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Functional magnetic resonance imaging is a 
powerful approach to probing the mechanism of 
action of therapeutic drugs that act on the central 
nervous system

Shu-Feng Zhou
Department of Pharmaceutical 
Science, College of Pharmacy, 
University of South Florida, Tampa, 
Fl, USa

In the paper by Pickering et al1 published in this issue of Drug Design, Development and 

Therapy, the authors explore the brain areas actively involved in the mechanism of action 

of acetaminophen as an analgesic in healthy subjects using functional magnetic resonance 

imaging (fMRI). In this randomized, double-blind, crossover, placebo-controlled study, 

healthy subjects were exposed to experimental thermal stimuli with acetaminophen or 

placebo. fMRI experiments were performed on a General Electric Discovery MR 750 3.0 

T using a 32-channel head coil with subjects lying supine. A standard whole-brain gradi-

ent echoplanar imaging sequence was utilized for the functional scans. The neuroimaging 

data were preprocessed and analyzed using Statistical Parametric Mapping version 8 

(Wellcome Department of Imaging Neuroscience, London, UK) in Matlab 7.12 (Math-

Works). The blood oxygenation level dependent (BOLD) images were then spatially 

normalized into the Montreal Neurological Institute and Hospital (MNI) space using 

trilinear interpolation, with the normalization parameters determined during normaliza-

tion of the structural images. Subsequent spatial smoothing using an isotropic 8 mm full-

width half maximum Gaussian kernel was applied to the functional images to increase 

the signal-to-noise ratio. On the basis of a priori hypotheses regarding the involvement 

of the anterior cingulate cortex (ACC), insula, prefrontal cortices, thalamus, and peri-

aqueductal gray (PAG) in the pain-reducing effect of acetaminophen, Pickering et al1  

applied structurally defined region of interest analyses to compare neural activity in 

these regions between groups during a thermal pain stimulus. Regions of interest, ie, 

the PAG, ACC, insula, prefrontal cortices, and thalami, were defined using the Marsbar 

tool in Statistical Parametric Mapping version 8. Beta extractions were then performed, 

in order to assess group differences in neural activity in these regions during a thermal 

noxious stimulus. The study has shown that activity in response to noxious stimulation 

was suppressed with acetaminophen compared with placebo in the prefrontal cortices, 

insula, thalami, ACC, and PAG. The correlation between the fMRI signal for diminu-

tion of activation (T100–T0) and the diminution of pain intensity was significant for 

acetaminophen (P=0.002) but not for placebo. The imaging results are consistent with 

the behavioral analgesic effects of acetaminophen.

The above study provides evidence in healthy subjects that acetaminophen reduces 

the pain-related BOLD signal responses arising from noxious thermal stimulation in 

several brain areas of the pain matrix. The reduction of perceived pain intensity scores 
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simultaneous with the reduction in pain-related activity is 

consistent with the observed changes in BOLD signal result-

ing from the analgesic effect of acetaminophen. Compared 

with placebo, acetaminophen reduces significantly the pain-

related BOLD signal responses arising from the noxious 

thermal stimulation in the selected regions of interest, ie, 

insula, ACC, thalamus, and prefrontal cortices. This sug-

gests an inhibitory effect of acetaminophen on spinothalamic 

tracts, leading to decreased activation of higher structures 

and a resulting antinociceptive effect of acetaminophen.1 The 

authors have proposed a “top-down phenomenon” with an 

active engagement of the PAG for the mechanism of action 

of acetaminophen as an analgesic and a specific action on 

the midbrain neurotransmission system.

This interesting study by Pickering et al1 demonstrates 

the significance of fMRI application in probing the mecha-

nisms of action of therapeutic drugs, especially for those that 

act on the central nerve system (CNS). Recently, there has 

been a large number of published studies of fMRI in healthy 

volunteers or patients that aimed to explore the mechanisms 

of action of CNS drugs.2–4 fMRI is able to characterize the 

effects of CNS drugs associated with conditions and dis-

orders such as pain, schizophrenia, epilepsy, depression, 

drug addiction, Alzheimer’s disease, stroke, alcoholism, 

and obesity.2 fMRI has shown potential for distinguishing 

effective from noneffective compounds (placebo) and for 

predicting the clinical efficacy of drugs. These capabilities 

suggest that fMRI could provide a complementary, noninva-

sive adjunct to molecular imaging for detecting drug-related 

modulation of brain activity.2 fMRI may also represent a 

useful approach to improving the success rate of CNS drug 

discovery whereby CNS drug failures can be avoided at the 

early stages of development.

