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Abstract: Bloodstream infections (BSIs) are among the leading infections in critically ill 

patients. The case-fatality rate associated with BSIs in patients admitted to intensive care units 

(ICUs) reaches 35%–50%. The emergence and diffusion of bacteria with resistance to antibiot-

ics is a global health problem. Multidrug-resistant bacteria were detected in 50.7% of patients 

with BSIs in a recently published international observational study, with methicillin resistance 

detected in 48% of Staphylococcus aureus strains, carbapenem resistance detected in 69% of 

Acinetobacter spp., in 38% of Klebsiella pneumoniae, and in 37% of Pseudomonas spp. Prior 

hospitalization and antibiotic exposure have been identified as risk factors for infections caused 

by resistant bacteria in different studies. Patients with BSIs caused by resistant strains showed 

an increased risk of mortality, which may be explained by a higher incidence of inappropriate 

empirical therapy in different studies. The molecular genetic characterization of resistant bacteria 

allows the understanding of the most common mechanisms underlying their resistance and the 

adoption of surveillance measures. Knowledge of epidemiology, risk factors, mechanisms of 

resistance, and outcomes of BSIs caused by resistant bacteria may have a major influence on 

global management of ICU patients. The aim of this review is to provide the clinician an update 

on BSIs caused by resistant bacteria in ICU patients.

Keywords: bloodstream infections, multidrug resistant, antibiotic, intensive care unit, 

MDR, ICU

Introduction
Bloodstream infections (BSIs) are among the leading acquired infections in intensive 

care unit (ICU) patients.1 BSIs may be the consequence of the bloodstream diffusion 

of bacteria from a localized infection (secondary BSI) or may be the only identifiable 

infectious process (primary BSI). Antimicrobial therapy is the mainstay of treatment 

of BSIs, along with management of severe sepsis and septic shock that may eventually 

develop.2 During these last few years, clinicians have witnessed a growing incidence of 

BSIs by bacteria with resistance against commonly used antimicrobials.3 A multidrug-

resistant (MDR) microorganism has been defined as an isolate with nonsusceptibility 

to at least one agent in three or more antimicrobial categories. Extensive drug-resistant 

(DR) microorganisms exhibit susceptibility to only one or two antimicrobial catego-

ries, whereas pan-DR isolates are those microorganisms resistant to all agents from 

all antimicrobial categories.4 Emergence of resistance among bacteria is considered a 

public health problem worldwide.5 BSIs caused by MDR microorganisms are associ-

ated with excess mortality, which may be attributed, at least in part, to the delay in 

appropriate therapy institution.6–8 Emergence of resistant bacteria in the ICU implies 
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an even higher challenge for the clinician, dealing with seri-

ously ill patients, who need prompt institution of effective 

antimicrobial therapy in a setting of higher prevalence of 

resistant isolates, broad-spectrum antibiotic, use and ease 

of cross-transmission of resistant microorganisms.2,9,10 The 

clinician should be aware of the main risk factors for BSIs 

sustained by resistant bacteria in the ICU, the most commonly 

met resistant species according to different geographic areas, 

and their mechanisms of resistance. The aim of this review is 

to provide the clinician an update on BSI caused by resistant 

bacteria in ICU patients.

Epidemiology of BSIs caused  
by resistant bacteria
BSIs are among the leading infections in ICUs. In an inter-

