nor 

SWS as a percentage of 24 hours differed between the two 

strains regardless of state-scoring method; however, all three 

states exhibited time-of-day–specific strain effects regard-

less of whether states were scored by human or machine, 

as indicated by significant strain × time interaction for both 

scoring methods (Table 3).

Posthoc comparisons across strains yielded strikingly 

similar time-of-day–specific effects of strain on sleep 

timing in the human-scored and machine-scored datasets 

(Figure 10). For instance, SWS as a percentage of time dif-

fered significantly between strains (Fisher’s protected least-

significant difference) in hours 5, 9, 10, 19, and 24, and at 

5,000
A

B

C F

D

E

BA B6

4,500

4,000

3,500

Human

Machine

Human

Machine

2,500

3,000

2,000

1,500

1,000

500

0

5,000
3,000

2,000

1,000

0

3,000

2,000

1,000

0
H M H M

0.01
4,500

NS

4,000

3,500

2,500

3,000

2,000

1,500

1,000

500

0

5,000

4,500

4,000

3,500

2,500

3,000

2,000

1,500

1,000

500

0

Frequency (Hz)

R
E

M
S

E
E

G
 p

o
w

er
 (

µV
2 /

H
z)

S
W

S
E

E
G

 p
o

w
er

 (
µV

2 /
H

z)
W

ak
e

E
E

G
 p

o
w

er
 (

µV
2 /

H
z)

Frequency (Hz)
4 8 12 16 20 4 8 12 16 20

Figure 6 Machine-scored data in 10-second epochs exhibit similar frequency 
profiles to human-scored data.
Notes: The left column shows data for the BA strain and the right column shows 
data for the B6 strain. For wake (A and D), SWS (B and E), and REMS (C and F), the 
frequency profiles of the human-scored data (black line) and those of the machine-
scored data (gray line) are shown. The black dots in panels (A, C, D and F) indicate 
frequency bands in which posthoc comparisons (Fisher’s protected least-significant 
difference) indicated a difference between the curves. The insets in panels (B and E) 
show 1–4 Hz SWA. P-values in these insets indicate main effect of scoring method 
on SWa.
Abbreviations: B6, C57BL/6J mice; BA, BALB/CJ mice; EEG, electroencephalography; 
EMG, electromyography; H, human; M, machine; NS, not significant; REMS, rapid-
eye-movement sleep; SWA, slow-wave activity; SWS, slow-wave sleep.

machine-scored data were greater than those generated from 

human-scored data (0.18 hours) by 23%. Scoring method did 

not significantly affect either time constant, τ
d
 (Figure 8H) 

or τ
i
 (Figure 8G) for the temporal dynamics of lactate con-

centration in 2-second epochs.

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Nature and Science of Sleep 2015:7submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

94

rempe et al

no other times, regardless of whether states were scored by 

human or machine. Wake time differed significantly between 

strains in hours 5, 9, 10, 19, and 24, regardless of whether 

states were scored by human or machine. REMS time differed 

significantly between strains in hours 9, 11–13, and 19–21 of 

recording, regardless of whether states were scored by human 

or machine. Thus, although machine-based scoring exhibited 

a significant bias toward SWS, it nonetheless detected the 

experimental effect of strain on sleep timing. This analysis 

was not repeated for the 2-second epoch data, as those 8,640 

epochs represented a 5-hour window within which daily 

rhythms of sleep and wake are not apparent.

Repeated-measures analysis of variance indicated signifi-

cant strain × frequency interactions affecting spectral profiles 

of wake, SWS, and REMS in both human-scored and machine-

scored datasets for both 10-second (Table 4) and 2-second 

epoch data (not shown). Posthoc comparisons of EEG spec-

tral profiles between strains across 1 Hz bins indicated that 

the strain difference detected in the EEG spectral profile in 

human scored datasets was replicated in the machine-scored 

datasets (Figure 11). For instance, in 10-second epochs scored 

as wake, spectral power in the 9–11 Hz range was elevated in 

B6 mice relative to BA mice in both the human-scored and 

machine-scored datasets (Figure 11A and D). In 10-second 

epochs scored as SWS, spectral power in the 3–12 Hz range 

was elevated in B6 mice relative to BA mice in both the 

human-scored and machine-scored datasets (Figure 11B 

and E). In 10-second epochs scored as REMS, spectral power 

in the 6–11 Hz range was elevated in B6 mice relative to BA 

mice in both the human-scored and machine-scored datasets 

(Figure 11C and F). These data demonstrate that strain dif-

ferences in EEG oscillatory activity across sleep states were 

detected by the machine-scoring method. Similarly, the over-

lap between scoring methods in detecting strain differences in 

EEG spectral profiles within the 2-second datasets was near 

total (data not shown).

