Prefronto–cerebellar transcranial direct current stimulation improves visuospatial memory, executive functions, and neurological soft signs in patients with euthymic bipolar disorder

Amedeo Minichino
Francesco Saverio Bersani
Laura Bernabei
Francesco Spagnoli
Lucilla Vergnani
Alessandra Corrado
Ines Taddei
Massimo Biondi
Roberto Delle Chiaie

Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy

Objective: The aim of the study was to improve neuropsychological functioning of euthymic patients with bipolar disorder (BD) using transcranial direct current stimulation (tDCS) applied to cerebellar and prefrontal cortices.

Methods: Twenty-five BD outpatients underwent prefrontal (anodal) and cerebellar (cathodal) tDCS for 3 consecutive weeks. All participants were assessed through the Rey Complex Figure Test delay and copy and the Neurological Examination Scale at baseline and after therapy with tDCS.

Results: After tDCS treatment, patients showed significant improvements in visuospatial memory tasks. Patients with worse baseline cognitive performances also showed a significant improvement in executive functioning tasks. Neurological Examination Scale total score and motor coordination subscale significantly improved.

Conclusion: Prefrontal-excitatory and cerebellar-inhibitory stimulations in euthymic BD patients may lead to better neurocognitive performances. This improvement could result from the modulation of prefronto–thalamic–cerebellar circuit activity pattern, which can be disrupted in BD.

Keywords: cerebellum, dorsolateral prefrontal cortex, neuropsychology, cognition

Introduction

Bipolar disorder (BD) is a severe and disabling disease. The course of BD has traditionally been viewed as episodic, ie, with symptomatic, functional, and cognitive recovery between mood episodes. However, clinical evidence recently showed that many BD individuals experience difficulties in daily functioning (eg, higher rates of unemployment and disability than healthy controls) as well as neuropsychological and social deficits even during the euthymic phase of the disease, despite symptomatic mood improvements.

Consistently, an increasing number of clinical observations have been considering the cognitive and social impairments observed in BD as trait-associated, rather than state-associated, characteristics of the disorder. In particular, visuospatial memory and executive functions have been found to be the neuropsychological domains that are more significantly impaired in euthymic BD patients in comparison with healthy controls.

The neurological soft signs (NSS) are minor neurological abnormalities in sensory and motor performances well established in schizophrenia. They have been
described in patients with BD, not only during the mood
dysregulation episodes, but also in the euthymic phase of
the disease. In addition, various research has observed
deficits in NSS expression and deficits in executive
functions, suggesting that the disturbances in the two areas of
brain functioning domains may result from the alteration of
similar underlying neurobiological substrates.

Recent studies hypothesize that cognitive impairments
in BD patients could be related to prefronto–thalamic–
cerebellar circuit dysfunction and, in particular, to the loss
of the physiological inverse metabolic activity between the
dorsolateral prefrontal cortex (DLPFC) and subcortical
areas.

In particular, some studies suggest that hypoac-
tivation of the left DLPFC observed in BD could lead to
hyperactivation of subcortical structures such as the right
cerebellar hemisphere. A disruption of prefronto–
cerebellar circuitry in severe mental disorders was first
suggested by Andreasen et al who specifically coined the
term of “cognitive dysmetria”.

Transcranial direct current stimulation (tDCS) is a brain
modulating technique using constant, low current delivered
directly to the brain areas of interest via inhibitory (cathodal)
and excitatory (anodal) electrodes. Intracerebral current
flow between the two electrodes excites neurons in the
regions of interest, producing both neurophysiological and
behavioral changes in the participant. Considering the
modulatory properties of tDCS, it is possible to hypothesize
that concomitant excitatory stimulation of left DLPFC and
inhibitory stimulation of right cerebellar hemisphere might
modulate prefronto–cerebellar circuitry, potentially resulting
in neurological and neuropsychological improvements.

Previous studies showed that anodal stimulation of
DLPFC can improve cognitive performances in both patients
and healthy individuals, while one study showed that cathodal
stimulation of cerebellum increased cognitive performances
in healthy people. To the best of our knowledge, anodal stimulation of DLPFC and cathodal stimulation of cerebellum have never been applied: 1) concomitantly and 2) in a sample of euthymic bipolar patients.

In the present study we used tDCS on both the right cere-
bellum hemisphere (cathodal, ie, inhibitory modulation) and
left DLPFC (anodal, ie, excitatory modulation) to investigate
the effects on visuospatial memory, executive functioning,
and NSS performances in euthymic BD patients.

Methods
Participants and study design
Twenty-seven outpatients with a diagnosis of BD type I or II
referring at the Policlinico Umberto I University Hospital,
Sapienza University of Rome, have been enrolled in the study.
Patients were in the euthymic phase of the disorder (this was
as assessed by Hamilton Depression Rating Scale score < 7
and Young Mania Rating Scale < 7). Some of these partic-
icipants had previously been enrolled by our research team
in other studies with different aims and objectives.

