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Abstract: Respiratory diseases are a very common source of morbidity and mortality among 

children. Health care providers often face a dilemma when encountering a febrile infant or 

child with respiratory tract infection. The reason expressed by many clinicians is the trouble 

to confirm whether the fever is caused by a virus or a bacterium. The aim of this review is to 

update the current evidence on the virus-induced bacterial infection. We present several clinical 

as well in vitro studies that support the correlation between virus and secondary bacterial infec-

tions. In addition, we discuss the pathophysiology and prevention modes of the virus–bacterium 

coexistence. A search of the PubMed and MEDLINE databases was carried out for published 

articles covering bacterial infections associated with respiratory viruses. This review should 

provide clinicians with a comprehensive idea of the range of bacterial and viral coinfections or 

secondary infections that could present with viral respiratory illness.
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Introduction
Viral respiratory tract infections (VRTIs) are very common in children and their 

presentations vary from simple colds to life-threatening infections.1–5 The detection of a 

respiratory virus does not necessarily infer that the child has only a viral infection,6 since 

outbreaks of VRTIs are being linked to increased incidence of bacterial coinfections.7 

The human body is usually capable of eliminating respiratory viral infections with no 

sequelae; however, in some cases, viruses bypass the immune response of the airways, 

causing conceivable severe respiratory diseases.8 Robust mechanical and immunosup-

pressive processes protect the lungs against external infections, but a single respiratory 

tract infection might change immunity and pathology.9

Health care providers often face a dilemma when encountering a febrile infant or 

child with respiratory tract infection. The reason expressed by many clinicians is the 

challenge to confirm whether the fever is caused by a virus or bacterium.10 Acute otitis 

media (AOM) is a usual bacterial coinfection that occurs in 20%–60% of cases of 

VRTIs.11–14 In addition, almost 60% of children with VRTI have changes in the maxil-

lary, ethmoidal, and frontal sinuses.11,12 Moreover, in the year 1918, it was estimated 

that 40–50 million individuals died from the influenza pandemic, many of which were 

due to secondary bacterial pneumonia with Streptococcus pneumoniae.15

Search strategy and selection criteria
A search of the PubMed database and Google was carried out, using different combina-

tions of the following terms: virus, induced, bacteria, pathogenesis, prevention, vac-

cine, and children. In addition, we searched the references of the identified articles for 

additional articles. We then reviewed abstracts and titles and included studies that were 
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relevant to the topic of interest. Finally, the search was limited 

to studies of disease in humans that were published in English 

and Spanish from 1918 to the end of 2014 (Figure 1).