The temporal dynamics of both EEG SWA and lactate 

concentration across 10-second epochs were strain depen-

dent regardless of scoring method (Figure 8A, B, E, and F). 

Strain comparison of SWA τ
i
 and τ

d
 via Student’s t-test 
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Figure 7 Homeostatic modeling of lactate data and SWA scored by human or machine.
Notes: The left column shows human-scored data and the right-hand column shows machine-scored data. The top four panels show scaled lactate data in 10-second epochs 
scored by a human (A), 10-second epochs autoscored (B), 2-second epochs scored by a human (C), and 2-second epochs autoscored (D). The bottom four panels show 
SWA in 5-minute sleep episodes using 10-second epochs scored by a human (E), 10-second epochs autoscored (F), 2-second epochs scored by a human (G), and 2-second 
epochs autoscored (H). In each panel, a homeostatic model for lactate or SWA was fit to the data (solid curve). The difference in time scale between the lower panels and 
the upper panels reflects the difference in temporal dynamics of SWA versus those of lactate.
Abbreviations: REMS, rapid-eye-movement sleep; SWA, slow-wave activity; SWS, slow-wave sleep.
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for  independent measures yielded higher values for both 

parameters in the BA strain relative to the B6 strain, whether 

the scoring was automated or manual (τ
20

.3.2; P,0.004, 

Table 5). The strain difference was inverted in the case of 

lactate-concentration dynamics across 10-second epochs; 

time constants for lactate were significantly reduced in BA 

mice relative to B6 mice (Figure 8E and F). Strain compari-

son of lactate τ
i
 and τ

d
 via Student’s t-test for independent 

measures yielded lower values for both parameters in the 

BA strain relative to the B6 strain, regardless of whether 
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Figure 8 Strain differences in optimal time constants in general homeostatic 
modeling of state-dependent SWA and lactate dynamics.
Notes: Data represent optimized time constants for wake/REMS-dependent 
increases (τi) and SWS-dependent decreases (τd) in SWA (A–D) and lactate (E–H) 
from human-scored data (black bars) and machine-scored data (gray bars). P-values 
are shown for main effect of scoring method on time constants.
Abbreviations: B6, C57BL/6J mice; BA, BALB/CJ mice; NS, not significant; REMS, 
rapid-eye-movement sleep; SWA, slow-wave activity; SWS, slow-wave sleep.
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P-values are shown for main effect of scoring method on time constants. Asterisk 
denotes significant difference for human versus machine scoring within the BA strain 
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Abbreviations: B6, C57BL/6J mice; BA, BALB/CJ mice; NS, not significant; R SWA, 
slow-wave activity.

Table 3 Strain difference in sleep timing: human versus machine 
scoring

State Method BA versus  
B6, minutes/ 
24 hours

ANOVA  
(strain)

ANOVA  
(strain × time)

Wake human +38 NS F1,20=2.5; P,0.001
Machine +20 NS F1,20=2.5; P,0.001

SWS human -14 NS F1,20=2.6; P,0.001
Machine -1 NS F1,20=2.6; P,0.001

reMS human -24 F1,20=27.0;  
P,0.001

F1,20=2.5; P,0.001

Machine -20 F1,20=12.0;  
P,0.002

F1,20=2.5; P,0.001

Abbreviations: ANOVA, analysis of variance; B6, C57BL/6J mice; BA, BALB/CJ 
mice; NS, not significant; REMS, rapid-eye-movement sleep; SWS, slow-wave sleep.
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the scoring was automated or manual (τ
20

,–2.1; P,0.05, 

Table 5). Therefore, even in the presence of a bias toward 

longer time constants in the machine-scored dataset relative 

to the-human scored dataset, strain differences in the dynam-

ics of both SWA and lactate were detected across 10-second 

epochs using both scoring methods.
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Figure 10 Strain differences in sleep/wake state timing scored in 10-second 
epochs.
Notes: Strain differences in the time course of sleep/wake states were observed in 
human-scored data (A, C and E) or machine-scored data (B, D and F). Filled circles 
represent data from the BA strain, and open circles represent data from the B6 
strain. Asterisks indicate 60-minute epochs in which there is a statistically significant 
difference between strains (Fisher’s protected least-significant difference). Timing of 
the dark and light phases of the 12:12 cycle is indicated by the black and white bars 
at the top of each graph.
Abbreviations: B6, C57BL/6J mice; BA, BALB/CJ mice; REMS, rapid-eye-movement 
sleep; SWS, slow-wave sleep.