Exclusion criteria were: concomitant neurological
diseases, other axis I diagnosis, hospitalization in the last
12 months, left handedness, pharmacological treatment
with typical antipsychotics, Hamilton Depression Rating
Scale score > 7, Young Mania Rating Scale > 7, and mental
retardation (IQ < 70).

tDCS was administered as an add-on treatment to patients
who had been stable on a standard course of pharmacological
maintenance therapies for at least 2 months. All participants were
assessed at baseline and the day after the last tDCS session.

All participants signed written informed consent. The
research protocol was approved by the Ethical Committee
of Human Experimentation of Policlinico Umberto I Uni-
versity Hospital and was in accordance with the Helsinki
Declaration of 1975.

tDCS
TDCS was applied through two sponge electrodes (surface
area = 25 cm²) moistened with a saline solution. The electrode
montage was: cathodal tDCS on the right cerebellar cortex,
1 cm under, and 4 cm lateral to the inion (approximately
comparable to the projection of cerebellar lobule VII onto
the scalp); anodal tDCS over the left DLPFC (electrode position
was determined by the International 10/20 System for EEG
Electrodes, such as that Fp1 corresponded to the DLPFC). The
onset and offset of the intervention involved current being
increased and decreased, respectively, in a ramp-like manner
over 10 seconds. The intensity of stimulation was set at 2 mA
and delivered for 20 minutes every working day (Monday to
Friday) for 3 consecutive weeks using a Magstim DC Stimu-
lator Plus and was considered a safe level of exposure, well
below the threshold for causing tissue damage.

Neuropsychological and neurological
assessment
To test visuospatial memory, participants completed the
Rey Complex Figure Test (RCFT) after short and long
(immediately and 20 minutes, respectively) delays, while the
RCFT copy was used to measure executive functioning. To
minimize the “learning effect”, parallel (ie, different) versions
of RCFT were used in pre- and post-treatment evaluations.

The neurological examination was performed through
the Neurological Evaluation Scale (NES), which includes

2266
Neuropsychiatric Disease and Treatment 2015:11
Dovepress
www.dovepress.com
Neuropsychiatric Disease and Treatment downloaded from https://www.dovepress.com/ by 54.70.40.11 on 20-Oct-2019
For personal use only.
26 items listing the more frequent and significant NSS. Trained evaluators administered the scales based on the original scoring instructions, and items were scored as 0 (no abnormality), 1 (mild but definite impairment), and 2 (marked impairment). Two items (the suck and snout reflex) were scored 0 (absent) or 2 (present). The results show the total score and the three main subscale scores (sensory integration, motor coordination, and motor sequencing).

Statistical analysis

The data were analyzed through SPSS software version 20. Data were normally distributed and a paired sample t-test was used to compare pre- and post-treatment measures. The significance threshold was $P<0.05$.

Results

Two patients did not complete the stimulation protocol because of the onset of migraine. The remaining 25 patients tolerated tDCS without complications with the exception of three patients complaining of a transient burning sensation surrounding the electrode site. Demographic and clinical characteristics of these patients are given in Table 1.

Visuospatial memory (measured through the RCFT delay test) improved significantly ($P<0.01$) after the treatment, although no significant changes were observed in the executive functions domain (measured through the RCFT copy test) (Table 2). NES total score and motor coordination subscale showed significant improvements after tDCS treatment ($P<0.01$) (Table 2; Figure 1).

To evaluate if the degree of the baseline cognitive impairment in BD patients could influence the neuropsychological outcomes of the tDCS treatment, we performed supplementary analyses dividing the whole sample into two subgroups of patients: 1) high baseline performances (HBP) group comprised patients with an average baseline score above the median value of the neuropsychological domain of interest; 2) low baseline performances (LBP) group comprised patients with an average baseline score below the median value of the neuropsychological domain of interest. LBP patients showed a more relevant improvement than HBP patients in both visuospatial (RCFT delay test) and executive functions (RCFT copy test) domains (Table 2).

Table 1 Clinical and sociodemographic data

Patients (n)	25
Age, years (mean ± standard deviation)	41.9±12.62
Sex	
Males (n)	8
Females (n)	17
Civil status	
Married (n)	8
Single (n)	11
Others (divorced + widowed) (n)	6
Number of years in school	
\leq 9 (n)	6
>9 (n)	19
Diagnosis	
Bipolar disorder I (n)	15
Bipolar disorder II (n)	10
Disease duration, years (mean ± standard deviation)	17.08±12.05
Age at onset of illness, years (mean ± standard deviation)	28.79±12.60
Psychiatric medication	
Lithium (n)	12
Anticonvulsants (n)	17
Atypical (n)	17
Benzodiazepines (n)	10
Antidepressants (n)	5

Table 2 Mean scores of neuropsychological and NES assessments pre-tDCS and post-tDCS