Airway epithelium
The epithelium (Figure 2) is usually covered by a layer 

of mucus that functions as a boundary.16 Mucins, which 

are charged glycoproteins, are the main components of 

mucus.17,18 MUC5AC and MUC5B are the most common 

mucins in the human sputum, and they assist the innate 

immune system through their anti-inflammatory and antiviral 

properties.19,20 In addition, they facilitate trapping and clear-

ance of viruses; however, overproduction of those mucins 

might have a paradoxical effect.18,19

The airway epithelium not only functions as a physical 

barrier but also recognizes microorganisms through pattern 

recognition receptors such as Toll-like receptors (TLRs),18 

nucleotide-binding oligomerization domain (NOD)-like 

receptors (NLRs), and retinoic acid-inducible gene (RIG)-

like helicases.21,22

TLRs are single, noncatalytic, membrane-spanning recep-

tor proteins used by the innate immune system.23 Respiratory 

viruses collaborate with TLR lanes, leading to extended 

bacterial load in the lungs.21,24

In comparison, NLRs and RIG-like helicases activate 

innate immune responses through cytosolic sensing of 

viral and bacterial components.22,25 Nod1 and Nod2, which 

are family members of NLRs, are induced by molecules 

synthesized during the production and/or degradation of 

bacterial peptidoglycan.26–29 In addition, many epithelial 

cells express the classical antiviral interferons (INFs), 

especially IFN-α and IFN-β.30,31 Moreover, the respiratory 

virus-infected epithelia facilitates the attraction of inflam-

matory cells, including natural killer cells, neutrophils, 

macrophages, and eosinophils from the bloodstream into 

the infected site.32 Finally, the airway epithelium consists of 

many molecules including intercellular adhesion molecule 

1 (ICAM-1), carcinoembryonic antigen-related cellular 

adhesion 1 (CEACAM-1), and platelet-activating factor 

receptor (PAF-r).33 Viruses have an effect in modulating 

these receptors, leading to an increase risk of bacterial adher-

ence; for example, rhinovirus upregulates the expression of 

PAF-r, leading to the binding of S. pneumoniae to bronchial 

epithelial cells.34

Pathogenesis of superimposed 
secondary bacterial infection
Different mechanisms might contribute to the debilitation 

in host defense of the respiratory tract against bacteria fol-

lowing viral infection. Some of the mechanisms have been 

extrapolated from studies conducted in animal models of 

sequential infections by respiratory viruses and several 

bacterial pathogens.

Virus inflicts impairment on host 
epithelial cells
Mammalian cells are prone to bacterial attachment during 

a viral illness.8,35 Viruses can debilitate the mucociliary 

clearance structure, leading to the increased attachment of 

bacteria to mucins and colonization; moreover, the con-

densed mucus will impede the penetration of antibacterial 

material and immune cells.36 Viruses like the respiratory 

syncytial virus (RSV) can damage ciliated cells, resulting 

in ciliostasis and, therefore, deterioration of mucociliary 

clearance.37 The same concept applies to an influenza virus 

infection, leading to decreased tracheal mucociliary velocity 

and clearance of S. pneumoniae.35,38 Moreover, virus-induced 

cell death debilitates the mechanical elimination of the Figure 1 Flow diagram showing the selection of literature.
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attached pathogens and displays novice receptors for bacterial 

adherence.39 Studies have shown that the RSV virus induces 

the adherence of S. pneumoniae, Pseudomonas aeruginosa, 

and Haemophilus influenza to airway epithelial cells.40–43 In 

addition, adenovirus and rhinovirus play the same role in the 

adherence of S. pneumoniae to the airway epithelial cells;8,44 

however, the measles virus decreases the risk of adherence of 

streptococcal bacteria, implying that every virus has a spe-

cific mode of changing the host cell membrane.44 Moreover, 

bacterial adhesion might also be a result of the upregulation 

of surface receptors including PAF-r, which is involved in 

pneumococcal invasion.45,46

In patients with cystic fibrosis, bacterial adherence 

forms a biofilm, creating permanent airway colonization 

with P. aeruginosa.47 Viruses such as RSV, rhinovirus, and 

influenza virus also lead to pneumococcal biofilm formation 

on the airway lining.48 Furthermore, RSV increases the risk of 

adherence of Staphylococcus aureus and Bordetella pertussis 

to Hep-2 (human epidermoid cancer) epithelial cells.49,50

virus effect on the immune system
Post-viral sustained desensitization of lung sentinel cells to 

TLR signals may be one possible contributor to the common 

secondary bacterial pneumonia associated with viral infection. 

For instance, TLR4 and TLR5 pathways are altered after influ-

enza virus infection, resulting in decreased neutrophil attrac-

tion, thereby leading to increased attachment of S. pneumonia 

and P. aeruginosa to the airway epithelial cells.25

The interrelation between host cells and microorganisms 

during an infection induces immune responses that include 

the generation of proinflammatory molecules. Despite their 

crucial role as a bactericidal, proinflammatory cytokines 

such as TNF-α produced in response to infection could be 

detrimental to the host cells.51 During a viral infection, TLR 

and RIG-I-like receptor activation induces production of 

type I IFNs, which can augment the inflammatory response 

to TLR ligands including lipopolysaccharide (LPS).52,53  

In addition, certain bacteria such as S. aureus integrate into 

the A549 respiratory epithelial cells (adeno-carcinomic 

α
β

Figure 2 Airway epithelium.
Abbreviations: iNF, interferon; TJ, tight junction; TLR, Toll-like receptor; iCAM-1, intercellular adhesion molecule 1.
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human-alveolar basal-epithelial cells) during a respiratory 