national study of the prevalence and outcomes of infections 

in ICUs, BSIs were observed in 15% of infected patients and 

represented the third-most commonly met infection.1 The tra-

ditional classification of BSIs between community-acquired 

and hospital-acquired is being reconsidered in light of the 

evolving health care-system organization. A growing propor-

tion of patients, with older age and several comorbidities, are 

treated as outpatients, with a shift of health care services from 

hospitals to the community with different out-of-hospital 

facilities.11,12 In this sense, health care-associated BSIs have 

been defined as those occurring in patients living in a nursing 

home or long-term care facilities, receiving health care at 

home, under hemodialysis, intravenous chemotherapy, wound 

care, or enteral nutrition, or who recently accessed an acute 

care hospital.11 Approximately one in five BSIs diagnosed at 

ICU admission may be classified as health care-associated 

BSIs.13 Pathogens responsible for health care-associated 

BSIs are similar to those isolated from hospital-acquired 

BSIs, with a higher risk of resistant isolates compared to 

community-acquired BSIs. A higher incidence of inappropri-

ate empirical therapy and a trend of increased mortality has 

also been detected in different studies.13,14 A recently pub-

lished international observational study provided information 

about hospital-acquired BSIs from 1,156 ICU patients world-

wide.10 Among total microorganisms causing BSI, 57.6% 

were Gram-negative and 33.4% were Gram-positive. MDR 

bacteria caused BSIs in 50.7% of patients, and extensive DR 

bacteria were detected in 22% of patients. Among Gram-neg-

ative bacteria, carbapenem resistance was detected in 69% of 

Acinetobacter spp, 38% of Klebsiella pneumoniae, and 37% 

of Pseudomonas spp. Among Gram-positive bacteria, 48% 

of Staphylococcus aureus isolates were methicillin-resistant 

Staphylococcus aureus (MRSA), and 23% of Enterococcus 

faecium isolates were vancomycin-resistant enterococci 

(VRE). With regard to the source of BSIs, in 21.1% they was 

attributed to the respiratory tract, and in 21.4% BSIs were 

catheter-related. In 23.7% of total patients, no clear source 

of infection was identified. These data are similar to those of 

the recently published French national network REA RAISIN 

of ICU-acquired bacteremia (29.2% catheter-related, 18% 

lower respiratory tract infections).10,15 According to a large 

observational study investigating the trend of BSIs caused 

by resistant bacteria over a period of 10 years, resistant 

isolates represented an additional burden of disease rather 

than substituting susceptible bacteria as the cause of BSIs.3 

In the modern globalized world, antibiotic-resistant bacteria 

can be easily distributed across countries by human travelers, 

animal and insect vectors, agricultural products, and water.16 

Analysis of genetic material encoding antibiotic resistance 

has been used for tracing the diffusion of resistant strains 

both at a local and international level.17 An example is the 

worldwide distribution of MDR staphylococci from very few 

resistant clones.18 Rapid detection of resistant bacteria and 

their genetic characterization through molecular techniques 

is therefore a pivotal component of surveillance and control 

of diffusion of resistant bacteria from a single institution to 

a global level.19,20

Risk factors for BSI caused  
by resistant bacteria
Patients in ICUs have different risk factors for BSI devel-

opment, including greater severity of illness, disruption of 

anatomical barriers (ie, use of invasive devices, surgery), and 

impaired immunological response.2 Patients with a central 

vein catheter (CVC) have additional risk factors for catheter-

related BSIs (inadequate adoption of a sterile technique, 

inexperience of the operator, site of insertion, colonization 

of the insertion site, contamination of the catheter hub, and 

duration of catheter placement).21–23 Different observational 

studies have described risk factors for BSIs caused by resis-

tant bacteria.10–12,24 In general, prior antibiotic exposure and 

hospitalization, residency in nursing home and in long-term 

care facilities, and other described risk factors for health 

care-related BSIs are associated with an increased risk of 

developing a BSI caused by resistant microorganisms.13,25–27 

In a retrospective study of patients with severe sepsis and sep-

tic shock attributed to bacteremia caused by Gram-negative 

microorganisms, prior antibiotic exposure was associated 

with a reduced susceptibility to cefepime, piperacillin/

tazobactam, carbapenems, ciprofloxacin, and gentamicin. 