A number of fMRI studies with analgesics have dem-

onstrated the coupling between subjective pain intensity 

ratings and objective BOLD responses measured in central 

structures.2,3,5–8 Analgesics studied using fMRI include 

alfentanil,9 methadone,10 buprenorphine,11 morphine,12,13 

parecoxib,14 oxycodone,15 naproxen,16 lidocaine,17 pregabalin,18 

naloxone,19,20 nalbuphine,20 indomethacin,21 aspirin,22 

remifentanil,23 propofol,24 and ketamine.25–27 For example, it 

was found that nalbuphine (an opioid agonist), like morphine, 

attenuated activity in the inferior orbital cortex but increased 

activity in the temporal cortex, insula, pulvinar, caudate, and 

pons in healthy male volunteers.20 In addition, nalbuphine 

induced functional connectivity of the caudate and multiple 

regions in the frontal, occipital, temporal, insular, middle cin-

gulate cortices, putamen, and many areas in the cerebellum.20 

Coadministration of naloxone selectively blocked activity in 

the pulvinar, pons, and posterior insula. These studies have 

provided new insights into how analgesics act on CNS-

specific areas, and the image information from fMRI may be 

used as new biomarkers for monitoring the effects and side 

effects/toxicities of analgesics. fMRI offers new opportunities 

to evaluate and compare the effects of existing and new anal-

gesics on human brain activity and to provide system-level 

predictions for how new drug candidates for chronic pain will 

affect the brain, thus accelerating drug discovery and allowing 

repurposing of existing drugs for new indications.3

However, when we understand the usefulness and 

applicability of fMRI in the functional pharmacology of 

CNS drugs, several limitations to this study by Pickering 

et al1 have been noted. First, the resultant data from fMRI 

is just structural, not really functional, and thus functional 

validation studies are often needed to confirm the fMRI data. 

Second, this study is a single-dose one, and does not include 

the regimens for chronic usage of acetaminophen. The dose-

response relationship is not explored, and the time course is 

not well characterized. Third, the study was carried out in 

healthy volunteers, not patients. Finally, variation in study 

protocols and analysis techniques has made fMRI difficult to 

produce consistent data on the associations between subtle 

modulations of brain activity and the clinical efficacy of 

CNS drugs. fMRI does not quantify physiological variables 

directly associated with drug action, so identifying evidence 

for the efficacy of compounds must be based on empirically 

established associations between brain activity patterns and 

measurable clinical variables, such as clinical therapeutic 

outcomes.2 It is important that imaging tools are able to offer 

predictive capabilities beyond what can be obtained from 

clinical measures alone. Direct brain correlates of available 

behavioral and clinical measurements, which may be affected 

by factors unrelated to long-term efficacy, will not necessarily 

provide substantial additional predictive value for evalua-

tions of CNS drugs. Therefore, as the authors have pointed 

out, further binding and connectivity studies are warranted 

to assess how the analgesic effect of acetaminophen relates 

to cerebral and descending modulation of pain, especially in 

chronic dosing of acetaminophen in patients.

Since evaluations of the therapeutic potential of CNS drug 

candidates in humans are often difficult and expensive, with 

efficacy unreliable, hard to measure, and slow to manifest, 

fMRI represents a noninvasive imaging technique that can 

complement molecular imaging for systemic studies of new 

and existing CNS drugs. fMRI is also widely used to explore 

the molecular mechanisms of pain and other disorders.4  
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A deep understanding of how CNS drugs act on specific brain 

regions is important for optimized use of these drugs and may 

provide a base for precise medicine. fMRI may help with the 

development of more selectively targeted CNS drugs.
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