Table 4 Strain difference in 10-second EEG spectral profiles: 
human versus machine

State Method ANOVA  
(strain)

ANOVA  
(strain × frequency)

Wake human NS F19,380=4.3; P=0.001
Machine NS F19,380=4.5; P=0.001

SWS human F1,20=9.0; P=0.007 F19,380=7.9; P=0.001
Machine F1,20=9.0; P=0.007 F19,380=7.8; P=0.001

reMS human NS F19,380=12.8; P=0.001
Machine NS F19,380=12.8; P=0.001

Abbreviations: ANOVA, analysis of variance; NS, not significant; REMS, rapid-eye-
movement sleep; SWS, slow-wave sleep.
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Figure 11 Strain differences in EEG power spectra in 10-second epochs scored by 
human or machine.
Notes: The left column shows human-scored data and the right column shows 
machine-scored data. For wake (A and D), SWS (B and E), and REMS (C and F), 
EEG power differed between strains at specific frequencies. The black dots at the 
base of each graph indicate frequency bands in which posthoc comparisons (Fisher’s 
protected least-significant difference) indicated a difference between the BA (black 
line) and B6 (gray line) strains. The insets in panels (B and (E) show 1–4 Hz SWA, 
which did not differ between strains.
Abbreviations: B6, C57BL/6J mice; BA, BALB/CJ mice; EEG, electroencephalography; 
NS, not significant; REMS, rapid-eye-movement sleep; SWS, slow-wave sleep.

The effect of strain on the temporal dynamics of both EEG 

SWA and lactate concentration across 2-second epochs was 

less statistically robust than for 10-second epochs (Table 5). 

τ
d
 for lactate dynamics was the one parameter for which 

both scoring methods yielded a significant effect of strain 

(Figure 8H). This parameter was significantly lower in BA 
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Table 5 Strain difference in homeostatic dynamics: human versus 
machine

Variable Method τi BA versus B6 τd BA versus B6

Ten-second
 SWa human τ20=3.7; P=0.001 τ20=3.3; P=0.003

Machine τ20=3.7; P=0.001 τ20=3.8; P=0.001
 lactate human τ20=-3.1; P=0.005 τ20=-3.1; P=0.005

Machine τ20=-2.2; P=0.042 τ20=-3.0; P=0.006
Two-second
 SWa human τ20=1.2; NS τ20=1.3; NS

Machine τ20=2.5; P=0.020 τ20=3.0; P=0.008
 lactate human τ20=-2.5; P=0.019 τ20=-3.0; P=0.007

Machine τ20=-1.8; NS τ20=-2.5; P=0.020

Abbreviations: B6, C57BL/6J mice; BA, BALB/CJ mice; NS, not significant; SWA, 
slow-wave activity.

mice than in B6 mice, irrespective of state-scoring method 

(τ
20

,-2.4; P, 0.05, Table 5). For the other three parameters 

assessed, Student’s t-test values for strain comparison were of 

equivalent direction (ie, positive for SWA and negative for 

lactate), if not statistically significant, for both state-scoring 

methods.

Discussion
This report introduces a novel method for automated scoring 

of sleep data. There were discrepancies between human-

based and machine-based scoring, just as there are differences 

among human raters in state scoring. A more robust assess-

ment of the automated scoring algorithm would compare it 

against two or more human scorers rather than just one. This 

would provide a measure of agreement not only between the 

algorithm and human scorers but also between one human 

scorer and another. This is a limitation of our approach.

Nonetheless, the utility of the machine-based scoring 

software introduced here is illustrated by its ability to detect 

strain differences in sleep-timing parameters, EEG spectral 

profiles, and sleep-dependent homeostatic variables. The 

machine-scored dataset detected strain differences in the 

percent of time spent in each sleep state with hourly resolu-

tion; the timing of these strain differences with respect to the 

light/dark cycle replicated their timing in the human-scored 

dataset (Figure 10). The strain differences in EEG spectral 

power that were detected in the human-scored dataset were 

replicated precisely, at the level of 1 Hz intervals, in the 

machine-scored data. Strain differences in time constants 

associated with sleep-dependent dynamics of SWA and 

lactate were of equivalent magnitude and direction in the 

human-scored and machine-scored datasets. Although all 

of these parameters (sleep-state timing, EEG power spec-

tral profiles, time constants in homeostatic models) varied 

significantly between the human-scored and machine-scored 

datasets, scoring method and strain did not exhibit signifi-

cant interaction in affecting these variables. Thus, the bias 

in machine-based state scoring was not strain-specific, and 

strain differences were not lost in the automation process. To 

the extent that the purpose of state scoring is to detect effects 

of independent variables on sleep parameters, the automated 

scoring algorithm introduced here fulfills its purpose in 

detecting strain differences.

Machine learning alone was not sufficient to accurately 

score REMS. Some epochs scored as wake by human experts 

were scored as REMS when automated scoring was based 

solely on PCA of epochs in isolation. Human raters use 

contextual cues, specifically the fact that REMS is consis-

tently preceded by a protracted period of SWS in wild-type 

mice, to discriminate REMS epochs from wake epochs 

characterized by low EMG and EEG amplitudes occurring 

against a background of continuous wake. Therefore, we 

applied contextual information in the algorithmic scoring 

of REMS: episodes scored as REMS that were preceded by 

at least 30 seconds of wake were rescored as wake. While 

not as parsimonious as state scoring based solely on EEG 

and EMG features of each epoch, this logic replicates the 

use of contextual information by human experts and in any 

case increases the level of agreement with human scoring. 