Moreover, patients with recent antibiotic exposure more 
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frequently received inappropriate empirical antimicrobial 

therapy and had higher hospital mortality.26 Patients with 

BSIs caused by carbapenem-resistant K. pneumoniae more 

frequently had a CVC or urinary catheter compared to 

patients with BSIs caused by susceptible microorganisms, 

received renal replacement therapy or prior antibiotic treat-

ment, and were more likely hospitalized in a ward with 

other resistant isolates during the 30 days preceding the 

BSI diagnosis.25 Colonization was identified as a significant 

risk factor for subsequent development of bacteremia by 

Acinetobacter baumannii in different studies.9,28,29 Patients 

were frequently colonized by MDR A. baumannii after 

approximately 7 days from ICU admission, with respiratory 

and urinary tracts the most commonly detected colonized 

sites.9 Reported risk factors for subsequent development of 

bacteremia by MDR A. baumannii in previously colonized 

patients were respiratory failure at ICU admission treated 

with invasive mechanical ventilation, recent CVC insertion, 

prior antibiotic therapy, and development of bacteremia 

caused by other microorganisms after MDR A. baumannii 

colonization.29 Knowledge of risk factors for BSIs caused 

by resistant bacteria may have a major influence on global 

management in ICUs, from source-control and surveillance 

measures to appropriate antibiotic treatment.19

Mechanisms of antibacterial  
drug resistance
Antibiotic resistance is a complex phenomenon that encom-

passes recognized in vitro mechanisms and their phenotypic 

expression, but also – at the clinical level – infection site, 

pharmacodynamic/pharmacokinetic properties of the specific 

antibiotic, modification of these pharmacological profiles in 

the critically ill patient, and immune status.30,31 Resistance 

patterns of bacteria at a cellular level may be generally 

classified as follows: altered target site, namely modifica-

tion of the molecule that is the target of the antimicrobial 

action; decreased antimicrobial uptake through decreased 

permeability to the antimicrobial or its elimination by efflux 

pumps; bypass pathways, which overcome the inhibition 

caused by the antibiotic molecule; and inactivation of the 

antimicrobial molecule through the production of enzymes 

that inactivate the drug.31 Antibiotic resistance may represent 

an intrinsic property of different bacteria (eg, low perme-

ability to some molecules), or rather may be acquired as a 

consequence of antibiotic pressure or mobile genetic element 

transmission.32,33

Table 1 summarizes the most commonly described 

resistance mechanisms of bacteria against frequently used 

antibacterial agents in ICU, with the corresponding genes 

identified to date.