viral infection by increasing the expression of ICAM-1.54 

RSV differs from influenza virus in that the former upregu-

lates cellular receptors including CEACAM-1 and ICAM-1, 

which eventually leads to bacterial infection.45 Finally, 

interaction between type I IFNs and Nod1/Nod2 signaling 

leads to bacterial recognition, but indicts harmful effects in 

the virally infected host.55

Clinical presentation
Corollary and secondary bacterial infections in patients with 

viral diseases are known to coexist. A study conducted by 

O’Brien et al56 showed that the influenza virus (H1N1) was 

the culprit of the severe pneumococcal pneumonia outbreak 

among children that occurred in Iowa in the mid-1990s. Other 

studies have shown that almost one-third of children with 

community acquired pneumonia (CAP) had mixed (viral and 

bacterial) infection.57,58 Moreover, a study in France showed 

that influenza virus infection was the direct cause of CAP in 

12% of children.59 Syrjanen et al60 found in their study that 

the isolation of S. pneumonia from the nasopharyngeal area 

was higher during respiratory infection without concomitant 

AOM. Viral respiratory infection due to RSV, influenza virus 

(type A or B), and adenovirus increase the incidence of otitis 

media (OM) and recurrent OM in children.61,62 Ruuskanen 

et al63 found that there is a concrete association between AOM 

and 57% of children with RSV, 33% with parainfluenza type 3 

virus, 30% with adenovirus, 35% with influenza A virus, 

28% with parainfluenza type 1 virus, 18% with influenza B 

virus, and 10% with parainfluenza type 2 virus infections; the 

most common bacteria isolated from tympano-centesis were 

H. influenzae, S. pneumoniae, Branhamella catarrhalis, and 

Mycoplasma pneumonia. Another study showed that the rates 

of bacteremia and OM were 18% and 44%, respectively, in 

children with viral-induced bronchiolitis.11 The highest inci-

dence of AOM is usually 2–5 days after an upper respiratory 

infection.64,65 Isolation of viruses alone from sinus aspirates 

or in concomitance with bacteria proposes the role of viruses 

in the induction of bacterial sinusitis,62 with rhinovirus and 

parainfluenza viruses being the culprits.66 The rate of bacte-

remia in children with acute bronchiolitis ranges from 0.2% 

to 1.4%.67–75 In addition, the rate of bacterial urinary tract 

infection (UTI) in children with bronchiolitis can be as high 

as 11.4%.67 In a recent study, Hendaus et al76 assessed the 

prevalence of UTI in infants and children with bronchiolitis. 

The study included 835 hospitalized children with acute bron-

chiolitis. The results disclosed that UTI was found in 13.4% 

with bronchiolitis triggered by a respiratory viruses such as 

rhinovirus (31%), adenovirus (14%), parainfluenza virus 

type 4 (14%), bocavirus (10%), human metapneumovirus 

(10%), coronavirus (7%), parainfluenza virus type 3 (3.4%), 

parainfluenza virus type 2 (3.4%), parainfluenza virus type 2 

(3.4%), and H1N1 (3.4%). Rittichier et al77 have researched 

the effect of respiratory viruses on the risk of acquiring seri-

ous bacterial infection, including UTI. The study concluded 

that febrile infants with enterovirus had a coexisting rate of 

serious bacterial infection of 6.6%.