In experimental circumstances when direct transitions from 

wake to REMS are expected to occur (such as studies on 

narcoleptic hypocretin-deficient mice30,31), the algorithm 

might be altered to flag the occurrence of such events within 

the MATLAB interface, allowing for visual inspection and 

verification of such transitions. However, in the current study 

of wild-type mice, this consideration is not relevant. Also, 

while the choice of 30 seconds is reasonable, we acknowl-

edge that it is somewhat arbitrary. In principle, one could 

determine the optimal amount of preceding wake to use in 

this rescoring rule by testing several different values and 

determining the best fit to human-scored data.

We chose to combine the PCA approach with a naïve 

Bayes classifier because it offers several benefits over other 

methods. In fact, this was first suggested in a previous study 

as a possible improvement to current approaches.2 First of 

all, the method is easy to implement in MATLAB using the 

built-in functions pca.m and classify.m. Second, this approach 

combines the appealing visualization properties of PCA with 

the power and efficiency of machine  learning. A researcher 

can visually inspect the effectiveness of the machine scor-

ing by looking at the EEG and EMG traces aligned with 

the machine score and by looking at the PCA plots of the 
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human-scored data and the machine-scored data. Because 

the method requires scoring a small subset of each data file, 

this hybrid method is relatively simple, requires only a small 

subset of each data file to be scored to train the algorithm, 

and does not overfit the data. We have shown good agree-

ment between human-scored data and machine-scored data 

when only 10% of the dataset is scored by hand and used as 

training for the algorithm. Since the algorithm runs in less 

than 30 seconds for a 43-hour dataset, the time required to 

score an entire dataset using this automated approach is 

about one tenth of the time it would take to score the entire 

recording by hand.

implications of 2-second versus  
10-second epoch length and scoring 
method on time constants for EEG  
and lactate dynamics
Using a homeostatic model to quantify EEG SWA dynamics 

with 10-second epochs scored by a human, we previously 

found optimal τ
i
 values that were significantly smaller than 

those computed by other groups.16 To our knowledge, the 

experimental setup was identical between our recordings 

and those of Franken et al,16 except for the fact that we used 

an epoch length of 10 seconds and Franken et al used an 

epoch length of 4 seconds. Because epoch length was the 

only experimental difference we could find, we speculated 

that the epoch length may impact the optimal values of the 

time constants chosen to fit the model to the data. When fit-

ting the model to SWA data (as in Figure 7E–H) following 

Franken et al,16 each data point represents the average delta 

power in a 5-minute segment that contained at least 90% 

SWS. We suspected that the epoch length may affect these 

data points in the following ways: if a 10-second epoch was 

part SWS but part wake, the scorer may score it as SWS. 

Using a finer resolution, a scorer may determine that not all 

of those 10 seconds should be scored as SWS, which may 

mean that some 5-minute segments that used to contain at 

least 90% SWS were actually less than 90% and therefore 

would not create a data point for that 5-minute segment. On 

the other hand, if some 10-second epochs that were scored 

as wake actually had some SWS, this may create new data 

points because there may be 5-minute segments that now 

have 90% SWS. Because changing epoch length could add 

or remove data points, we reasoned that it may alter the time 

constants of the optimal fit of the model.

The autoscoring algorithm allowed us to quickly 

rescore 10-second epoch data into 2-second epochs, so we 

could run homeostatic models on the 2-second data to test 

this  hypothesis. We found that running the model using a 

shorter epoch length (2 seconds) did indeed increase the 

optimal τ
i
 values for both strains, making them closer to 

those found in Franken et al.16 However, the optimal value 

of τ
d
 did not change for either strain as a function of epoch 

duration. Application of the automated scoring and model-

ing techniques to both lactate and SWA in a broader array 

of strains (like those used by Franken et al16) may reveal 

whether sleep-dependent dynamics of lactate correlate with 

sleep timing or electroencephalographic parameters.

Conclusion
We have demonstrated that our machine-scoring algorithm 

is as effective as human scoring in several different aspects. 

Various measures of agreement between human scoring 

and machine scoring were high, and the machine scoring 

algorithm was just as effective as human scoring in deter-

mining subtle differences between genetic strains in both the 

frequency domain and the time domain. As scoring an entire 

multiday recording requires less than a minute of computing 

time (even for 48 hours of 2-second epoch data), automated 

scoring is a very efficient alternative to visual inspection in 

rodent sleep studies and may be similarly effective with sleep 

data from other species, including humans.
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