Enterococcus spp.
Enterococci are Gram-positive, facultatively anaerobic, 

opportunistic bacteria. E. faecalis and E. faecium are the 

leading species responsible of human disease. VRE, which 

emerged during the late 1980s,34 are among the major health 

care-associated MDR organisms.10 Enterococci are normal 

components of the human intestinal flora, but may become 

responsible for serious infections, such as BSIs and intra-

abdominal and surgical site infections, especially among 

immunocompromised patients.35 These microorganisms 

represent the third-most prevalent nosocomial pathogens 

worldwide, and acquired resistance to penicillin/ampicillin, 

aminoglycosides, and glycopeptides are reported in an 

increasing number of isolates, causing a serious problem in 

choosing an appropriate therapy.36 All Enterococcus spp., 

including E. faecalis and E. faecium, are naturally resistant 

to several antibiotics, such as cephalosporins, clindamy-

cin, cotrimoxazole, and aminoglycosides.37 Mechanisms 

of glycopeptide resistance in enterococci have been well 

investigated, and to date we know of nine mobile gene clus-

ters that mediate the resistance: VanA, VanB, VanC, VanD, 

VanE, VanG, VanL, VanM, and VanN. VanA resistance is 

the most prevalent, and confers high-level resistance to all 

glycopeptides by altering the terminal sequence of cell-wall 

precursors, thus lowering their binding affinity, while the 

VanB phenotype is only resistant to vancomycin.37 VRE 

isolates exhibit a genetic “pathogenicity island”, coding for a 

putative enterococcal surface protein.38 This protein produces 

thicker and DR biofilms, and its expression in E. faecium is 

regulated by temperature, promoting initial colonization and 

aiding in biofilm formation. Thanks to the ability to colonize 

gut, skin, and inanimate surfaces, this trait is likely to pro-

mote the infection of indwelling medical devices, of which 

enterococci are frequently associated.39 Of note, vancomycin-

resistance genes can be transferred from enterococci to other 

organisms, causing the emergence of vancomycin-resistant  

S. aureus (VRSA).40

S. aureus
S. aureus is a Gram-positive, facultative anaerobic pathogen, 

with both hospital- and community-acquired strains. It is part 

of the microbiota of the skin, and it is most commonly iso-

lated from moist areas, such as the anterior nares and axillae.41 

Traditionally opportunistic, many S. aureus strains are now 

aggressively pathogenic, causing a wide range of diseases, 
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Table 1 Mechanisms of resistance against most commonly used antimicrobial agents and corresponding genes expressed by bacteria

Drugs Mechanism of resistance Genes Microorganism

Penicillins Altered target site mecA S. aureus
Enzymatic inactivation Inducible ampC (intrinsically resistant) Enterobacter spp.

Cephalosporins Increased elimination AdeABC/AbeM A. baumannii
Enzymatic inactivation ampC/LysR-type P. aeruginosa
Enzymatic inactivation blaCTX-M/ampC E. coli
Enzymatic inactivation ampC Enterobacter spp.

Aminoglycosides Altered target site armA and rmtB K. pneumoniae
Altered target site armA and rmtB E. coli
Increased elimination 
Altered target site

AdeABC/AbeM 
armA

A. baumannii

Glycopeptides Altered target site vanA-vanN Enterococci; S. aureus
Lincosamides Enzymatic inactivation 

Increased elimination
erm genes, linB (intrinsic and inducible resistance) 
msrA-msrC

Enterococci

Tetracyclines Increased elimination tet(A), tet(A)1, acrAB K. pneumoniae
Altered target site tetA–tetB A. baumannii

Cotrimoxazole Bypass pathway No genes involved (intrinsically resistant) Enterococci
Altered target site sul1, sul2, sul3, dfrA1, dfrA5 K. pneumoniae

Fluoroquinolones Altered target site/bypass pathway qnr-like (intrinsically resistant) Enterococci
Altered target site/bypass pathway qnr K. pneumoniae
Increased elimination 
Altered target site

AdeABC/AbeM 
gyrA

A. baumannii

Altered target site gyrA P. aeruginosa
Altered target site 
Altered target site 
Altered target site/bypass pathway

gyrA/gyrB/parC/marR 
ompF/ompC 
qnr

E. coli

Carbapenems Enzymatic inactivation blaKPC/blaSME/blaVIM 
blaIMP/blaNDM/blaOXA

K. pneumoniae

Enzymatic inactivation ampC/ES OXA A. baumannii
Enzymatic inactivation blaIMP/blaVIM/blaSPM/blaKPC 

ampC/LysR-type 
blaOXA

P. aeruginosa

Enzymatic inactivation blaNDM E. coli
Enzymatic inactivation blaKPC/blaOXA/blaIMP/blaVIM 

blaCTX/ampC
Enterobacter spp.

Tigecycline Increased elimination AdeABC/AbeM 
AdeIJK

A. baumannii

Increased elimination AdeABC/AdeIJK P. aeruginosa
Polymyxins Altered target site pmrA/pmrB 

phoP/phoQ 
mgrB

K. pneumoniae

Altered target site pmrA/pmrB 
lpxA/lpxC/lpxD

A. baumannii

Altered target site pmrA/pmrB 
phoP/phoQ 
cprR/cprS 
colR/colS

P. aeruginosa

Abbreviations: S. aureus, Staphylococcus aureus; A. baumannii, Acinetobacter baumannii; P. aeruginosa, Pseudomonas aeruginosa; E. coli, Escherichia coli; K. pneumoniae, Klebsiella 
pneumoniae.