<table>
<thead>
<tr>
<th>Neuropsychological evaluation</th>
<th>Pre-tDCS evaluation</th>
<th>Post-tDCS evaluation</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>RCFT copy</td>
<td>26.29±5.76</td>
<td>28.00±7.66</td>
<td>0.41</td>
</tr>
<tr>
<td>LBP patients</td>
<td>21.95±4.50</td>
<td>27.19±4.58</td>
<td>0.01*</td>
</tr>
<tr>
<td>HBP patients</td>
<td>31.00±1.99</td>
<td>28.91±10.41</td>
<td>0.50</td>
</tr>
<tr>
<td>RCFT delay</td>
<td>8.42±6.22</td>
<td>13.71±6.51</td>
<td>0.01*</td>
</tr>
<tr>
<td>LBP patients</td>
<td>3.37±3.41</td>
<td>9.04±4.26</td>
<td><0.01*</td>
</tr>
<tr>
<td>HBP patients</td>
<td>13.37±4.26</td>
<td>17.74±5.67</td>
<td>0.06</td>
</tr>
<tr>
<td>NES Motor coordination</td>
<td>1.91±1.54</td>
<td>0.39±0.65</td>
<td><0.01*</td>
</tr>
<tr>
<td>NES Motor sequencing</td>
<td>3.77±2.84</td>
<td>2.22±2.61</td>
<td>0.06</td>
</tr>
<tr>
<td>NES Sensory integration</td>
<td>2.00±1.48</td>
<td>1.43±1.85</td>
<td>0.26</td>
</tr>
<tr>
<td>Total score</td>
<td>11.77±6.48</td>
<td>5.91±4.44</td>
<td><0.01*</td>
</tr>
</tbody>
</table>

Note: *$P<0.05$. Data are presented as mean ± standard deviation.

Abbreviations: HBP, high baseline performances; LBP, low baseline performances; NES, Neurological Evaluation Scale; RCFT, Rey Complex Figure Test; tDCS, transcranial direct current stimulation.
Discussion

To the best of our knowledge, this is the first study investigating the effect of prefronto–cerebellar tDCS on cognitive performances in euthymic BD patients.

Cognitive deficits have gained considerable importance as critical features of a wide range of psychiatric disorders and they post an important therapeutic challenge. While there is overwhelming evidence on the efficacy of psycho-tropic medications in the management of clinical symptoms, cognitive gains are often poor. Thus, it is currently accepted that cognitive impairment and symptomatic manifestations of mental disorders require separate and integrated therapeutic approaches.

The results of the present research preliminarily suggest that concomitant prefrontal-excitatory and cerebellar-inhibitory tDCS might have a positive effect on visuospatial memory and executive functioning in euthymic BD patients. Andreasen’s idea of “cognitive dysmetria” hypothesized that a general loss of mental processes coordination could be the consequence of prefronto–thalamic–cerebellar circuit disruption, and this idea has been supported by several subsequent studies. It is thus speculatively possible that the cognitive improvements observed in our patients may be at least partially attributable to a functional modulation of prefronto-cerebellar circuitry activity.

Stratifying the patients according to baseline cognitive functions, we found that LBP patients showed significantly improved executive functions and presented more significant benefits in visuospatial memory than HBP patients. This finding suggests that individuals with more severe cognitive impairments, that are often the most clinically severe and the most difficult to treat, may obtain more substantial benefits from prefronto–cerebellar tDCS.

NSS are indicators of neurological impairment frequently observed in schizophrenia and in other psychiatric disorders; our results showed that prefronto-cerebellar tDCS led to significant improvements of the NES total score and NES motor coordination subscale. A recent diffusion tensor imaging study found an inverse correlation between NSS severity and the integrity of thalamic–cerebellar tracts, supporting our study hypothesis. Furthermore, Goswami et al recently found a correlation between NSS and executive dysfunctions in euthymic BD patients, potentially involving an inadequate functioning of prefrontal cortex; this evidence is consistent with our results, as both NSS and executive functions improved after DLPFC stimulation.

Conclusion

In conclusion, the present study provides preliminary evidence that concomitant prefrontal-excitatory and cerebellar-inhibitory tDCS in euthymic BD patients may lead to better neurocognitive performances, quantified through neuropsychological and neurological measures. We suggest that this improvement is at least partially attributable to functional modulations of prefronto-cerebellar circuitry activity, which has been proven to be altered in BD as well as in other psychiatric disorders. Prefronto–cerebellar tDCS could potentially represent an inexpensive, easy to administer, non-invasive, and painless therapy to increase the effectiveness of standard BD treatment.
The small sample size and the absence of a sham control group are major limitations of the study. In addition, we assessed a relatively large number of measures and we did not correct for multiple comparisons; therefore, these results are exploratory/hypothesis-generating and further studies are needed.

Acknowledgment
The research was fully funded by the Department of Neurology and Psychiatry of Sapienza University of Rome.

Disclosure
The authors report no conflicts of interest in this work.

References