Role of myxovirus resistance 
protein 1 (MxA) in differentiating 
between viral and bacterial 
infections
The human myxovirus resistance protein 1 (MxA) is an 

important intermediary of the IFN-induced antiviral response 

against a variety of viruses. MxA expression is firmly modi-

fied by type I and type III IFNs, which also requires signal 

transducer and activator of transcription 1 signaling. Addition-

ally, MxA has many characteristics similar to the superfamily 

of large guanosine triphosphatases.78 MxA analysis could be 

beneficial to differentiate between bacterial and viral infec-

tions. Engelmann et al79 conducted a prospective, multicenter 

cohort study in different pediatric emergency departments in 

France on the role of MxA in the diagnosis of viral infections. 

MxA blood values were calculated in infants and children with 

verified bacterial or viral infections, uninfected controls, and 

infections of unknown origin. A receiver operating character-

istic analysis was used to verify the diagnostic performance of 

MxA. The study, which included 553 children, showed that 

MxA was significantly higher in children with viral versus 

bacterial infections and uninfected controls (P0.0001). 

Additionally, MxA levels were significantly higher in children 

with clinically diagnosed viral infections than in those with 

clinically diagnosed bacterial infections (P0.001).79 Other 

authors have also reported the usefulness of blood MxA 

testing in patients with viral infections.80,81 The use MxA 

in diagnosing viral infection is very promising, especially 

in patients who are at risk of infectious complications. Two 

separate studies have shown that blood MxA is beneficial in 

differentiating between viral illness and acute graft-versus-

host disease after allogenic stem cell transplantation.82,83

Prevention of secondary bacterial 
infection
It has been recommended that treatment or prevention of 

a viral disease may be a superior method for diminishing 
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of complications from influenza.84,85 Since viral infections 

might lead to secondary bacterial infection, it is prudent to 

vaccinate patients with the influenza vaccine to diminish the 

risk of OM in children and pneumonia in adults.62

It has also been published that live attenuated influenza 

vaccine is effective in reducing the incidence of all-cause 

AOM86–88 and pneumonia89 compared to placebo in children. 

In addition, the intranasal influenza vaccine can reduce OM 

by 44%.90 Moreover, studies have shown that a combined 

influenza/pneumococcal vaccine is efficient in the prevention 

of OM in children and pneumonia.91,92 However, the credit of 

protection was awarded to the influenza vaccine since stud-

ies have shown that pneumococcal vaccine has no benefit 

in the reduction of AOM.93,94 In addition, the pneumococcal 

polysaccharide vaccine showed no efficacy in the prevention 

of pneumonia in adults.95

Treatment of viral infection is anticipated to prevent bac-

terial superinfections. Currently, the only respiratory virus 

that is pharmacologically treatable is the influenza viruses 

(Type A and B).62 Neuraminidase inhibitors can potentially 

diminish the morbidity related to influenza.96 Oseltamivir 

can reduce the incidence of AOM in preschool children,97 

and the reduction rate can be up to 44%.98 A meta-analysis 

review showed that oral oseltamivir reduces the rate of hos-

pitalization by 25% and morbidity by 75%.99 In addition, its 

use can reduce the use of antibiotics by up to 50%,100,101 The 

same concept of protection applies to vaccines that prevent 

against RSV infections.62 The vaccine available for RSV 

is palivizumab (MedImmune, Gaithersburg, MD, USA), a 

humanized monoclonal antibody that perceives the fusion 

protein of RSV. The other monoclonal antibody that is under 

clinical trials is motavizumab (MedImmune), which has a 

higher affinity for RSV fusion protein than palivizumab and 

can prevent against medically attended lower respiratory 

tract infection.102

Conclusion
The rate of concurrent serious bacterial infections with viral 

illness is appreciable. Similar emphasis must be given to 

the prevention and treatment of viral illnesses, especially in 

young children. Furthermore, health care providers should 

emphasize to parents on the importance of clinical follow-up 

of infants and young children diagnosed with VRTI. More-

over, the introduction of MxA in the diagnosis of viral ill-

nesses in children is promising.
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