from skin and wound infections to severe illnesses, such as 

BSIs and soft-tissue and bone infections.41,42 As enterococci, 

S. aureus also frequently causes chronic infections by form-

ing biofilms, and this is the leading cause of chronic infec-

tions associated with indwelling medical devices.43 MRSA is 

a major pathogen in both health care and community settings, 

and its resistance is conferred by the acquisition of one of 

several staphylococcal cassette chromosome mec elements 

that carry a gene (mecA) that encodes a penicillin-binding 

protein (PBP2a) with low affinity for β-lactam antibiotics.44,45 

One of the most challenging issues in the evolution of MRSA 

epidemiology is the emergence and spread of community-

acquired MRSA. These strains are generally susceptible to 

a wider spectrum of non-β-lactam antibiotics compared to 
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hospital-acquired MRSA, but they often carry the genes for 

Panton–Valentine leukocidin.46,47 First-line treatment for 

MRSA infections is glycopeptide antibiotics (ie, vancomycin 

or teicoplanin). However, the intensive selective pressure 

caused the emergence of vancomycin-intermediate S. aureus 

and VRSA.42 Vancomycin-intermediate S. aureus strains have 

evolved as a result of fundamental changes in cell-wall thick-

ness and composition, trapping vancomycin and reducing its 

permeation to the site of action. VRSA is far less common, 

and is characterized by an acquired resistance from the VRE 

vanA gene, which alters the terminal sequence of cell-wall 

precursors, making them poor substrates for vancomycin and 

teicoplanin. MDR VRSA isolates exhibit both mecA and vanA 

resistance genes, with resistance being conferred through the 

same mechanisms as MRSA and VRE, respectively.48

Enterobacteriaceae
The emergence of resistance in Enterobacteriaceae is 

considered an alarming health threat.49 During these last 

few years, a growing number of K. pneumoniae, E. coli, 

and Enterobacter spp. have developed resistance against 

third-generation cephalosporin, due to extended-spectrum 

β-lactamases (ESBLs). ESBLs evolved from BLs, which 

are frequently expressed in Gram-negative bacteria (TEM-1, 

TEM-2, SHV-1) and are responsible for resistance against 

ampicillin, amoxicillin, and early generations of cepha-

losporins.49,50 Mutations in genes encoding these BLs led 

to the evolution of new enzymes, able to also hydrolyze 

third-generation cephalosporins and aztreonam. More than 

700 ESBLs variants have been identified to date, some of 

which have spread rapidly worldwide.50,51 Different classifi-

cations of BLs have been proposed, though Bush functional 

classification52 and Ampler molecular classification are the 

most commonly used.53 The diffusion of coding genes for 

ESBLs through mobile genetic elements is responsible for 

their ease of diffusion, their transmission in bacteria different 

from Enterobacteriaceae (ie, nonfermenting, Gram-negative 

rods, such as Pseudomonas aeruginosa), and cotransmission 

of genes responsible of resistance against other classes of 

molecules (eg, aminoglycosides).50 Carbapenems are the 

first line treatment of ESBLs producing bacteria, and the 

emergence of carbapenem-resistant isolates leaves limited 

therapeutic options.54,55 Metallo-BLs (MBLs), extended-

spectrum oxacillinases, and clavulanic acid-inhibited 

BLs have all been isolated in Enterobacteriaceae.50 MBLs 

belonging to class B of the Ambler classification (Verona 

imipenemase [VIM], imipenemase [IMP]) have been detected 

in different countries.55 Class D OXA-48 β-lactamases 

have been detected in K. pneumoniae isolates from Turkey, 

Lebanon, and Belgium.55–57 Among class A β-lactamases, 

the most commonly identified enzyme is KPC.55 The first 

KPC-producing K. pneumoniae isolate was detected in North 

Carolina, USA, in 1996.58 This first discovery was followed 

by several other variants (KPC-2 to KPC-7).55 Of note, sev-

eral KPC-producing K. pneumoniae with susceptibility to 

carbapenems have been reported, underlying the need of an 

additional mechanism (eg, poor drug penetration) for full 

expression of drug resistance.59 Apart from enzymatic inacti-

vation of drug molecules, different mechanisms of virulence 

and additional antibiotic-resistance mechanisms have been 

described in Enterobacteriaceae.49 K. pneumoniae is intrin-

sically virulent and capable of invasive infections, due to 

fimbrial adhesins and a thick capsule, which acts as a putative 

antiphagocytic factor.60 Pan-DR strains of KPC-producing 

K. pneumoniae have been reported in the literature, and iso-

lates were resistant to all antibiotic agents tested, including  

carbapenems, polymyxin B, and tigecycline.55 Polymyxins 

are considered the last resort for treatment of infections with 

carbapenem-resistant Gram-negative bacteria.61 However, 

resistance to these compounds has begun to emerge, though 

infrequently. Selective pressure, by the increased use of colis-

tin, and clonal expansion through horizontal transmission, 

have generated clusters of cases infected with multiresistant 

K. pneumoniae strains that have been generally attributed 

to the international epidemic clone ST258. Mono- or mul-

ticlonal outbreaks of colistin-resistant, KPC-producing 

K. pneumoniae have been described in hospitals in many coun-

tries, for example Greece, South Korea, the USA, and Italy.62,63  

Altered outer-membrane composition with the phosphate 

groups of lipid A containing five times more l-Ara4N than 

susceptible strains is known to lower the negative charge 

of the outer membrane of K. pneumoniae, leading to the 

reduced interaction of this membrane with polymyxins.64 

A molecular characterization of the structural alterations of 

lipopolysaccharide (LPS) in K. pneumoniae with regard to 

polymyxin resistance has shown the involvement of the phoP/

phoQ and pmrA/pmrB genes.65 One important molecular 

mechanism that leads to the emergence of colistin resistance 

in K. pneumoniae that has recently been discovered is the 

mutation/inactivation of the mgrB gene.66 Disruption of the 

mgrB gene in K. pneumoniae has been identified to play an 

important role in polymyxin resistance in this bacterium.67 

Polymyxins remain most often active against MDR bacte-

ria, and the emergence of colistin resistance in relation to 

increased usage is worrisome, since polymyxins are the last 

remaining therapeutic option in many cases.68
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E. coli are Gram-negative, facultative anaerobes, most 

commonly commensal, but can also become pathogenic, 

producing potentially deadly toxins, including enterohem-

orrhagic verotoxins, such as E. coli O157:H7, which causes 

hemolytic uremic syndrome and renal failure.69 E. coli has 

been one of the most widely antibiotic-susceptible micro-

organisms of the Enterobacteriaceae family, but recently 

horizontal gene transfer has allowed for the rise of highly 

resistant strains.70 This spread of resistance has major rel-

evance, because these strains are among the most common 

Gram-negative bacteria causing infections in humans. Strains 

carrying ESBLs and with high coresistance to fluoroquino-

lones and gentamicin have been rising in Europe.71 Even if 

still uncommonly, in multiple continents E. coli have also 

acquired the NDM-1 enzyme from K. pneumoniae, which 

confers a broad resistance to all BLs, including carbapen-

ems, with the exception of the monobactam aztreonam.72 In 

polymyxin-resistant E. coli, lipid A is typically modified with 

2-aminoethanol and also with l-Ara4N.73

Enterobacter is a genus of Gram-negative, facultative 

anaerobic, opportunistic pathogens, possessing endotoxins 

and antibiotic resistance through expression of an extensive 

variety of ESBLs and carbapenemases, including KPC, OXA, 

and MBLs.74 Of note, Enterobacter spp. are intrinsically 

resistant to aminopenicillins, cefazolin, and cefoxitin, due to 

the production of constitutive chromosomal AmpC BLs.75

Nonfermenting Gram-negative bacteria
A. baumannii
The most common resistant Acinetobacter species is 

A. baumannii, a Gram-negative, facultative anaerobic, oppor-

tunistic pathogen. It has a thick cell wall that enables it to 

resist dry conditions, high temperature, and pH and nutrient 

changes, surviving for up to 5 months on inanimate objects.76 

A. baumannii is naturally resistant to many antibiotics, due 

to both poor membrane penetration and active efflux pumps. 

Overexpression of the AdeABC and AbeM efflux pumps 

causes broad resistance to cephalosporins, fluoroquinolones, 

aminoglycoside, and tigecycline, and also provides resistance 

to ammonia-based disinfectants.77 Furthermore, A. bauman-

nii isolates produce an exopolysaccharide, leading to biofilm 

formation, and express a powerful, epithelial cell-targeting 

cytotoxin that facilitates colonization.78 MDR A. baumannii 

expresses a variety of BLs, including ESBLs and carbapen-

emases, such as imipenem MBLs and oxacillinases.79 Among 

naturally occurring BLs, an AmpC-type cephalosporinase and 

OXA-51/69 variants have been identified. These enzymes, 

once overexpressed, may be involved in reduced susceptibility 

to carbapenems. Most acquired BLs belong to class B or class 

D of the Ambler classification. OXA-23-like enzymes are the 

most widespread in A. baumannii worldwide, and these bac-

teria are the most common sources of nosocomial outbreaks 

with carbapenem-resistant A. baumannii.80 A. baumannii 

worldwide shows high-level resistance to all aminoglycosides 

by decreased outer-membrane permeability, active efflux 

pumps, and amino acid substitutions in ribosomal proteins.31 

In P. aeruginosa and A. baumannii, a single mutation in 

the gyrA gene encoding DNA gyrase is sufficient to confer 

clinically high-level resistance to fluoroquinolones. Of note, 

decreased susceptibility to this class of molecules is also due 

to low permeability and efflux-pump activity.81 Resistance to 

tigecycline has been noted on several occasions, and might 

be due to upregulation of the AdeABC and AdeIJK multi-

drug efflux-pump systems.82 Tigecycline-resistance levels in  

A. baumannii isolates may increase during therapy in cases of 

brief exposure to the drug, compromising its efficacy.82,83 Two 

mechanisms of resistance to colistin have been described in 

A. baumannii. The first consists of alterations of the lipid A 

component of LPS resulting from mutations in the PmrAB 

two-component system.32,84 The second resistance mechanism 

is the complete loss of LPS production resulting from muta-

tions in the lpxA, lpxC, and lpxD genes, encoding the enzymes 

that catalyze the first steps in LPS biosynthesis.85

P. aeruginosa
P. aeruginosa is a Gram-negative, rod-shaped bacterium, 

a facultative anaerobic, opportunistic pathogen surviving 

in microaerobic conditions, such as the thick mucus of 

lungs of cystic fibrosis patients. The ubiquity and survival 

capacity in extreme environments, like antimicrobial solu-

tions of acetate-buffered benzalkonium chloride, are major 

determinants of outbreaks of nosocomial infections. It has a 

high propensity to form biofilms. Its outer-membrane porins 

make it impermeable and resistant to many antibiotics.86,87 

P. aeruginosa is notoriously resistant to fluoroquinolones 

as a result of target mutations on DNA gyrase and/or topoi-

somerase IV.33 Many BLs, encoded by plasmids or chro-

mosomally integrated transposons, have been reported (eg, 

IMP, VIM, KPC, and SPM metallocarbapenemases).88 An 

acquired ceftazidimase ESBL called PER-1 is widespread in 

P. aeruginosa isolated in Turkey.89 IMP and VIM enzymes 

are integron-associated and can be plasmid-mediated and 

transferable, although chromosomal gene integration is 

common.88 IMP-1 was first reported in Enterobacteriaceae 

and P. aeruginosa in Japan and is now globally distributed, 

suggesting horizontal transfer of blaIMP-1 between unrelated 
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Gram-negative species.79 VIM-1 was the first MBL identified 

in P. aeruginosa and has been reported in several European 

countries. However, VIM-2 is now the most widespread 

MBL as a source of multiple outbreaks.90 The BL SPM is 

quite different from VIM and IMP, and represents a new sub-

family of MBLs, highly resistant to all anti-Gram-negative 

antibiotics except colistin.91 Intrinsic to P. aeruginosa is a 

chromosomal gene encoding an AmpC-type cephalospori-

nase, associated with a LysR-type regulatory gene with which 

some BL molecules may interact, leading to overexpression 

of the AmpC gene. Selection of mutants overproducing the 

AmpC gene is frequently observed in P. aeruginosa, leading 

to acquired resistance to ticarcillin, piperacillin, and broad-

spectrum cephalosporins (ceftazidime).83,92 P. aeruginosa 

produces a naturally occurring class D BL, OXA-50, that 

does not contribute to the overall BL-resistance pattern of 

P. aeruginosa, except for latamoxef.93 Most of the class D BLs 

able to hydrolyze expanded-spectrum cephalosporins have 

been identified, and there are two main types of expanded-

spectrum class D BLs (ES-OXAs).94 OXA-18, which is 

inhibited by clavulanic acid, was the first identified ES-OXA 

in a P. aeruginosa isolate in Paris, from a patient previously 

hospitalized in Sicily.95 Only two acquired class D BLs, com-

promising the efficacy of carbapenems, have been reported 

from P. aeruginosa: OXA-40 and OXA-198.96,97 Resistance 

to tigecycline has been noted on several occasions, and 

might be due to upregulation of the AdeABC and AdeIJK 

multidrug efflux pumps acting synergistically.98 Acquisition 

of polymyxin resistance is mostly related to modifications 

of the biosynthesis of the lipid A component of LPS. This 

resistance is mediated by a complicated regulatory genetic 

network, such as PmrAB, PhoPQ, ParRS, CprRS, and ColRS, 

which is currently under investigation worldwide.61

Outcomes
The overall case-fatality rate associated with BSIs is 

15%–20%, but reaches 35%–50% when patients with ICU 

admission are considered.2 In most observational studies 

investigating the epidemiology and outcomes of BSIs due 

to resistant bacteria, inappropriate antimicrobial therapy 

is independently associated with an increased mortality 

after correction for severity of illness and other potential 

confounders.8,10,25,99 The risk of inappropriate empirical 

therapy increases with the prevalence of resistant micro-

organisms.25 It is generally accepted that the increased risk 

of mortality attributable to BSIs due to resistant isolates 

is related to inappropriate therapeutic choices, rather than 

intrinsic enhanced virulence of resistant microorganisms.25 

The overall mortality of patients with BSIs due to 

carbapenem-resistant K. pneumoniae was 23% at 7 days 

and 60% at the end of hospitalization in a retrospective 

observational study. Lack of microbiologic eradication at 

7 days was associated with an increased 30-day mortality.100 

A higher infection-related mortality was detected in patients 

with BSIs caused by carbapenem-resistant K. pneumoniae 

compared to those with ESBL K. pneumoniae or susceptible 

strains. This increased mortality may be explained by the 

higher proportion of patients with ineffective antimicrobial 

therapy in the carbapenem-resistant group.25 Apart from pre-

viously reported risk factors (recent history of hospitaliza-

tion, critical illness at presentation, inappropriate empirical 

therapy), postantibiogram antimicrobial regimens had an 

influence on 30-day mortality from carbapenem-resistant 

K. pneumoniae BSIs, with a higher risk of mortality observed 

in monotherapy-treated patients compared to patients treated 

with combination therapy, especially when the combination 

regimen included a carbapenem.54 The unexpected observa-

tion of improved outcomes when carbapenemase-producing 

isolates of K. pneumoniae are treated with carbapenems 

confirmed previously reported data from case reports and 

retrospective studies.101,102

Conclusion
BSIs are among the leading causes of infections in ICU 

patients. An increasing number of BSIs are caused by 

resistant bacteria in the ICU setting. The clinician should be 

aware of the risk factors for BSIs caused by resistant bacteria, 

common resistance mechanisms, and their diffusion for the 

global management of critically ill patients, from surveil-

lance measures to source control and appropriate antibiotic 

treatment.
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